УДК 537.877
В.П. Беличенко, А.С. Запасной, В.П. Якубов, А.С. Мироньчев
Пространственная структура фазового состояния поля, порожденного системой близкорасположенных излучателей
Обсуждаются вопросы, касающиеся фазового состояния ближнего поля, порождаемого уединенными излучателями, а также системами таких излучателей. Отмечена продуктивность технологии ближнепольного низкочастотного многоракурсного пассивного зондирования при решении задач высокоточной локализации уединенного излучателя (метки) в условиях сложнопостроенной среды распространения излучения. Предложено идейную основу данной технологии использовать применительно к задачам ближнепольного интерференционного сверхвысокочастотного зондирования сред и объектов среднего уровня разрешения. В рамках данного подхода зондирование должно осуществляться перекрывающимися ближними полями двух, по крайней мере, активных зондов и помимо параметров, измеряемых при традиционном ближнепольном зондировании, должна учитываться и фаза коэффициента отражения сигнала от зонда. Приведены результаты компьютерного моделирования, иллюстрирующие особенности в зависимостях фазы поля от геометрии зондов и их взаимного расположения.
Ключевые слова: фазовый переход, фаза ближнего поля, ближнепольное местоопределение, эванесцентные поля, интерференционный поток энергии. ао1: 10.21293/1818-0442-2019-22-1-25-29
Электромагнитному полю, как и ряду других видов материи, свойственно нахождение в определенных фазовых состояниях. Например, в ближней зоне любой излучающей системы имеется, как правило, достаточно большой запас энергии, которая является преимущественно реактивной вследствие наличия фазового сдвига между векторами напря-женностей электрического и магнитного полей. В то же время в дальней зоне подобного фазового сдвига нет, и поэтому состояние поля характеризуется доминированием активной энергии.
Своеобразная динамика перехода электромагнитного поля из одного фазового состояния в другое была подмечена, по-видимому, впервые выдающимся физиком-теоретиком Р. Фейнманом и описана в известной книге «Фейнмановские лекции по физике. Т. 6. Электродинамика». Изучая структуру ближнего поля простейшего излучателя - диполя Герца, он установил, что в этой зоне отсутствует временное запаздывание колебаний поля относительно колебаний порождающего его тока в диполе. Но при этом имеется достаточно четко выраженная граница перехода поля из одного состояния в другое, а именно из квазистационарного в состояние излучения. Такой переход имеет ряд черт, позволяющих охарактеризовать его как переход второго рода. Фазовым переходам второго рода, как известно, свойственно не столько быстрое изменение параметров, характеризующих состояние материи, сколько высокая скорость, с которой эти изменения происходят.
Интерес к изучению поведения фазы компонент поля в пределах различных зон излучателей проявляется достаточно продолжительное время. Уже на начальной стадии исследований электромагнитных процессов Г. Герц рассчитал зависимости фаз компонент поля элементарного электрического диполя по мере удаления точки наблюдения от диполя вдоль направления максимального излучения
[1]. В результате им была выявлена область очень быстрого изменения разности фаз поперечных компонент электрического и магнитного полей в пределах малой пространственной области. В других исследованиях в различных областях электродинамики и антенной техники [2-5], проведенных значительно позже, также указывалось на наличие такой области.
Однако продуктивное воплощение выявленного эффекта не столько в теоретических работах, сколько в практических приложениях было предложено И.в. ЗсИа^ [6-8]. Дело в том, отмеченная выше особенность поведения разности фаз наблюдается в пределах пространственной области с характерным размером (0,08 - 0,3 X), где X - длина волны. Это обстоятельство позволило предположить, что технология, основанная на многоракурсном измерении разности фаз электрического и магнитного полей, создаваемых источником колебаний с достаточно большой длиной волны в ближней зоне приемной антенны, позволит весьма существенно повысить точность определения положения источника излучения.
Актуальность проблемы заключается в том, что разработанные многочисленные методы определения местоположения различных объектов с помощью сверхширокополосных сигналов, обладая несомненными достоинствами, имеют и недостатки. Так, внутренняя структура зданий и сооружений, а также элементы городской среды оказывают существенное влияние на распространение высокочастотных радиосигналов. Это проявляется в быстрых изменениях амплитуды и фазы, поскольку сигналы, распространяющиеся по различным траекториям, рассеиваются труднопредсказуемым образом и создают помехи друг другу. В общем случае задача эффективного приема многолучевого радиосигнала является технически сложной.
Для ряда приложений низкочастотные сигналы вследствие лучшего проникновения в поглощающие
среды могут иметь предпочтения. Наличие в ближней зоне, наряду с поперечными, радиальной компоненты поля, а также отсутствие синхронизации у компонент электрического и магнитного полей дают возможность для отслеживания большего числа параметров полезного сигнала.
В качестве альтернативной в последнее время активно развивается NFER® Real Time Location Systems (RTLS) технология [6-8]. Реализующие её системы работают на низких частотах, как правило, около 1 МГц. Причем они используют характерные особенности поведения фазы нераспространяющих-ся (эванесцентных) полей в ближней зоне метки-передатчика (tag transmitter). Достигаемая точность нахождения метки составляет 1-3 фута на расстоянии 60-200 футов [8].
На текущий момент имеются сведения об успешном использовании технологии в системах слежения и связи при перемещениях погрузчиков между плотно установленными стандартными грузовыми контейнерами, при работе в сложных условиях распространения сигнала на ядерных объектах и в складских помещениях, в системах обеспечения пожарной безопасности, предупреждения о чрезвычайных ситуациях, в том числе об атаках на сети компьютерной информации. Более того, предложено реализовывать данную технологию с применением широкополосных сигналов [9].
Проблема фазового состояния поля в ближнепольной интерференционной СВЧ-диагностике
Известно [10-13], что в перекрывающихся эва-несцентных полях, порождаемых распределенными в пространстве системами излучателей, имеют место интересные интерференционные эффекты, обусловливающие появление специфических интерференционных потоков энергии. В этой связи значительный интерес представляет исследование особенностей фазовой структуры поля в зоне перекрытия эванесцентных полей, а также и вне неё. Этот интерес вызван, в частности, задачами ближнеполь-ного зондирования сильно и слабо поглощающих сред и объектов.
В работе рассматриваются особенности фазового состояния поля в области перекрытия эванес-центных полей двух активных зондов электрического и магнитного типов. Как оказывается при использовании подобной конфигурации зондов, выделяются два неизлучающих интерференционных потока энергии, характеризующиеся разной зависимостью от разности начальных фаз токов в зондах. Показано, что именно эти потоки ответственны за особенности фазового состояния суммарного поля. Динамика изменения фазы поля изучена на примерах упрощенных моделей активных ближнепольных зондов. В качестве таких моделей рассмотрены:
а) разнесенные в пространстве и коллинеарные два элементарных электрических диполя (рис. 1, а);
б) разнесенные в пространстве и ортогонально ориентированные элементарные электрический и магнитный диполи (рис. 1, б).
Как показали наши исследования, наиболее ярко как наличие фазового перехода электромагнитного поля, так и пространственное положение воображаемой поверхности, на которой он происходит, устанавливается при исследовании скорости изменения с расстоянием фазы поля в ближней зоне.
Поэтому концептуальное значение имеет нахождение экстремальных (максимальных) значений производной в зависимости фазы поля от расстояния в пределах ближней зоны зондирующей системы.
Z Z ,,
Р1 '—i Р^
b
b
Р2 , pm -►
Y
а б
Рис. 1. Модели зондирующих систем,
содержащих идентичные и неидентичные зонды
Результаты численного моделирования и их интерпретация
Ниже представлены результаты моделирования для системы, изображенной на рис. 1, а.
При моделировании нами были использованы мультипольные разложения произвольной системы электрических и магнитных токов в сферической системе координат [14] и специальные формулы суммирования типа представленных в [11, 12]. Это позволило кардинальным образом упростить процедуру расчетов в силу того, что в ближней зоне исходные мультипольные разложения оказываются крайне медленно сходящимися.
350 ф, о
300
250
200
150 1
100 2
50 l / X
0 0,2 0,4 0,6 0,8
Рис. 2. Поведение фазы компонент электрического и магнитного полей уединенного диполя в ближней зоне (р2 ф 0, р = 0): 1 - фаза компоненты Е0; 2 - фаза компоненты Нф; 3 - разница фаз Е0 и Нф; 4 - фаза в дальней зоне
На рис. 2-4 отражены поведение фаз компонент полей, а также их разности по мере удаления от системы диполей в направлении оси у. Расстояние от-считывается в долях длины волны. Как видно, для уединенного диполя разность фаз компонент поля Е0 и Нф претерпевает существенное изменение именно в пределах указанного выше интервала расстояний: (0,08-0,3)Х.
Y
350 300 250
200 150 100 50
0 0,2 0,4 0,6 0,8 1/Х Рис. 3. Поведение фазы компонент суммарных электрических и магнитных полей двух диполей в ближней зоне,
отстоящих на расстоянии 0,06Х друг от друга:
1 - фаза компоненты Ее; 2 - фаза компоненты Нф;
3 - фаза в дальней зоне
Использование системы диполей с одинаковыми моментами, но с регулируемой разностью фаз токов в них позволяет заметным образом сократить этот интервал (см. рис. 3, 4), что представляется весьма существенным при решении задач многоракурсного активного зондирования.
350 300 250 200 150 100 50
0 0,2 0,4 0,6 0,8
Рис. 4. Поведение фазы компонент суммарных электрических и магнитных полей двух диполей в ближней зоне, отстоящих на расстоянии 0,2Х друг от друга: 1 - фаза компоненты Ее; 2 - фаза компоненты Нф;
3 - фаза в дальней зоне
Описанное выше рассмотрение дополнено нами подробным изучением поведения фаз компонент электрического и магнитного полей в промежутке между двумя параллельными (рис. 5, а) и коллине-арными электрическими вибраторами (рис. 5, б). При расчетах предполагалось, что токи в вибраторах меняются по синусоидальному закону, а расчетные формулы для полей в ближней зоне были взяты из [15].
Эта часть исследования мотивируется тем обстоятельством, что два близко расположенных активных зонда могут создавать в промежутке между ними суммарные поля, фазами которых можно управлять путем изменения электрической длины промежутка между зондами. Данное обстоятельство может иметь существенное значение в проблеме
ближнепольного зондирования, поскольку современная ближнепольная СВЧ-микроскопия уже обеспечена инструментарием, позволяющим измерять не только традиционные параметры (коэффициет отражения от исследуемого образца, сдвиг резонансной частоты, добротность), но и фазу ближнего поля.
б
Рис. 5. Геометрия задачи, относящейся к расчету фаз компонент электрического и магнитного полей в промежутке между двумя вертикальными электрическими вибраторами
Рисунок 6 иллюстрирует пример поведения фаз компонент Ег, Ер, Нф суммарного поля двух вибраторов (см. рис. 5, а) в промежутке между ними в цилиндрической системе координат, начало которой находится в точке О. Параметры расчета: длина волны Х = 0,03 м, длина вибраторов I = Х/20, расстояние ё между вибраторами выбрано исходя из соотношения ё = 41 /X . Можно отметить некоторые особенности в поведении фаз компонент полей. Так, например, фаза компоненты Ег испытывает скачок на п. Своеобразием отличается поведение фазы компоненты Ер, сочетающее отрезок с практически
постоянным значением фазы и последующее её резкое изменение. В то же время фаза компоненты Нф магнитного поля практически постоянна, а видимый скачок фазы составляет величину, равную 2п.
Ф, рад
Е2 Н
НФ
ЕР
0,005 0,01 0,015 ^ м
Рис. 6. Поведение фазы компонент суммарных электрических и магнитных полей двух вибраторов в ближней зоне
Что касается разности фаз компонент Ег и Нф
суммарного поля, то она сохраняет постоянное значение в промежутке между вибраторами (рис. 7).
а
2
0
2
ф, рад
-2
l, м
0,005 0,01 0,015
Рис. 7. Разность фаз компонент Е2 и Нф двух вибраторов в ближней зоне
Рисунок 8 иллюстрирует поведение фазы компоненты Ег электрического поля в промежутке между торцами двух коллинеарных электрических вибраторов. Этот случай интересен в том отношении, что именно продольная компонента электрического поля является доминирующей в ближней зоне излучающей системы. Поэтому в ряде реальных конструкций ближнепольных СВЧ-микроскопов предпринимались меры, направленные на её максимизацию. Можно отметить вполне прогнозируемую симметричность кривой, отображающей поведение фазы. Интересной же особенностью является практически постоянное (нулевое) значение фазы в пределах небольшого интервала, включающего в себя центральную часть промежутка между вибраторами.
0
-1
-2
-3
-4
ф, рад
0,01 0,02 0,025 /, м Рис. 8. Поведение фазы компоненты Е2 суммарного поля двух вибраторов в ближней зоне
Выводы
С использованием численного моделирования продемонстрирована возможность эффективного управления фазовой структурой электрического и магнитного полей, а также разностью фаз этих полей в пределах зоны перекрытия эванесцентных полей двух активных зондов. Отмечено, что выявленные особенности фазовой структуры полей могут найти применение в задачах ближнепольной диагностики сред и объектов среднего уровня разрешения.
Исследование выполнено при финансовой поддержке РФФИ и администрации Томской области в рамках научного проекта № 16-42-700942 регионального конкурса (р_сибирь_а).
Литература
1. Hertz H. The Forces of Electrical Oscillations Treated According to Maxwell's Theory // Nature. - 1889. - Vol. 39. -P. 402 [Электронный pecypc]. - Режим доступа: http://phy-sics.princeton.edu/~mcdonald/examples/EM/hertz_nature_39_ 402_89.pdf., свободный (дата обращения: 20.12.2018).
2. Schantz H.G. The flow of electromagnetic energy around an electric dipole // American Journal Physics. -1995. - Vol. 63, No. 6. - P. 513-520.
3. Schantz H.G. Electromagnetic energy around Hertzian dipoles // IEEE Antennas and Propag. Magazine. - 2001. -Vol. 43, No. 2. - P. 50-62.
4. Valagiannopoulos C.A., Alu A. The role of reactive energy in the radiation by a dipole antenna // IEEE Trans. on Antennas and Propag. - 2015. - Vol. 63, No. 8. -P. 3736-3741.
5. Fundamental limits on antenna size: a new limit / W.A. Davis, T. Yang, E.D. Caswell, W.L. Stutzman // IET Microwave Antennas Propag. - 2011. - Vol. 5, No. 11. -P. 1297-1302.
6. Schantz H., Fluhler J. Near-field technology - an emerging rf discipline / Editors: H. Lacoste & L. Ouwehand // Proceedings of The European Conference on Antennas and Propagation: EuCAP 2006 (ESA SP-626). 6-10 November 2006, Nice, France. - Published on CDROM. - P. 2.1.
7. U.S. Patent 8,253,626. Multiple Phase State Near-Field Electromagnetic System and Method for Communication and Location / H.G. Schantz, A. Compston, R.E. DePierre, J.M. Barron. - March 15, 2016.
8. U.S. Patent 9,285,453. Method of Near-Field Electromagnetic Ranging and Location / H.G. Schantz, R.E. DePierre, A.H. Unden, E.A. Richards. - August 28, 2012.
9. Wideband signal based near-field electromagnetic ranging for indoor localization / P. Wang, Z. Liu, X. Zhang, L. Xu, J. He, Y Wan // Advances in Intelligent Systems Research (AISR). - Atlantis Press. - 2018. - Vol. 155. - P. 243-247.
10. Maeda S., Diament P. Power flow between adjacent electric dipoles // IEEE Antennas and Propag. Magazine. -2003. - Vol. 44, No. 6. - P. 68-76.
11. Управление величиной и пространственным распределением интерференционных потоков энергии в ближних полях систем идентичных излучателей / В.П. Бе-личенко, А.С. Запасной, П.В. Шестаков // Оптика и спектроскопия. - 2015. - Т. 118, № 4. - С. 633-636.
12. Роль эванесцентных полей в процессе формирования излучения комбинированных излучающих систем / В.П. Беличенко, А.С. Запасной, П.В. Шестаков // Оптика и спектроскопия. - 2015. - Т. 118, № 4. - С. 630-632.
13. The technology of near-field interference microwave sensing / V.P. Belichenko, A.S. Zapasnoy, A.S. Mironchev, P.V Shestakov // Material Science Forum. - 2016. - Vol. 870. -P. 730-734.
14. Марков Г.Т., Чаплин А.Ф. Возбуждение электромагнитных волн. - М.: Радио и связь, 1983. - 296 с.
15. Марков Г.Т., Сазонов Д.М. Антенны. - 2-е изд., перераб. и доп. - М.: Энергия, 1975. - 266 с.
Беличенко Виктор Петрович
Доктор физ.-мат. наук, профессор
каф. радиофизики (РФ) Национального исследовательского Томского государственного университета (НИ ТГУ) Ленина пр-т, 36, Томск, Россия, 634050 Тел.: +7 (382-2) 41-34-63 Эл. почта: bvp@mail.tsu.ru
1
0
1
Запасной Андрей Сергеевич
Канд. физ.-мат. наук, доцент каф. РФ НИ ТГУ Ленина пр-т, 36, Томск, Россия, 634050 Тел.: +7-961-095-96-97 Эл. почта: zas_rff@live.com
Якубов Владимир Петрович
Д-р физ.-мат. наук, зав. каф. РФ НИ ТГУ Ленина пр-т, 36, Томск, Россия, 634050 Тел.: +7 (382-2) 41-34-63 Эл. почта: yvlp@mail.tsu.ru
Мироньчев Александр Сергеевич
Инженер каф. РФ НИ ТГУ
Ленина пр-т, 36, Томск, Россия, 634050
Тел.: +7 (382-2) 41-34-63
Эл. почта: mironchev42@mail.ru
Belichenko V.P., Zapasnoy A.S., Yakubov V.P., Mironchev A.S.
Spatial structure of the phase state of the field generated by a system of closely spaced radiators
Questions concerning the phase state of the near field generated by single radiator, as well as systems of such radiators, are discussed. The productivity of the near-field low-frequency multi-view sensing technology is emphasized when solving the tasks of high-precision localization of a single radiator (tag) in conditions of a complexly constructed medium in which radiation is propagated. A method to develop this technology by applying to the tasks of near-field sensing of media and objects of medium resolution is proposed. The basis of this technique is active multi-view sounding systems of closely located radiators. Examples of computer modeling are presented, demonstrating the fundamental capabilities of the technique. Keywords: phase transition, near field phase, near-field location, evanescent fields, interference energy flow. doi: 10.21293/1818-0442-2019-22-1-25-29
References
1. Hertz H. The Forces of Electrical Oscillations Treated According to Maxwell's Theory. Nature, 1889, vol. 39, P. 402. Available at: http://physics.princeton.edu/~mcdonald/exam-ples/EM/hertz_nature_39_402_89.pdf (accessed: December 20, 2018).
2. Schantz H.G. The flow of electromagnetic energy around an electric dipole. American Journal Physics, 1995, vol. 63, no. 6, pp. 513-520.
3. Schantz H.G. Electromagnetic energy around Hertzian dipoles, IEEE Antennas and Propag. Magazine, 2001, vol. 43, no. 2, pp. 50-62.
4. Valagiannopoulos C.A., Alu A. The role of reactive energy in the radiation by a dipole antenna. IEEE Trans. on Antennas and Propag, 2015, vol. 63, no. 8, pp. 3736-3741.
5. Davis W.A., Yang T., Caswell E.D., Stutzman W.L. Fundamental limits on antenna size: a new limit. IET Microwave Antennas Propag, 2011, vol. 5, no. 11, pp. 1297-1302.
6. Schantz H., Fluhler J. Near-field technology - an emerging rf discipline / Editors: H. Lacoste & L. Ouwehand. Proceedings of The European Conference on Antennas and Propagation: EuCAP 2006 (ESA SP-626). 6-10 November 2006, Nice, France. - Published on CDROM. - P. 2.1.
7. Schantz H.G., Compston A., DePierre R.E., Barron J.M. Multiple Phase State Near-Field Electromagnetic System and Method for Communication and Location. U.S. Patent no. 8, 253, 626, March 2016.
8. Schantz H.G., DePierre R.E., Unden A.H., Richards E.A. Method of Near-Field Electromagnetic Ranging and Location. U.S. Patent no. 9,285,453, August 2012.
9. Wang P., Liu Z., Zhang X., Xu L., He J., Wan Y. Wideband signal based near-field electromagnetic ranging for indoor localization. Advances in Intelligent Systems Research (AISR), Atlantis Press, vol. 155, 2018, pp. 243-247.
10. Maeda S., Diament P. Power flow between adjacent electric dipoles. IEEE Antennas and Propag. Magazine, 2003, vol. 44, no. 6, pp. 68-76.
11. Belichenko V.P., Zapasnoy A.S., Shestakov P.V. Control of the Mag nitude and Spatial Distribution of Interference Energy Flows in Near Fields of Systems of Identical Radiators. Optics and Spectroscopy, 2015, vol. 118, no. 4, pp. 605-608.
12. Belichenko V.P., Zapasnoy A.S., Shestakov P.V. The Role Played by Evanescent Fields in the Process of Formation of Radiation of Combined Radiating Systems. Optics and Spectroscopy, 2015, vol. 118, no. 4, pp. 602-604.
13. Belichenko V.P., Zapasnoy A.S., Mironchev A.S., Shestakov P.V. The technology of near-field interference microwave sensing. Material Science Forum, 2016, vol. 870, pp. 730-734.
14. Markov G.T., Chaplin A.F. Vozbuzhdenie elektro-magnitnyh voln [Excitation of electromagnetic waves]. M.: Radio i svyaz, 1983, 296 p.
15. Markov G.T., Sazonov D.M. Antenny [Antennas] // Edition 2, revised and updated. M.: Energiya, 1975, 266 p.
Victor P. Belichenko
Doctor of Physics and Mathematics,
Professor, Department of Radiophysics,
National Research Tomsk State University (NI TSU)
36, Lenin pr., Tomsk, Russia, 634050
Phone: +7 (382-2) 41-34-63
Email: bvp@mail.tsu.ru
Andrey S. Zapasnoy
Candidate of Physics and Mathematics,
Associate Professor, Department of Radiophysics NI TSU
36, Lenin pr., Tomsk, Russia, 634050
Phone: +7-961-095-96-97
Email: zas_rff@live.com
Vladimir P. Yakubov
Doctor of Physics and Mathematics, Head of Department of Radiophysics NI TSU 36, Lenin pr., Tomsk, Russia, 634050 Phone: +7 (382-2) 41-34-63 Email: yvlp@mail.tsu.ru
Aleksander S. Mironchev
Candidate of Physics and Mathematics, Engineer, Department of Radiophysics NI TSU 36, Lenin pr., Tomsk, Russia, 634050 Phone: +7 (382-2) 41-34-63 Email: mironchev42@mail.ru