South Russian Journal of Cancer. 2024. Vol. 5, No. 4. P. 46-57 4.0
https://doi.org/10.37748/2686-9039-2024-5-4-6
https://elibrary.ru/hfikew
South Russian
Journal of Cancer REVIEW
Южно-Российский
онкологический журнал
Vol. 5
No. 4, 2024 Prospects for the use of flavonoid substances in pulmonary fibrosis
(review of experimental studies)
E. A. Gubareva, A. L. Semenov
N. N. Petrov National Medicine Research Center of Oncology, St. Petersburg, Russian Federation
ABSTRACT
Pulmonary fibrosis develops both spontaneously and as a result of lung damage by radiotherapy and chemotherapy, infectious
diseases, and inhalation of harmful substances and particulate matter. In this case, normal tissue repair is disturbed: instead
of regeneration of normal lung cells, the damaged tissue is replaced by fibrotic one consisting of dense collagen fibers. This
leads to loss of lung tissue elasticity and impairment of its function, which significantly reduces the quality of patients’ lives.
The search for drugs for interstitial fibrotic lung diseases remains an urgent task, since the existing antifibrotic drugs only
slow down disease progression and have side effects that significantly reduce the patients’ quality of life. It is believed that
natural polyphenolic substances, in particular flavonoids, can be used for the treatment of pulmonary fibrosis. Flavonoids
present in various fruits, vegetables, tea and wine show a wide range of biological activities. They have antioxidant, anti-in-
flammatory and immunomodulatory properties, making them promising for the treatment of various diseases, including
pulmonary fibrosis. Some studies have shown that flavonoids can inhibit myofibroblast activation and collagen production,
which is directly related to the fibrotic process. Flavonoids are safe and can influence the hallmarks of fibrosis: oxidative stress,
inflammation, cell proliferation and differentiation. To date, a large amount of experimental data confirming the antifibrotic
effect of flavonoids has been accumulated. In recent years, clinical studies have been conducted to investigate the efficacy
and safety of flavonoids in patients with pulmonary fibrosis. For example, quercetin and curcumin are being explored and
have shown encouraging results in reducing markers of inflammation and fibrosis in the lung. However, the main obstacle
to the widespread introduction of flavonoid substances into clinical practice remains their low oral bioavailability and rapid
metabolism. The experimental data on the effect of flavonoids on the development of pulmonary fibrosis is analyzed in this
review. The perspectives for improving their bioavailability using modern delivery systems (nanoparticles, liposomes, etc.),
as well as dosage forms for topical application, are discussed in this paperwork.
Keywords: pulmonary fibrosis, flavonoids, experimental models
For citation: Gubareva E. A., Semenov A. L. Prospects for the use of flavonoid substances in pulmonary fibrosis (review of experimental studies). South
Russian Journal of Cancer. 2024; 5(4): 46-57. https://doi.org/10.37748/2686-9039-2024-5-4-6, https://elibrary.ru/hfikew
For correspondence: Ekaterina A. Gubareva – Cand. Sci. (Biol.), senior researcher, N. N. Petrov National Medicine Research Center for Oncology,
St. Petersburg, Russian Federation
Address: 68 Leningradskaya str., Pesochny settlement, Saint Petersburg 197758, Russian Federation
E-mail: [email protected]
ORCID: https://orcid.org/ 0000-0002-9212-6086
SPIN: 5556-8242, AuthorID: 895429
ResearcherID: AAD-2072-2020
Scopus Author ID: 56909987000
Funding: the project was supported by RSF grant No. 22-25-20177 and RSF (St. Petersburg Science Foundation) grant No. 50/2022
Conflict of interest: the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article
The article was submitted 07.11.2023; approved after reviewing 20.07.2024; accepted for publication 28.10.2024
© Gubareva E. A., Semenov A. L., 2024
46
Южно-Российский онкологический журнал. 2024. Т. 5, № 4. С. 46-57
https://doi.org/10.37748/2686-9039-2024-5-4-6
https://elibrary.ru/hfikew
3.1.6. Онкология, лучевая терапия
ОБЗОР
Перспективы применения веществ флавоноидного ряда при фиброзе легкого
(обзор экспериментальных исследований)
Е. А. Губарева, А. Л. Семенов
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н. Н. Петрова» Министерства здравоохранения Российской
Федерации, г. Санкт-Петербург, Российская Федерация
РЕЗЮМЕ
Фиброз легкого развивается как спонтанно, так и вследствие воздействия повреждающих факторов, включая лучевую
и химиотерапию, инфекционные заболевания, вдыхание вредных веществ и твердых частиц. При этом происходит
нарушение нормальной репарации тканей: вместо регенерации нормальных клеток легкого происходит замещение
поврежденной ткани фиброзной, состоящей из плотных коллагеновых волокон. Этот процесс ведет к утрате эла-
стичности легочной ткани и нарушению ее функции, что существенно снижает качество жизни пациентов. Поиск
средств для лечения интерстициальных фиброзирующих заболеваний легкого остается актуальной задачей, т. к.
существующие антифибротические препараты лишь замедляют их прогрессирование и обладают побочными эф-
фектами, существенно снижающими качество жизни пациентов. Считается, что природные вещества полифенольной
природы, в частности, флавоноиды, могут применяться для лечения фиброза легкого. Флавоноиды, присутствующие
в различных фруктах, овощах, чае и вине, демонстрируют широкий спектр биологических активностей. Они обладают
антиоксидантными, противовоспалительными и иммуномодулирующими свой ствами, что делает их перспективными
для лечения различных заболеваний, включая фиброз легкого. Некоторые исследования показали, что флавоноиды
могут ингибировать активацию миофибробластов и продукцию коллагена, что непосредственно связано с процессом
фиброзирования. Флавоноиды нетоксичны и способны регулировать процессы, связанные с развитием фиброза:
окислительный стресс, воспаление, пролиферацию и дифференцировку клеток. На сегодняшний день накоплено
большое количество экспериментальных данных, подтверждающих антифибротическое действие флавоноидов.
В последние годы проводятся клинические исследования, направленные на изучение эффективности и безопасности
флавоноидов у пациентов с фиброзом легкого. Например, исследуются кверцетин и куркумин, которые показали
обнадеживающие результаты в снижении маркеров воспаления и фиброза в легких. Однако основным препятствием
для широкого внедрения флавоноидных веществ в клиническую практику остается их низкая биодоступность при
пероральном применении и быстрый метаболизм. В данной работе проанализированы данные литературы о вли-
янии флавоноидов на развитие фиброза легкого в экспериментах и в клинических исследованиях, обсуждаются
перспективы улучшения их биодоступности с помощью современных систем доставки (наночастицы, липосомы
и др.), или использования лекарственных форм для местного применения.
Ключевые слова: фиброз легкого, флавоноиды, экспериментальные модели
Для цитирования: Губарева Е. А., Семенов А. Л. Перспективы применения веществ флавоноидного ряда при фиброзе легкого (обзор
экспериментальных исследований). Южно-Российский онкологический журнал. 2024; 5(4): 46-57. https://doi.org/10.37748/2686-9039-2024-5-4-6,
https://elibrary.ru/hfikew
Для корреспонденции: Губарева Екатерина Александровна – к.б.н., старший научный сотрудник, ФГБУ «Национальный медицинский
исследовательский центр онкологии имени Н. Н. Петрова» Министерства здравоохранения Российской Федерации, г. Санкт-Петербург,
Российская Федерация
Адрес: 197758, Российская Федерация, г. Санкт-Петербург, п. Песочный, ул. Ленинградская, д. 68
E-mail: [email protected]
ORCID: https://orcid.org/0000-0002-9212-6086
SPIN: 5556-8242, AuthorID: 895429
ResearcherID: AAD-2072-2020
Scopus Author ID: 56909987000
Финансирование: финансирование работа была поддержана грантом РНФ № 22-25-20177 и грантом РНФ (Санкт-Петербургский научный фонд)
№ 50/2022
Конфликт интересов: все авторы заявляют об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи
Статья поступила в редакцию 07.11.2023; одобрена после рецензирования 20.07.2024; принята к публикации 28.10.2024
47
South Russian Journal of Cancer 2024. Vol. 5, No. 4. P. 46-57
Gubareva E. A., Semenov A. L. Prospects for the use of flavonoid substances in pulmonary fibrosis (review of experimental studies)
INTRODUCTION interstitial pneumonia, chronic pneumonitis on the
background of hypersensitivity), because of viral and
The spectrum of interstitial fibrotic lung diseas- bacterial infections. These diseases are designat-
es is quite wide, but all of them lead to a gradual ed as chronic interstitial fibrotic lung diseases with
decrease in respiratory function, a significant de- a progressive course [11]. IPF, interstitial pneumonia,
crease in the quality of patients’ life and prema- is isolated as a separate disease without clarified
ture death [1]. Life expectancy after diagnosis in etiological factors [1]. Risk factors for the develop-
idiopathic pulmonary fibrosis (IPF) is on average ment of IPF include smoking, inhalation of particu-
3–5 years [2], and the average five-year survival rate late substances, viral infections, gastroesophageal
for this disease is 45.6 % [3]. Existing treatment reflux syndrome, genetic predisposition, the use of
methods and registered antifibrotic drugs some- certain medications, ionizing radiation [2, 12].
what slow down the progression of the disease and In this paperwork, we will use the term "pulmonary
reduce the mortality rate, but have contraindications fibrosis" in relation to all progressive fibrotic intersti-
and side effects, so their long-term use is not al- tial lung diseases, with clarifications if necessary.
ways possible [4, 5]. Since the disease can occur The incidence of diseases in which PF occurs
for several years, finding drugs that can slow down is relatively low. According to a 2021 study, the in-
or stop the progression of pulmonary fibrosis (PF) cidence of IPF (per 100,000 population per year)
and are safe with long-term use, is an urgent task. ranged from 3.5 to 13 in the Asia- Pacific region, from
In recent years, much attention has been paid in this 0.9 to 4.9 in Europe and from 7.5 to 9.3 in North
regard to natural substances of polyphenolic nature, America [11]. In Russia, during 2018, an average of
in particular, flavonoids. 7 new cases of IPF per 100,000 people per year were
These substances are found in various parts of registered in women and 11 in men [2].
plants and are an important component of tradition- The incidence of other fibrosing interstitial lung
al medicine and functional nutrition [6]. Flavonoids diseases in the United States is about 52 patients
are nontoxic and are able to regulate the processes per 100,000 people per year, of which 33 cases are
involved in the development of fibrosis: oxidative with a progressive phenotype [14]. It is assumed that
stress, inflammation, cell proliferation and differen- after the SARS-CoV19 epidemic, these figures may
tiation (in particular, epithelial- mesenchymal tran- increase: after the coronavirus infection is cured,
sition), intercellular interactions [7, 8]. To the date, some patients experience a decrease in respirato-
a substantial experimental evidence base has been ry function and changes in the X-ray picture of the
accumulated justifying the use of flavonoids as anti- lungs, similar to that of PF [15].
fibrotic agents. In addition, several pilot clinical trials Normally, epithelial damage is repaired by type
have been conducted on patients with IPF [9, 10]. II alveolocytes, capable of proliferating and dif-
However, their low bioavailability prevents the wide- ferentiating into type I alveolocytes, which line
spread introduction of flavonoid substances into clin- most of the surface of the alveoli and carry out
ical practice. In this regard, the prospects of using gas exchange. At the same time, in the places of
dosage forms for topical use are being considered. damage, epithelial cells secrete profibrotic factors
The purpose of the study was to analyze the liter- that cause the activation of resident fibroblasts
ature data on the effect of flavonoid substances on and their differentiation into myofibroblasts [16].
the development of lung fibrosis in experiments with Myofibroblasts are also formed from circulating
laboratory animals and in clinical studies, to identify bone marrow precursors, epithelial and endothe-
prospects for increasing their bioavailability using lial cells [17]. The main function of these cells is
modern delivery systems. the synthesis of the intercellular matrix, which is
necessary for tissue repair at the site of injury, af-
Pulmonary fibrosis: risk factors, occurrence, ter which they normally undergo apoptosis, and
main mechanisms of pathogenesis the excess extracellular matrix is cleaved [18]. The
PF can occur as a manifestation of certain sys- literature describes several mechanisms that can
temic diseases (systemic sclerosis, rheumatoid ar- interfere with the normal resolution of the repara-
thritis, etc.), interstitial lung diseases (nonspecific tive process.
48
Южно-Российский онкологический журнал 2024. Т. 5, № 4. С. 46-57
Губарева Е. А., Семенов А. Л. Перспективы применения веществ флавоноидного ряда при фиброзе легкого (обзор экспериментальных исследований)
Many authors consider excessive activation of the increased mortality and hospitalization rates [4].
immune system and chronic inflammation to be the Two drugs have been registered for the treatment
main factors in the development of PF [2, 19]. It has of IPF – nintedanib, an oral inhibitor of intracellu-
been shown that various cells of the immune system, lar tyrosine kinases, and pirfenidone, a pyridone
e. g. neutrophils, macrophages, lymphocytes, contrib- compound with anti-inflammatory, antifibrotic and
ute to the development of PF due to the activation antioxidant properties [4]. Both drugs reduce the
of oxidative stress and the production of profibrotic risk of mortality by almost 2 times, and quintedanib
growth factors, cytokines and chemokines [2, 20]. It also significantly reduces the risk of acute compli-
is assumed that activation of the immune response cations compared with patients who do not take
makes a significant contribution to the development drugs [29]. Nintedanib and pirfenidone have been
of PF associated with COVID-19 [15]. recognized as effective for other fibrotizing lung
The mechanism of PF development is also de- diseases [1, 11]. Nevertheless, the long-term use of
scribed, in which the main role is given to the chronic these drugs often becomes impossible due to the
epithelial damage, leading to an increase in the level refusal of treatment due to the lack of effect and/
of reactive oxygen species, apoptosis, activation of or side effects [4, 5, 28].
cellular aging, depletion of the stem cell pool and the To date, antibodies to the connective tissue
so-called "phenotypic reprogramming" of the type growth factor (CTGF), pentraxin-2, an endothelin
II alveolocytes [16, 21], i. e. aberrant activation of receptor antagonist, new small molecules (inhibi-
normal repair pathways and the release of mediators tors of autotaxin phosphodiesterase, integrins, etc.),
activating fibroblasts [22, 23]. and others are being studied as potential antifibrotic
Another mechanism of tissue fibrotization is be- drugs (check reviews [4, 30] for details).
ing considered due to positive feedback from the The prospects for the use of substances of natural
extracellular matrix [24]. It has been shown that origin, in particular, flavonoids, are discussed, since
with excessive deposition of the matrix, its densi- such compounds have anti-inflammatory, antiprolif-
fication occurs, which leads to tissue hypoxia and erative and immunomodulatory effects, as well as
epithelial damage; the compacted matrix creates low toxicity and can be used long-term. In addition,
a profibrotic environment and promotes cellular flavonoids (and polyphenols in general) reduce the
aging [25, 26]. Thus, a so-called "fibrogenic niche" toxicity of cytostatics, for example, cyclophospha-
is created, and the fibrotic process is self-sus- mide, which is used in patients with PF as an immu-
taining [24]. Shochet et al. [27] showed that while nosuppressant.
culturing normal fibroblasts on a "fibrotic" matrix In a pilot study carried out on patients with IPF,
obtained after culturing fibroblasts of patients with it was shown that after 14 days of EGCG
IPF (IPF), the expression of genes associated with (epigallocatechin gallate, the most common catechin
the HIF1 signaling pathway is activated, which con- found in tea), the content of two biomarkers pro-
tributes to the differentiation of myofibroblasts and duced by fibroblasts, cartilage oligomeric matrixpro-
the progression of fibrosis. tein (COMP) and periostin, was reduced in serum, as
well as collagen I in lung biopsies, SNAI1, phosphory-
Pulmonary fibrosis treatment lated SMAD3 [9]. The same team of authors showed
Medicinal and non-medicinal methods are used to that in ex vivo lung tissue obtained from patients
treat PF. The latest ones include lung transplantation undergoing lung transplantation, EGCG suppresses
and the use of palliative methods (oxygen therapy, the TGF-β1 signaling cascade and collagen accu-
physical exercises, etc.) [28]. mulation, as well as activates its MMP-dependent
Initially, anti-inflammatory drugs, corticosteroids decay [31].
and immunosuppressive drugs were used to treat In pilot trials on patients with IPF, it was shown
IPF, based on the hypothesis that chronic inflam- that physical performance improved in the group
mation is the main mechanism of development of of people taking a combination of dasatinib and
this disease. These drugs did not improve surviv- quercitin. In addition, a decrease in the level of
al and pulmonary function, and combined therapy some markers of cellular aging in the blood was
with prednisone, azathioprine and N-acetylcysteine noted [10].
49
South Russian Journal of Cancer 2024. Vol. 5, No. 4. P. 46-57
Gubareva E. A., Semenov A. L. Prospects for the use of flavonoid substances in pulmonary fibrosis (review of experimental studies)
The use of flavonoids in experiments on contribute to a decrease in the production of profi-
laboratory animals brotic cytokines in the lung: TGF-β [41–43] and proin-
To study PF using laboratory animals, a wide flammatory cytokines [35, 39, 42, 44]. The positive
range of models are used that reproduce the ef- effect of the studied substances on the activity of
fect of the main etiological factors of disease de- enzymes of the antioxidant defense system and a de-
velopment, i. e. genetic predisposition, drug use, crease in markers of oxidative stress were found [35,
radiation, inhalation of solid particles [19, 32]. If 36, 43, 44]. Despite the fact that the antifibrotic effect
experiments with genetically modified or immuno- of flavonoids has been studied in several experimen-
deficient mice help to better understand the molec- tal models, and the range of techniques used and the
ular genetic mechanisms of PF development, then estimated indicators differed, the results of these
cheaper and more convenient models of fibrosis studies show that flavonoids are able to affect the
induction using tissue- damaging light chemical main mechanisms/aspects of fibrogenesis in vivo.
agents, solid particles or irradiation are most of- The results of animal experiments are supported
ten chosen for screening potential antifibrotic by data obtained in experiments using flavonoids
drugs [32]. The most commonly used well–char- in vitro. Thus, baicalin has been shown to reduce the
acterized PF model using bleomycin, systemic ad- proliferation of rat pulmonary fibroblasts induced by
ministration of which leads to damage to the lung bleomycin [45].
endothelium, inflammation, apoptosis of epithelial Flavonoids also have a protective effect on mod-
cells and the launch of reparative processes, and els of chronic obstructive pulmonary disease in-
local – directly into the respiratory tract causes duced by cigarette smoke or its components. The
direct damage to the alveolar and bronchial epi- observed effects of flavonoids are consistent with
thelium, followed by pronounced inflammation and the results obtained in lung fibrosis models: these
tissue fibrosing [33]. substances reduce inflammation, activate antioxi-
The relevance of these models is being discussed, dant defense mechanisms, and prevent cellular aging
however, they reproduce the main aspects of fibrotiz- and cell death of the alveolar epithelium [46].
ing lung diseases in humans at the tissue (excessive Nevertheless, such experimental studies have
deposition of extracellular matrix, decrease in respi- been conducted for more than 10 years, and clinical
ratory volume), cellular (epithelial damage, fibroblast studies remain isolated.
proliferation, epithelial- mesenchymal transition) and Thus, there is a significant gap between the stages
molecular (oxidative stress, secretion of profibrotic of preclinical development and clinical trials for this
factors) levels. class of compounds.
Table 1 shows studies over the past 5 years that
studied the effect of individual flavonoid compounds Prospects for the use of flavonoids for the
on the development of experimental lung fibrosis in treatment of lung fibrosis
mice and rats. In almost all the analyzed studies, it The probable reason for the slow introduction of
was shown that the use of flavonoid-type substanc- flavonoid preparations into clinical practice, in addi-
es reduces the severity of PF at the morphological tion to the difficulties of standardization and com-
level; in two studies, no statistically significant de- mercial component, may be the limited bioavailability
crease in the histopathological index [34] and rel- of flavonoids.
ative lung mass [35] was revealed when quercetin Unlike other molecules included in the compo-
was used, however, the drug influenced other stud- sition of drugs, flavonoids in unchanged form do
ied indicators. not reach target organs when administered orally.
Compared with untreated animals, the use of When ingested in the form of aglycones, flavonoids
flavonoids in the lungs reduces the synthesis of undergo metabolic transformation in the intestine
extracellular matrix proteins such as collagen and (including with the participation of microorgan-
fibronectin [34, 36–38], the content of the myofibro- isms) and the liver; the initial forms are practically
blast marker α-S MA and markers of the epithelial- not detected in blood plasma [54]. The antioxidant
mesenchymal transition [37, 39, 40]. It was also re- activity of conjugated products entering the sys-
vealed in experiments that flavonoid preparations temic circulation after methylation, sulfation and
50
Южно-Российский онкологический журнал 2024. Т. 5, № 4. С. 46-57
Губарева Е. А., Семенов А. Л. Перспективы применения веществ флавоноидного ряда при фиброзе легкого (обзор экспериментальных исследований)
Table 1. Flavonoid-type substances with proven in vivo antifibrotic activity
Substance formula Substance Model Reference
C57BL/6 mice; IT bleomycin [34]
Quercetin Mice, SiO2 [47]
Wistar rats; IT bleomycin [35]
Dihydroquercetin C57BL/6 rats; IT SiO2 [48]
Cyanidine C57BL/6 mice; IT SiO2 [49]
Calicosin C57BL/6 mice, IT bleomycin [36]
Hesperidin Sprague-Dawley Rats; IP bleomycin [42]
Hesperidin Wistar rats; IT SiO2 [44]
Epicatechin NMRI mice; IT bleomycin [43]
C57BL/6 mice;
solid particles intranasally [50]
Epigallocatechin gallate
Wistar rats; IT SiO2 [51]
51
South Russian Journal of Cancer 2024. Vol. 5, No. 4. P. 46-57
Gubareva E. A., Semenov A. L. Prospects for the use of flavonoid substances in pulmonary fibrosis (review of experimental studies)
Table 1. Flavonoid-type substances with proven in vivo antifibrotic activity
Substance formula Substance Model Reference
Isoramnetin C57BL/6 mice; IP bleomycin [37]
Baikal Wistar rats; IT bleomycin [45]
Yuglanin C57BL/6 mice; IT bleomycin [40]
Galangin C57BL/6 mice; IT bleomycin [52]
Dihydromyricetin C57BL/6 mice; IT bleomycin [39]
Naringenin Balb/c mice; Mycoplasma infection [53]
Biochanin А Wistar rats; IT bleomycin [38]
Notes: IT stands for intratracheal, IP stands for intraperitoneal
52
Южно-Российский онкологический журнал 2024. Т. 5, № 4. С. 46-57
Губарева Е. А., Семенов А. Л. Перспективы применения веществ флавоноидного ряда при фиброзе легкого (обзор экспериментальных исследований)
glucuronidation is significantly reduced compared The bioavailability of naringenin complexes with
to that of the corresponding aglycones [7]; metab- hydroxypropyl-β-cyclodextrin was studied in vivo. It
olites are rapidly excreted from the body. It is more was found that the solubility of the flavonoid in the
likely that flavonoids, more precisely, the products complex increases, and with intratracheal applica-
of their metabolism, are able to activate the anti- tion, naringenin accumulates mainly in the lung [58].
oxidant defense system through the KEAP1-NRF2 It has also been shown that the bioavailability of
pathway, which regulates the adaptive response to naringenin in solid lipid particles is 2.5 times higher
cellular stress [8]. than in free form when administered intratrache-
Obviously, in order to increase the activity of fla- al [59]. The effectiveness of naringenin-l oaded phyto-
vonoids, it is necessary to provide ways and forms ses based on the surfactant component dipalmitoyl
of administration that will avoid or minimize meta- phosphatidylcholine was demonstrated in a model
bolic transformation in the intestine and liver. For the of acute lung injury in rats [60].
treatment of PF, these may be options for inhalation Thus, the use of flavonoids in the composition of
use or taking flavonoids in complexes with carriers. nanoparticles, liposomes and other carriers, includ-
Such delivery systems include phytosomes (com- ing in the form of inhaled dosage forms, makes it
plexes of plant substances with phospholipids), lipid possible to improve their bioavailability, as well as
nanoparticles, polymer nanoparticles, and inorganic ensure the delivery of starting substances to the
nanoparticles [7]. lung, rather than products of their metabolism.
In particular, after administration of quercetin
to mice as part of cationic lipid carriers, its higher CONCLUSION
content was observed in the lung, liver and kidneys
compared with the control group that received free Treatment of PF remains an urgent problem,
quercetin [55]. It was shown that apigenin more ef- because existing drugs only slow down the pro-
fectively inhibited the development of bleomycin- gression of this deadly disease, and their long-term
induced lung fibrosis in rats when it was adminis- use is often associated with serious side effects.
tered to animals as part of polymer nanoparticles, In recent years, natural substances, in particular,
compared with the substance in free form [56] flavonoids, have been studied as an alternative or
The use of dosage forms for inhalation has a num- accompanying therapy. Numerous animal and in
ber of advantages, such as the delivery of active sub- vitro studies prove that flavonoids have antifibrotic
stances directly to the lung, a relatively low content properties. At the same time, due to the peculiari-
of substances in the systemic circulation, and ease ties of the metabolism of these substances in the
of use [57]. In rats with induced PF, inhalation of pir- mammalian body, with oral administration of flavo-
fenidone or quintedanib gave the same therapeutic noids, they enter the lung only in small amounts in
effect as oral administration, while the dose with the form of secondary metabolites. The solution
topical application and, accordingly, the manifesta- to this problem may be the development of deliv-
tions of side effects were significantly lower Rasooli ery systems such as liposomes, as well as dosage
et al. 2018; Surber et al. 2020, cit. according to [57]). forms for topical use.
References
1. Wijsenbeek M, Cottin V. Spectrum of Fibrotic Lung Diseases. N Engl J Med. 2020 Sep 3;383(10):958–968.
https://doi.org/10.1056/nejmra2005230
2. Dygai AM, Skurikhin EG, Krupin VA. Pulmonary fibrosis and stem cells: new treatment approaches. Moscow: Publishing
House of the Russian Academy of Sciences, 2018, 200 p. (In Russ.).
3. Zheng Q, Cox IA, Campbell JA, Xia Q, Otahal P, de Graaff B, et al. Mortality and survival in idiopathic pulmonary fibrosis: a sys-
tematic review and meta-analysis. ERJ Open Res. 2022 Jan;8(1):00591–2021. https://doi.org/10.1183/23120541.00591-2021
4. Thong L, McElduff EJ, Henry MT. Trials and Treatments: An Update on Pharmacotherapy for Idiopathic Pulmonary Fibrosis.
Life (Basel). 2023 Feb 10;13(2):486. https://doi.org/10.3390/LIFE13020486
53
South Russian Journal of Cancer 2024. Vol. 5, No. 4. P. 46-57
Gubareva E. A., Semenov A. L. Prospects for the use of flavonoid substances in pulmonary fibrosis (review of experimental studies)
5. Kato M, Sasaki S, Tateyama M, Arai Y, Motomura H, Sumiyoshi I, et al. Clinical Significance of Continuable Treatment with
Nintedanib Over 12 Months for Idiopathic Pulmonary Fibrosis in a Real-World Setting. Drug Des Devel Ther. 2021;15:223–
230. https://doi.org/10.2147/DDDT.S284819
6. Zhou F, Gu K, Zhou Y. Flavonoid intake is associated with lower all-cause and disease-specific mortality: The National
Health and Nutrition Examination Survey 2007-2010 and 2017-2018. Front Nutr. 2023;10:1046998.
https://doi.org/10.3389/fnut.2023.1046998
7. Zverev YF, Rykunova AY. Modern Nanocarriers as a Factor in Increasing the Bioavailability and Pharmacological Activity of
Flavonoids. Appl Biochem Microbiol. 2022;58(9):1002–1020. https://doi.org/10.1134/S0003683822090149
8. Golubev AG, Gubareva EA, Anisimov VN, Fedoros EI. Polyphenols of natural origin against age-related disorders of tis-
sue homeostasis. Advances in Gerontology. 2023;36(4):555–568. (In Russ.). https://doi.org/10.34922/AE.2023.36.4.014,
EDN: UKTAJY
9. Chapman HA, Wei Y, Montas G, Leong D, Golden JA, Trinh BN, et al. Reversal of TGFβ1-Driven Profibrotic State in Patients
with Pulmonary Fibrosis. N Engl J Med. 2020 Mar 12;382(11):1068–1070. https://doi.org/10.1056/NEJMC1915189
10. Justice JN, Nambiar AM, Tchkonia T, LeBrasseur NK, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibro-
sis: Results from a first-in-human, open-label, pilot study. EBioMedicine. 2019 Feb;40:554–563.
https://doi.org/10.1016/j.ebiom.2018.12.052
11. Avdeev SN, Chikina SYu, Tyurin IE, Belevskiy AS, Terpigorev SA, Anan’yeva LP, et al. Chronic fibrosing progressing interstitial
lung disease: a decision of Multidisciplinary Expert Board. Pulmonologiya. 2021;31(4):505–510. (In Russ.).
https://doi.org/10.18093/0869-0189-2021-31-4-505-510, EDN: OKQQCQ
12. Sauleda J, Núñez B, Sala E, Soriano JB. Idiopathic Pulmonary Fibrosis: Epidemiology, Natural History, Phenotypes. Med
Sci (Basel). 2018 Nov 29;6(4):110. https://doi.org/10.3390/MEDSCI6040110
13. Maher TM, Bendstrup E, Dron L, Langley J, Smith G, Khalid JM, et al. Global incidence and prevalence of idiopathic pulmo-
nary fibrosis. Respir Res. 2021 Jul 7;22(1):197. https://doi.org/10.1186/S12931-021-01791-Z
14. Olson AL, Patnaik P, Hartmann N, Bohn RL, Garry EM, Wallace L. Prevalence and Incidence of Chronic Fibrosing Interstitial
Lung Diseases with a Progressive Phenotype in the United States Estimated in a Large Claims Database Analysis. Adv Ther.
2021 Jul;38(7):4100–4114. https://doi.org/10.1007/s12325-021-01786-8
15. Duong-Quy S, Vo-Pham-Minh T, Tran-Xuan Q, Huynh-Anh T, Vo-Van T, Vu-Tran-Thien Q, et al. Post-COVID-19 Pulmonary Fi-
brosis: Facts-Challenges and Futures: A Narrative Review. Pulm Ther. 2023 Sep;9(3):295–307.
https://doi.org/10.1007/s41030-023-00226-y
16. Parimon T, Yao C, Stripp BR, Noble PW, Chen P. Alveolar Epithelial Type II Cells as Drivers of Lung Fibrosis in Idiopathic Pul-
monary Fibrosis. Int J Mol Sci. 2020 Mar 25;21(7):2269. https://doi.org/10.3390/IJMS21072269
17. Hung C. Origin of Myofibroblasts in Lung Fibrosis. Curr Tissue Microenviron Rep. 2020 Dec 1;1(4):155–162.
https://doi.org/10.1007/s43152-020-00022-9
18. Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: a hallmark of fibrotic diseases. Nat Rev Rheumatol. 2020
Jan;16(1):11–31. https://doi.org/10.1038/s41584-019-0324-5
19. Miles T, Hoyne GF, Knight DA, Fear MW, Mutsaers SE, Prêle CM. The contribution of animal models to understanding the
role of the immune system in human idiopathic pulmonary fibrosis. Clin Transl Immunology. 2020;9(7):e1153.
https://doi.org/10.1002/CTI2.1153
20. Liu T, De Los Santos FG, Phan SH. The Bleomycin Model of Pulmonary Fibrosis. Methods Mol Biol. 2017;1627:27–42.
https://doi.org/10.1007/978-1-4939-7113-8_2
21. Confalonieri P, Volpe MC, Jacob J, Maiocchi S, Salton F, Ruaro B, et al. Regeneration or Repair? The Role of Alveolar Epithe-
lial Cells in the Pathogenesis of Idiopathic Pulmonary Fibrosis (IPF). Cells. 2022 Jun 30;11(13):2095.
https://doi.org/10.3390/CELLS11132095
22. Chanda D, Otoupalova E, Smith SR, Volckaert T, De Langhe SP, Thannickal VJ. Developmental pathways in the pathogenesis
of lung fibrosis. Mol Aspects Med. 2019 Feb;65:56–69. https://doi.org/10.1016/J.MAM.2018.08.004
23. Parimon T, Yao C, Habiel DM, Ge L, Bora SA, Brauer R, et al. Syndecan-1 promotes lung fibrosis by regulating epithelial repro-
gramming through extracellular vesicles. JCI Insight. 2019 Aug 8;5(17):e129359. https://doi.org/10.1172/jci.insight.129359
24. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018 Jan
2;128(1):45–53. https://doi.org/10.1172/JCI93557
54
Южно-Российский онкологический журнал 2024. Т. 5, № 4. С. 46-57
Губарева Е. А., Семенов А. Л. Перспективы применения веществ флавоноидного ряда при фиброзе легкого (обзор экспериментальных исследований)
25. Selman M, Pardo A. Fibroageing: An ageing pathological feature driven by dysregulated extracellular matrix-cell mechano-
biology. Ageing Res Rev. 2021 Sep;70:101393. https://doi.org/https://doi.org/10.1016/j.arr.2021.101393
26. Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senes-
cence-associated secretory phenotype. Am J Physiol Cell Physiol. 2023 Sep 1;325(3):C565– C579.
https://doi.org/10.1152/AJPCELL.00124.2023
27. Shochet G, Bardenstein-Wald B, McElroy M, Kukuy A, Surber M, Edelstein E, et al. Hypoxia Inducible Factor 1A Supports a
Pro-Fibrotic Phenotype Loop in Idiopathic Pulmonary Fibrosis. Int J Mol Sci. 2021 Mar 24;22(7):3331.
https://doi.org/10.3390/ijms22073331
28. Saito S, Alkhatib A, Kolls JK, Kondoh Y, Lasky JA. Pharmacotherapy and adjunctive treatment for idiopathic pulmonary fi-
brosis (IPF). J Thorac Dis. 2019 Sep;11(Suppl 14):S1740–S1754. https://doi.org/10.21037/jtd.2019.04.62
29. Petnak T, Lertjitbanjong P, Thongprayoon C, Moua T. Impact of Antifibrotic Therapy on Mortality and Acute Exacerbation in
Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Chest. 2021 Nov;160(5):1751–1763.
https://doi.org/10.1016/J.CHEST.2021.06.049
30. Pitre T, Mah J, Helmeczi W, Khalid MF, Cui S, Zhang M, et al. Medical treatments for idiopathic pulmonary fibrosis: a systematic
review and network meta-analysis. Thorax. 2022 Dec;77(12):1243–1250. https://doi.org/10.1136/THORAXJNL-2021-217976
31. Wei Y, Dong W, Jackson J, Ho TC, Le Saux CJ, Brumwell A, et al. Blocking LOXL2 and TGFβ1 signalling induces collagen I
turnover in precision-cut lung slices derived from patients with idiopathic pulmonary fibrosis. Thorax. 2021 Jul;76(7):729–
732. https://doi.org/10.1136/THORAXJNL-2020-215745
32. Moore BB, Lawson WE, Oury TD, Sisson TH, Raghavendran K, Hogaboam CM. Animal models of fibrotic lung disease.
Am J Respir Cell Mol Biol. 2013 Aug;49(2):167–117. https://doi.org/10.1165/RCMB.2013-0094TR
33. Gul A, Yang F, Xie C, Du W, Mohammadtursun N, Wang B, et al. Pulmonary fibrosis model of mice induced by different ad-
ministration methods of bleomycin. BMC Pulm Med. 2023 Mar 21;23(1):91. https://doi.org/10.1186/s12890-023-02349-z
34. Boots AW, Veith C, Albrecht C, Bartholome R, Drittij MJ, Claessen SMH, et al. The dietary antioxidant quercetin reduces
hallmarks of bleomycin-induced lung fibrogenesis in mice. BMC Pulm Med. 2020 Apr 29;20(1):112.
https://doi.org/10.1186/S12890-020-1142-X
35. Mehrzadi S, Hosseini P, Mehrabani M, Siahpoosh A, Goudarzi M, Khalili H, et al. Attenuation of Bleomycin-Induced Pulmo-
nary Fibrosis in Wistar Rats by Combination Treatment of Two Natural Phenolic Compounds: Quercetin and Gallic Acid.
Nutr Cancer. 2021;73(10):2039–2049. https://doi.org/10.1080/01635581.2020.1820053
36. Liu H, Bai X, Wei W, Li Z, Zhang Z, Tan W, et al. Calycosin Ameliorates Bleomycin-Induced Pulmonary Fibrosis via Suppress-
ing Oxidative Stress, Apoptosis, and Enhancing Autophagy. Evid Based Complement Alternat Med. 2022;2022:9969729.
https://doi.org/10.1155/2022/9969729
37. Zheng Q, Tong M, Ou B, Liu C, Hu C, Yang Y. Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhib-
iting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med. 2019 Jan;43(1):117–126.
https://doi.org/10.3892/IJMM.2018.3965
38. Andugulapati SB, Gourishetti K, Tirunavalli SK, Shaikh TB, Sistla R. Biochanin-A ameliorates pulmonary fibrosis by sup-
pressing the TGF-β mediated EMT, myofibroblasts differentiation and collagen deposition in in vitro and in vivo systems.
Phytomedicine. 2020 Nov;78:153298. https://doi.org/10.1016/J.PHYMED.2020.153298
39. Xiao T, Wei Y, Cui M, Li X, Ruan H, Zhang L, et al. Effect of dihydromyricetin on SARS-CoV-2 viral replication and pulmonary
inflammation and fibrosis. Phytomedicine. 2021 Oct;91:153704. https://doi.org/10.1016/J.PHYMED.2021.153704
40. Sun SC, Han R, Hou SS, Yi HQ, Chi SJ, Zhang AH. Juglanin alleviates bleomycin-induced lung injury by suppressing inflam-
mation and fibrosis via targeting sting signaling. Biomed Pharmacother. 2020 Jul;127:110119.
https://doi.org/10.1016/J.BIOPHA.2020.110119
41. Ma C, Lyu M, Deng C, Liu X, Cui Y, Shen Y, et al. Cyanidin-3-galactoside ameliorates silica-induced pulmonary fibrosis by
inhibiting fibroblast differentiation via Nrf2/p38/Akt/NOX4. Journal of Functional Foods. 2022 May 1;92:105034.
https://doi.org/10.1016/j.jff.2022.105034
42. Zhou Z, Kandhare AD, Kandhare AA, Bodhankar SL. Hesperidin ameliorates bleomycin-induced experimental pulmonary
fibrosis via inhibition of TGF-beta1/Smad3/AMPK and IkappaBalpha/NF-kappaB pathways. EXCLI J. 2019;18:723–745.
https://doi.org/10.17179/excli2019-1094
55
South Russian Journal of Cancer 2024. Vol. 5, No. 4. P. 46-57
Gubareva E. A., Semenov A. L. Prospects for the use of flavonoid substances in pulmonary fibrosis (review of experimental studies)
43. Shariati S, Kalantar H, Pashmforoosh M, Mansouri E, Khodayar MJ. Epicatechin protective effects on bleomycin-induced
pulmonary oxidative stress and fibrosis in mice. Biomed Pharmacother. 2019 Jun;114:108776.
https://doi.org/10.1016/J.BIOPHA.2019.108776
44. Li S, Shao L, Fang J, Zhang J, Chen Y, Yeo AJ, et al. Hesperetin attenuates silica-induced lung injury by reducing oxidative
damage and inflammatory response. Exp Ther Med. 2021 Apr;21(4):297. https://doi.org/10.3892/ETM.2021.9728
45. Zhao H, Li C, Li L, Liu J, Gao Y, Mu K, et al. Baicalin alleviates bleomycin induced pulmonary fibrosis and fibroblast prolifer-
ation in rats via the PI3K/AKT signaling pathway. Mol Med Rep. 2020 Jun;21(6):2321–2334.
https://doi.org/10.3892/MMR.2020.11046
46. Yang Y, Jin X, Jiao X, Li J, Liang L, Ma Y, et al. Advances in Pharmacological Actions and Mechanisms of Flavonoids from
Traditional Chinese Medicine in Treating Chronic Obstructive Pulmonary Disease. Evid Based Complement Alternat Med.
2020;2020:8871105. https://doi.org/10.1155/2020/8871105
47. Geng F, Xu M, Zhao L, Zhang H, Li J, Jin F, et al. Quercetin Alleviates Pulmonary Fibrosis in Mice Exposed to Silica by Inhib-
iting Macrophage Senescence. Front Pharmacol. 2022;13:912029. https://doi.org/10.3389/fphar.2022.912029
48. Yuan L, Sun Y, Zhou N, Wu W, Zheng W, Wang Y. Dihydroquercetin Attenuates Silica-Induced Pulmonary Fibrosis by Inhibit-
ing Ferroptosis Signaling Pathway. Front Pharmacol. 2022;13:845600. https://doi.org/10.3389/fphar.2022.845600
49. Cui Y, Zhao J, Chen J, Kong Y, Wang M, Ma Y, et al. Cyanidin-3-galactoside from Aronia melanocarpa ameliorates silica-induced
pulmonary fibrosis by modulating the TGF-β/mTOR and NRF2/HO-1 pathways. Food Sci Nutr. 2022 Aug;10(8):2558–2567.
https://doi.org/10.1002/FSN3.2861
50. Zhongyin Z, Wei W, Juan X, Guohua F. Epigallocatechin Gallate Relieved PM2.5-Induced Lung Fibrosis by Inhibiting Oxidative
Damage and Epithelial-Mesenchymal Transition through AKT/mTOR Pathway. Oxid Med Cell Longev. 2022;2022:7291774.
https://doi.org/10.1155/2022/7291774
51. Adamcakova J, Balentova S, Barosova R, Hanusrichterova J, Mikolka P, Prso K, et al. Effects of Green Tea Polyphenol Epi-
gallocatechin-3-Gallate on Markers of Inflammation and Fibrosis in a Rat Model of Pulmonary Silicosis. Int J Mol Sci. 2023
Jan 17;24(3):1857. https://doi.org/10.3390/ijms24031857
52. Wang L, Liu H, He Q, Gan C, Li Y, Zhang Q, et al. Galangin ameliorated pulmonary fibrosis in vivo and in vitro by regulating epi-
thelial-mesenchymal transition. Bioorg Med Chem. 2020 Oct 1;28(19):115663. https://doi.org/10.1016/J.BMC.2020.115663
53. Lin Y, Tan D, Kan Q, Xiao Z, Jiang Z. The Protective Effect of Naringenin on Airway Remodeling after Mycoplasma Pneumo-
niae Infection by Inhibiting Autophagy-Mediated Lung Inflammation and Fibrosis. Mediators Inflamm. 2018;2018:8753894.
https://doi.org/10.1155/2018/8753894
54. Thilakarathna SH, Rupasinghe HPV. Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients.
2013 Aug 28;5(9):3367–3387. https://doi.org/10.3390/NU5093367
55. Liu L, Tang Y, Gao C, Li Y, Chen S, Xiong T, et al. Characterization and biodistribution in vivo of quercetin-loaded cationic
nanostructured lipid carriers. Colloids Surf B Biointerfaces. 2014 Mar 1;115:125–131.
https://doi.org/10.1016/j.colsurfb.2013.11.029
56. Zhang J, Chao L, Liu X, Shi Y, Zhang C, Kong L, et al. The potential application of strategic released apigenin from polymer-
ic carrier in pulmonary fibrosis. Exp Lung Res. 2017;43(9–10):359–369. https://doi.org/10.1080/01902148.2017.1380086
57. Xie X-F, Lu Y, Chen X-S, Muhetaer G, Tao H, Li H, Liu H-J. Inhalation therapy for pulmonary fibrosis: chemical medicines and
herbal medicines. TMR Modern Herb Med. 2023;6(3):14. https://doi.org/10.53388/MHM2023014
58. Guan M, Shi R, Zheng Y, Zeng X, Fan W, Wang Y, et al. Characterization, in Vitro and in Vivo Evaluation of Naringenin-Hy-
droxypropyl-ß-Cyclodextrin Inclusion for Pulmonary Delivery. Molecules. 2020 Jan 28;25(3):554.
https://doi.org/10.3390/MOLECULES25030554
59. Ji P, Yu T, Liu Y, Jiang J, Xu J, Zhao Y, et al. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery,
cellular uptake, and pulmonary pharmacokinetics. Drug Des Devel Ther. 2016;10:911–925.
https://doi.org/10.2147/DDDT.S97738
60. Yu Z, Liu X, Chen H, Zhu L. Naringenin-Loaded Dipalmitoylphosphatidylcholine Phytosome Dry Powders for Inhaled Treatment
of Acute Lung Injury. J Aerosol Med Pulm Drug Deliv. 2020 Aug;33(4):194–204. https://doi.org/10.1089/jamp.2019.1569
56
Южно-Российский онкологический журнал 2024. Т. 5, № 4. С. 46-57
Губарева Е. А., Семенов А. Л. Перспективы применения веществ флавоноидного ряда при фиброзе легкого (обзор экспериментальных исследований)
Information about authors:
Ekaterina A. Gubareva – Cand. Sci. (Biol.), senior researcher, N. N. Petrov National Medicine Research Center of Oncology, St. Petersburg,
Russian Federation
ORCID: https://orcid.org/0000-0002-9212-6086, SPIN: 5556-8242, AuthorID: 895429, ResearcherID: AAD-2072-2020, Scopus Author ID: 56909987000
Alexander L. Semenov – Cand. Sci. (Med.), MD, senior researcher, N. N. Petrov National Medicine Research Center of Oncology, St. Petersburg,
Russian Federation
ORCID: https://orcid.org/0000-0002-5190-0629, SPIN: 4301-8679, AuthorID: 900704, ResearcherID: S-1484-2016, Scopus Author ID: 16307589600
Contribution of the authors:
Gubareva E. A. – article concept, writing source text, collecting material, article design;
Semenov A. L. – text revision, scientific and technical editing.
57