Научная статья на тему 'PROPERTIES OF HOM AND TENZOR PRODUCT'

PROPERTIES OF HOM AND TENZOR PRODUCT Текст научной статьи по специальности «Философия, этика, религиоведение»

CC BY
6
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
HOM / TENZOR PRODUCT / FREE GROUP / QUOTIENT GROUP / UNIVERSAL PROPERTY / MIDDLE LINEAR / INITIAL OBJECT

Аннотация научной статьи по философии, этике, религиоведению, автор научной работы — Samatboyeva M.T.

The article presents the notion of Hom and tenzor product as well as several intriguing properties of them that are related to , and .

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PROPERTIES OF HOM AND TENZOR PRODUCT»

Samatboyeva M. T.

student

National University of Uzbekistan named after Mirzo Ulugbek PROPERTIES OF HOM AND TENZOR PRODUCT

Abstract: The article presents the notion of Horn and tenzor product as

well as several intriguing properties of them that are related to D , ^ --• and ^ .

Keywords: Hom, tenzor product, free group, quotient group, universal property, middle linear, initial object.

Firstly, let's recall the notion of tenzor product. Let A e ModR, B eRMod ^ we will construct A 0 B - an abelian group. Let

R

C e Ab.

Definition: A middle linear map f: A x B ^ C is defined by

(1)f(a + a2, b) = f (a, b)+f (a2, b) and

(2)f O, bi + b2 ) = f (a, b1) + f (a, b2)

(3)f (a.r, b) = f (a,r .b)

Fix ^ and B as above. Let's define category M(A,B):

1. Objects are middle linear maps on A x B, i.e {f: A x B ^ _}

2. Morphisms between f: A x B ^ C and g: A x B ^ D is a group homomorphism h\C D s.t the diagram is commutative: g = h°

An initial object in M(A,B), if it exists, has the universal property: V(f, C) e Ob(M(A, B)) there exists a : init.ob ^ (f, C) s.t the diagram commutes. This means that if we denote the initial object by (i, A 0 B) then we

a

have AxB^A<S)B^C and f = a<= . A eModR,B e RMod, F be a free

V/

abelian group on the set AxB. That is AxB^Fand AxB^-\/Ce Ab, then 3h: F —» C an abelian group homomorphism s.t f = h° .

The elements of F are (a, b),(a, b)+ (a, b ),..

Definition: Let K be a subgroup of F generated by all elements of the following form: (1) (a + ab) - (a,b) - (a', b) (2)

(a, b + b') - (a, b) - (a, b') (3) (a.r,b) - (a, r.b)

The quotient group F / K is called the tensor product of A and B and is denoted A 0 B. The coset (a, b) + K of the element (a, b) e F is denoted by

a 0 b. Note that in A 0 B we have

(1) (a + a) 0 b = a 0 b + a 0 b (2) a 0 (b + b') = a 0 b + a 0 b'

(3) a.r 0 b = a 0 r.b (*)

i

Note that K = a®b is a middle linear map, this is

because of (*). We call this i: A x B ^ A 0B the canonical middle linear map.

R

Now (i, A0B) will be the initial object in M(A,B)

Property : (a) V/wg□ 'A is abelian group, prove that

Hom( A[m\ := {a e ma = 0}

(b)Hom(□ □ □ , (c) □ n n n

..........m U

Proof: (a) □ □ - homomorphism of abelian

m m

groups. Let f (1) = a ^ f (1 ■ 1 ■ ■ f (1) ^ f (1) ^ ^ f(1) = ma and we

V-"-' v-V-'

m

know that

1.1. .1 r\

^ 0 = f (0) = f (ml) = ma, so we can define

m

(p : Hom( □ A[m]

s.t f b , it is easy to check being homomorphism:

/i-> " ^ " =/(T) + g(T). _

Now we define ^ : A[m] ^ Hom(U s.t a^ ) = a (□ has

generator 1, so it is enough to define f at 1 ), ma = 0 ^ f e Hom(U .

Let k=k'^ f(k ) = /C""; " ~ 1 a = (k' + mn)a = k'a = f(k') =>

k

well-defined.

f (k + n) = (k + n)a = ka + na = f (k ) + f (n) and

a + a' \-> ) = a + a'

ah^ = a and a' = a', therefore

(g + h)(1) = g(1) + h(1) = a + a'= f (1). So g + h and f are equal at generator , thus they are exactly the same functions.

Now, we consider the composition of these homomorphisms, if they give identity, then Hom(U A[m] : (< <p(^(a)) = ^(a)(\) = a and

y(/(T )) = /

(è) □ □

.....

From (a) we have Hom(D □ □ □ , so it is

enough to show that □ □ . Let m = m'd,n = n'd,(m',ri) = 1, we

have to find k e □ : (we can assume that 0 < k < n -1). In order to

accomplish this mk\ must be:

m = m'dk\ : : ',..., (<i — 1)«'}

Now

we

can

construct

(p\U

s.t

,..., d -1}

It is

making a sense S + k

that kn i-> and by checking

kn' + sri = (s + k)ri h^

It is easy to see that <7? is bijective □

{C) □

According to {a) we have □ □ □

Property : Let A is abelian group. Prove that:

{a) VMS□ □ _

£ = 0} = 0.

(b) □

□ □

Proof:

(a, k )h-> A

k = k' ^ k = k + mt

(c) □ □ □ 0

(a) Initially we construct h :Ax□

mA s.t and

(a, k')

A = (k- mt)a + mA = ka- tma + mA = ka + mA. Because of

(a, k )h-> A we get (a, k ') = (a, k). So the function is well-defined. Now we examine that it is middle linear map:

1)(a + a', k ) r ') + mA = (ka + mA) + (ka' + mA)

2)(a, k + n ) = (a, k + n) \-> a + mA = (ka + mA) + (na + mA)

3)(na, k ) \—> - mA = (kn)a + mA

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

So, by universal property we get h\A® □ 'm which is homomorphism of groups s.t a 0 k 1—» A

Now we define g: A/ mA ^ A0□ s.t a + mA^> . For simplicity

lets define a + mA = [a], then [a] + [b] 0 T = a 0 1 + b 0 1, thus g is

homomorphism of groups. [a] = [a'] ^ a - a' = ma",[a] = a 01 = (a' + ma") 01 =

= a' 01 + md' 01 = d 0 1 + a" 0 m1 = d 0 1 + a" 0 0 = d 0 1, thus g is well-defined. (go ) = g ([ka]) = ka 0 1 = a 0 k and

(ho = h(a0 1) = [a] ^ go at generators of A0C , so

they are equal at full group, g o

=> A®U

ru

mA

n n

mA

s.t (k , s )h->

V m' n J

(b)Denote kmas class £ in □ .

Now we check whether it is well-defined:

km = k', sh = s" ^ ks = (k' + mt)(s ' + nl) = k's' + k'nl + s'mt + mnlt = k's'(modd)

u

мЭкономнка h соцнумм №10(89) 2021

www.iupr.ru

258

ksd = ks'd . So it is well-defined and now we show it is a middle linear

map:

1 )(k +k' ,s ) is, = ks, + k's,

/V m m? n / a a a

2 + <) = (*„, A + P^ _X = ^ + K

3)(lkm , Sn ) = (lkm , Sn )h-> ^ ^ □ m □ .. □ s.t

h(k, s) = ks which is group homomorphism. Let g :□ □ □ s.t

UL

" _ _ _ _ And their compositions give identity maps: (ho h(sd 01n) = sd

and

(go s ) = g(ks,) = ks 01 = sk 01 = k 0s

vo ... o\ m n m n m n

(c) □ □ □ i-^ this is a middle linear map, because: l)(r + r',s) s = rs + r's and 2)(r,s + s') ) = rs + rs',

3)(??r,,s) = nrs = r(ns) □ □ I—> . Now

(//:□□□ i-B , it is a homomorphism : (r + s) i—^ 8>l = r<8>l + 5<8>l

Now we will examine their compositions:

q k q k k q k k q k q k

r k> k> , consequently, <p o and y/ o .

References:

1. Thomas W. Hungerford, Algebra. 2000, USA.

2. Evan Chen, An Infinitely Large Napkin. August 31, 2020

3. ttps://artofproblemsolving.com/

i Надоели баннеры? Вы всегда можете отключить рекламу.