PROPERTIES OF THE COATING DEPOSITED WITH THE DIFFUSION OF MO&O2 OXIDIZED POWDER , Vo USING THE APS PROCESS
Mihailo R. Mrdak
2Î Research and Development Center IMTEL Communications a.d.,
ct Belgrade, Republic of Serbia,
OU e-mail: [email protected],
^ ORCID iD: http://orcid.org/0000-0003-3983-1605
o http://dx.doi.org/10.5937/vojtehg65-11966
z
CH FIELD: Chemical Technology
^ ARTICLE TYPE: Original Scientific Paper
>- ARTICLE LANGUAGE: English
<
Summary:
Powder Mo&O2 has an important role in the production of coatings with increased resistance to slide in conditions without the use of lubricants. Mo&O2 coatings have the low coefficient of friction and good abrasion < characteristics in mechanical stresses. For the purpose of producing
CD coatings of high hardness, Mo&O2 powder is plasma deposited with
^ optimal parameters. The surface shape of oxide powder particles and
the coating fracture surface are analysed by SEM, and the EH microstructure of layers is examined by light microscopy. The coating 1- microstructure consists of Mo lamellae and MoO3 and MoO2 primary
NO oxide thin films, which surround the Mo lamellae. The analysis of the
o obtained results showed that the Mo&O2 coating layers with the diffusion
> oxidized Mo particles have such a structure and mechanical
characteristics which enable its application in working tools under the conditions of wear and sliding friction without lubricants. Keywords: particles, friction, deposits, property, powders, oxidizers, microstructures, lubrication, coatings.
CO
ACKNOWLEDGEMENT: The author is thankful for the financial support from the Ministry of Education and Science of the Republic of Serbia (national project OI 174004).
CM CO C\l
Introduction §
CP CP
The Mo&O2 coating resistance to wear depends on the oxygen g content and the applied kind of technological process of coating
production (Mrdak, et al, 2005, pp.235-239), (Salhi, et al, 2005, pp.145- £ 150). Molybdenum powders containing oxygen Mo&O2 can attain high
<u
<u
T3
o p
T3
<u
.n
"U X
hardness values. The content of oxygen in the plasma spray coating essentially depends on the applied gases and applied power devices. After the production of Mo&O2 coatings, the layers have sufficient concentration of oxygen which gives to oxides high hardness the values of which exceed 1000HV. Thus deposited coatings can increase fatigue strength to friction up to 120% in working tool surfaces, thus preventing loss of the material by friction. The friction that always occurs between two movable contact surfaces causes damage such as friction wear and ° friction fatigue. There are many research papers relating to the o mechanisms of friction wear and friction fatigue. Modes of friction are & standardized and used to study the behavior of different materials regarding the mechanism of friction wear (Vencl, et al, 2011, pp.12811288), (Mrdak, 2016a, pp.411-430), (Mrdak, 2016b, pp.949-965). By microscopic examinations, the authors (Chen, et al, 2007, pp.21322138), (Yongqing, et al, 2000, pp.231-245) found that Mo lamellae and MoO2 and MoO3 primary oxides from powder are present in the Mo&O2 coating. Oxides are present in the form of thin films that surround Mo lamellae. The MoO2 oxide phase increases hardness but also brittleness which negatively affects the cohesive strength of lamellae (Modi, Calla, 2001, pp.480-486). The best structure is found in coatings where oxide films are continuously arranged along the coating and act as a lubricant while preventing metal contact and maintain a low coefficient of friction. § The crystal structure of MoO2 is monoclinic while a-MoO3 and p-MoO3 oxides are of orthorhombic and monoclinic structures (Jullien, et al, 1995, p.235). Tests of the Mo&O2 coating to wear determined that MoO2 oxide in the coating reduces the coefficient of friction under 0:15, and -e MoO3 oxide to the values in the range of 0.1 to 0.12 which is quite stable (Lyo, et al, 2003, pp.413-421), (Solak, et al, 2003, pp.713-719), (Suszko, et al, 2005, pp.319-324).
The aim of the study was to use atmospheric plasma for depositing Mo&O2 powder particles which will form hard slide-resistant coating layers. The paper analyzes the mechanical properties of micro hardness
o p
<u
T3 O)
o
со ф
ю CD
О >
and the tensile bond strength as well as the microstructure on a light microscope and the morphology of powder particles and the coating fracture surface on the SEM. The analyses of the layers confirm the good mechanical and structural characteristics of Mo&O2 coatings, which make them reliable in conditions of sliding friction without lubrication.
о CM
DC Ш
DC ZD О
о <
о z
X
о ш
I—
>-
DC <
(Л <
-J
CD >o
X Ш I—
о z
о >
Materials and experimental details
The Mo&O2 powder used in the experiment had an oxygen content of 3% made by the Amperite program arising from the HCST production. Figure 1 (SEM) shows the powder particles of sharp and rounded edges, with a range of grains of 5 - 45 ^m.
Figure 1 - (SEM) surface shape of M0&O2 powder particles Рис. 1 - (SEM) Изображение поверхности частиц порошка Mo&O2 Слика 1 - (SEM) Облик површине честица праха M0&O2
The substrate for deposited coatings was made of steel (X15Cr13 EN 10027) according to the standard (Turbojet Engine, 2002). Microhardness was tested using the method of HV03 with five reading values at the left end of the sample (A) in the middle (B) and at the right end (C) of the sample. The paper presents min. and max. HV03 values. The bond strength testing was done on five samples by tensile testing at room temperature, and the average values are shown in the paper. The shape of the surface of powder particles and the coating fracture surface were analyzed by SEM.The microstructures of coating layers were analyzed with light microscope and the quantitative analysis of the average pore content in layers was carried out.
Mo&O2 powder was deposited at atmospheric pressure by a SG-100 plasma gun with the use of a mixture of Ar and He gases and power
up to 40kW. The Mo&O2 powder disposition parameters are shown in Table 1. The coating was deposited in a thickness from 0.45 to 0.48 mm.
Table 1 - Powder deposition parameters Таблица 1 - Параметры напыления порошка Табела 1 - Параметри депозицще праха
Deposition parameters Values
Plasma current, I (A) 600
Plasma Voltage, U (V) 31
Primary plasma gas flow rate, Ar (l/min) 48
Secondary plasma gas flow rate, He (l/min) 12
Carrier gas flow rate, Ar (l/min) 4.5
Powder feed rate (g/min) 35
Stand-off distance (mm) 100
Results and discussion
Figure 2 shows the values of the Mo&O2 coating microhardness. At the left end of the sample, the coating microhardness was in the range of 968 - 1260HV03, with the average value of 1114HV03, the point (A). In the middle of the sample, microhardness is in the range of 972 - 1334 HV03 with an average value of 1153HV03, the point (B). At the point (C) which was located at the right end of the sample, microhardness covers the range of 934-1310 HV0.3 with an average value of 1122HV03.
The microhardness values were consistent with the oxygen content in the powder and with the primary oxide content in the coating. The microhardness values are quite high in comparison to conventional Mo coatings. Since oxides are present in the coating, the coating microhardness mean values are fairly uniform at all measuring points. This is the first indication that the oxide distribution in the coating layers is uniform (homogeneous). The coating had a mean value of the adhesion strength of 38MPa with a fracture mechanism at the substrate / coating interface.
CM h-CO
CM CD CO £± Ci
(Л Ф О О Ci
W
CL <
ф
ф
T3
о
Ci
тз ф .N
ъ
X о
см
О
Ой
о
¡t=
тз ф
тз ф
о
Ci
ф
TD О)
го о о
ф
t ф
Ci
о
го тз
со <u
ю CD
О >
0
01
ОС LLJ
ОС ZD О
О _|
< с;
X О ш
I—
>-
ОС <
1400
со
о 1200
>
X 1000
s s 800
e
n ■о 600
ar JZ 400
or
о 200
S
0
1260
1334
1310
-968
972
У
934
Position measurement
Figure 2 - The microhardness of the Mo&O2 coating, the measurement positions Рис. 2 - Микротвердость покрытия Mo&O2 в точках измерения Слика 2 - МикротврдоПе превлаке Mo&O2 на позицц'ама мерена
(Л <
-j
О ■О
X ш I—
О
О >
Figure 3 shows the microstructure of the plasma spray Mo&O2 coating recorded on a light microscope. At the substrate / coating interface, there are not any abnormalities that would reduce the impact on the coating adhesion strength. Light Mo lamellae are seen and between them dark and thin films of primary oxides are precipitated. At the inter-lamellar boundaries, there are black micro pores smaller than 10^m with a medium content in the coating of up to 3%.
Figure 3 - Microstructure of Mo&O2 coatings Рис. 3 - Микроструктура Mo&O2 покрытия Слика 3 - Микроструктура Mo&O2 превлаке
C
Figure 4 shows the microstructure of Mo&O2 coatings at a higher magnification for the purpose of analysing the microstructure more clearly. The structure is the same as in Figure 3, except that dark oxide films can be more clearly noticed and that there are precipitates in the structure as a product of collisions of drops of molten powder particles with the substrate. There are neither cracks nor unmolten particles which could reduce the cohesive strength and coating resistance to friction fatigue. The coating primary phase is Mo with a centered cubic lattice in which are present the phases of MoO2 oxide with the monoclinic lattice and MoO3 oxide with the orthorhombic and monoclinic lattice (Chen, et al, 2007, pp.2132-2138), (Yongqing, et al, 2000, pp.231-245).
Ol h-CO
C\l CD CO ci
(Л
ф о о
(Л
CL <
ф
Figure 4 - Microstructure of M0&O2 coatings Рис. 4 - Микроструктура M0&O2 покрытия Слика 4 - Микроструктура M0&O2 превлаке
Figure 5 shows the microscope (SEM).
Mo&O2 coating surface recorded by electron
Figure 5 - (SEM) Surface of the M0&O2 coating Рис. 5 - (SEM) поверхность Mo&O2 покрытия Слика 5 - (SEM) површина Mo&O2 превлаке
ф тз
о p
тз ф
.N Ъ
X о
см
О
Oö О
¡t=
тз ф
тз ф
о p
ф тз
О)
го о о
ф
t ф
p
о
го тз
со ф
ю CD
О >
0
01
ОС LLJ
ОС ZD О
О _|
< с;
X О ш
н
>-
ОС <
On the surface it is possible to see two flattened disc-shaped particles, created by the collision of drops of molten powder particles with the substrate and by their subsequent cooling to the surface temperature. These discs are separated by red lines. This kind of deformation of liquid droplets in a collision with the substrate and solidification is an indicator of good inter-lamellar cohesive strength. On the formed discs, there are visibly noticeable micro cracks caused by the solidification of liquid drops. They cannot gather since the substrate was exposed to spreading due to the increase in temperature caused by the amount of heat carried liquid drops and transferred to the substrate. At the interface between the discs (lamellae), there are black micro-pores of less than 10^m in diameter. Micro pores of irregular shapes are highlighted in yellow. Fine deposits on the surface of the discs and the discs boundaries are marked in green.
Figure 6 shows the surface of an Mo& O2 coating fracture recorded on the SEM. Thin lamellae with clearly distinguished interfaces can be seen on the coating fracture. The morphologies of micro pores and precipitates are also clearly visible.
(Л <
-J
CD >o
X Ш I—
о z
о >
Micru uures
\ -v. tí >
i
Figure 6 - SEM fracture of the M0&O2 coating surface Рис. 6 - (SEM) Поврежденная поверхность покрытия Mo&O2 Слика 6 - (SEM) површина лома превлаке M0&O2
The initial micro cracks occur in places with the highest stress. These places are interlamellar pores and interlamelar boundaries. Under the action of fracture forces on the substrate surface, initial micro cracks spread rapidly into macro cracks propagating vertically from the substrate surface through lamellae and micro pores up to the coating surface. The fracture shows clearly Mo lamellae with columnar grains
directed normally to the metal substrate. Columnar metal grains originate ^
C\l CD
from and are formed on the surfaces of the previously deposited drops of melted particles cooled to the temperature of the substrate with deposited layers (Vardelle, et al, 1994, pp.50-58). The fracture image shows precipitates and micro pores smaller than 10 ^m. The coating fracture is brittle due to present oxides.
Conclusion
OT
CL <
<u
The paper presents the results of the analysis of the atmospheric plasma spray deposited Mo&O2 coating with a thickness from 0.45 to 0.48 mm. Based on the analysis of the layers, the following conclusions have been derived. p
The Mo&O2 coating had a high average value of microhardness 1114 to 1153HV03 and the adhesive bond strength of 38MPa due to the presence of oxide phases in the structure. The tensile testing showed the ° adhesive fracture mechanism. O
o3
The structure of the Mo&O2 coating is lamellar, consisting of Mo ° lamellae and thin films of MoO2 and MoO3 primary oxides between the Mo lamellae. Among the Mo lamellae, there are micro pores of irregular shape up to 3%, and precipitates of less than 10^m in size.
With its mechanical and structural characteristics, the Mo&O2 coating can significantly increase the resistance of working surfaces exposed to dry sliding friction, which is what they are intended for.
¡t= T3
<u
T3
<u
o
Ci
<u
T3 O)
References
Chen, D., Jordan, E., & Gell, M., 2007. Effect of solution concentration on splat formation and coating microstructure using the solution precursor plasma spray process. Surface & Coatings Technology, 202, pp.2132-2138. Available g at: http://dx.doi.org/10.10164surfcoat.2007.08.077.
Jullien, C., Khelfa, A., Hussain, O.M. and Nazri, G.A., 1995. Synthesis and characterization of flash-evaporated MoO3 thin films. Journal of Crystal Growth, 156(3), p.235. Available at: http://dx.doi.org/10.1016/0022- | 0248(95)00269-3. ®
Lyo, I.W., Ahn, H.S., Lim, D.S., 2003. Microstructure and tribological properties of plasmasprayed chromium oxide-molybdenum oxide composite coatings. Surface & Coatings Technology 163, pp.413-421. Available at: http://dx.doi.org/10.1016/S0257-8972(02)00613-8.
<u
o
ro
T3
CO <D
</) tf>
LO CD
"o >
o CM
of
UJ
a.
Z) O
o <
o
X
o
LU
H >-
a. <
H
<
CD >o
X LU H O
O >
Modi, S.C., Calla, E., 2001. A study of high-velocity combustion wire molybdenum coatings. Journal of Thermal spray technology, 2001, 10(3), pp. 480-486. Available at: http://dx.doi.org/10.1361/105996301770349259.
Mrdak, M., Kakas, D., Povic, B., 2005. Characterisation of APS-Mo wear resistant coatings, pp.235-239. In: BALKANTRIB '05, 5th International conference on tribology, Serbia, Kragujevac, 15-18.
Mrdak, M., 2016a. Properties of the ZrO2MgO/MgZrO3NiCr/NiCr triple-layer thermal barrier coating deposited by the atmospheric plasma spray process. Vojnotehnicki glasnik / Military Technical Courier, 64(2), pp.411430. Available at: http://dx.doi.org/10.5937/vojtehg64-9612.
Mrdak, M.R., 2016b. Characterization of Cu10wt.%Al intermetallic coatings applied by the atmospheric plasma spraying process. Vojnotehnicki glasnik / Military Technical Courier, 64(4), pp. 949-965. Available at: http://dx.doi.org/10.5937/vojtehg64-10688.
Salhi, Z., Klein, D., Gougeon, P., Coddet, C., 2005. Development of coating by thermal plasma spraying under very low-pressure condition <1 mbar. Vacuum, 77(2), pp.145-150. Available at: http://dx.doi.org/10.1016Zj.vacuum.2004.08.013.
Solak, N., Ustel, F., Urgen, M., Aydin, S., Cakir, A.F., 2003. Oxidation behavior of molybdenum nitride coatings, Surface & Coatings Technology 174, pp.713-719. Available at: http://dx.doi.org/10.1016/S0257-8972(03)00702-3.
Suszko, T., Gulbinski, W., Jagielski, J., 2005. The role of surface oxidation in friction processes on molybdenum nitride thin films. Surface & Coatings Technology, 194(2-3), pp.319-324. Available at: http://dx.doi.org/10.1016/j.surfcoat.2004.07.119.
Turbojet Engine - Standard Practices Manual PN 582005, 2002. Pratt & Whitney, East Hartford, USA.
Vardelle, M., Vardelle, A. and Leger, A.C., 1994. Influence of particle parameters at impact on splat formation and solidification in plasma spraying processes. Journal Thermal Spray Technology, 4, pp.50-58. Available at: http://dx.doi.org/10.1007/BF02648528.
Vencl, A., Arostegui, S., Favaro, G., Zivic, F., Mrdak, M., Mitrovic, S., Popovic, V., 2011. Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections. Tribology International, 44(11), pp.1281-1288. Available at: http://dx.doi.org/10.1016/j.triboint.2011.04.002.
Yongqing, F., Jun, W., Andrew, W., 2000. Some considerations on the mitigation of fretting damage by the application of surface-modification technologies. Journal of Materials Processing Technology, 99(1-3), pp.231245. Available at: http://dx.doi.org/10.1016/S0924-0136(99)00429-X.
СВОЙСТВА ПОКРЫТИЯ, НАНЕСЕННОГО ДИФФУЗИОННЫМ ОКСИДНЫМ ПОРОШКОМ MO&O2 МЕТОДОМ APS CN!
со
«3
С
CP
Михаило Р. Мрдак
Центр исследований и развития А.О. «ИМТЕЛ коммуникации», г. Белград, Республика Сербия
ОБЛАСТЬ: химические технологии ВИД СТАТЬИ: оригинальная научная статья ю
ЯЗЫК СТАТЬИ: английский <
ф
Резюме:
Применение порошка Mo&O2 играет важную роль в процессе нанесения покрытия с повышенной устойчивостью к скольжению в бессмазочных условиях. Покрытия Mo&O2 обладают низким коэффициентом фрикции и высоким пределом прочности при о механическом напряжении. В целях достижения наибольшей -о прочности покрытия, порошок Mo&O2 наносится методом .8 плазменного напыления, с учетом оптимальных параметров. ^ Характеристики состояния поверхности частиц оксидного ° порошка и поверхности излома покрытия установлены SEM § методом. А микроструктура слоев нанесенного покрытия ° испытана методом световой микроскопии. Микроструктура покрытия состоит из ламелей Мо и тонких оксидных прослоек MoO2 и MoO3 вокруг ламелей Мо. Анализ полученных результатов доказал, что слои покрытия Mo&O2 с i= диффузионными оксидными частицами Мо обладают структурой и механическими характеристиками, позволяющими нанесение данного покрытия на поверхности рабочих участков в условиях износа и скольжения при бессмазочном трении. Ключевые слова: частицы, трение, нанесение, свойства, порошок, оксидаторы, микроструктуры, смазка, покрытие. °
ф тз
О)
СВОJСТВА ПРЕВЛАКЕ ДЕПОНОВАНЕ ДИФУЗИОНО I
ОКСИДИРАНИМ ПРАХОМ MO&O2 ПРИМЕНОМ APS ПРОЦЕСА S
Михаило Р. Мрдак
Истраживачки и разводи центар ИМТЕЛ комуникаци]е а. д., Београд, Република Срби]а
ф
ОБЛАСТ: хеми]ске технологи]е о
ВРСТА ЧЛАНКА: оригинални научни чланак иЕЗИК ЧЛАНКА: енглески
Сажетак: -g
Прах Mo&O2 има значаjну улогу у производи превлака са повишеном отпорношПу на клизаъе у условима без примене
со
ф мазива. Превлаке Mo&O2 uMajy мали коефиц^ент фрикц^е и
добре карактеристике на хабаре при механичким напрезаъима. Ради производи превлака високе тврдоПе, прах Mo&O2 jе со депонован плазмом са оптималним параметрима.
Карактеризац^а облика површине честица оксидног праха и површине прелома превлаке изведена jе методом SEM, а микроструктура слоjева применом светлосне микроскоп^е. Микроструктура превлаке састоjи се од ламела Mo и танких ос филмова примарних оксида MoO2 и MoO3 ще окружу/у ламеле Mo.
Анализа доб^ених резултата показала jе да слоjеви превлаке
:d Mo&O2 са дифузионо оксидираним честицама Mo имаjу
§ структуру и механичке карактеристике ще омогу^у шену
примену на површинама радних делова у условима хабара и
0 клизаша трешем без мазива.
1 Къучне речи: честице, треше, депозити, своjства, прах, ^ оксидатори, микроструктуре, подмазиваше, превлаке.
н_
>-
Paper received on / Дата получения работы / Датум приема чланка: 03.10.2016. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 16.01.2017.
Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 18.01.2017.
ся
< © 2017 The Author. Published by Vojnotehnicki glasnik / Military Technical Courier (3 (www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the g; terms and conditions of the Creative Commons Attribution license >0 (http://creativecommons.org/licenses/by/3.0/rs/).
© 2017 Автор. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military . Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и О распространяется в соответствии с лицензией «Creative Commons» g (http://creativecommons.org/licenses/by/3.0/rs/).
"> © 2017 Аутор. Обjавио Воjнотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово jе чланак отвореног приступа и дистрибуира се у складу са Creative Commons licencom (http://creativecommons.org/licenses/by/3.0/rs/).