Научная статья на тему 'Пролиферативная активность здоровых и дегенерированных клеток межпозвонкового диска in vitro при воздействии костных морфогенетических протеинов: возможности для клеточной терапии'

Пролиферативная активность здоровых и дегенерированных клеток межпозвонкового диска in vitro при воздействии костных морфогенетических протеинов: возможности для клеточной терапии Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
172
26
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МЕЖПОЗВОНКОВЫЙ ДИСК / ДЕГЕНЕРАЦИЯ МЕЖПОЗВОНКОВОГО ДИСКА / КОСТНЫЙ МОРФОГЕНЕТИЧЕСКИЙ БЕЛОК / КЛЕТОЧНАЯ ПРОЛИФЕРАЦИЯ / КЛЕТОЧНАЯ ТЕРАПИЯ / INTERVERTEBRAL DISC / DEGENERATION OF THE INTERVERTEBRAL DISC / BONE MORPHOGENETIC PROTEIN / CELL PROLIFERATION / CELLULAR THERAPY

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Бардонова Л.А., Белых Е.Г., Giers M.B., Preul M.C., Бывальцев В.А.

Цель исследования оценить эффективность влияния костных морфогенетических протеинов bone morphogenetic proteins (BMP) на динамику пролиферативной активности здоровых и дегенерированных клеток межпозвонкового диска (МПД) в эксперименте. Материалы и методы. Клеточные культуры, полученные из фиброзного кольца и пульпозного ядра здорового и дегенерированного межпозвонковых дисков, культивировали в четырех средах: в контрольной и с добавлением BMP-2, BMP-7, BMP-14. Ежедневный подсчет количества клеток проводили в программе Fiji на микрофотографиях, полученных с помощью фазово-контрастной микроскопии. На 4-е сутки клетки фиксировали и окрашивали Alexa Fluor 633 phalloidin (на F-актин) и DAPI (на ядерную ДНК) с последующим исследованием на лазерном конфокальном микроскопе. Скорость роста клеток в каждом случае вычисляли путем математического моделирования в их экспоненциальной фазе роста. Результаты. Выявлены незначительные изменения темпов роста клеток фиброзного кольца и пульпозного ядра МПД (и здоровых, и дегенерируемых) под влиянием BMP-2, 7, 14. Изменения в пролиферативной активности отмечены в группах здоровых клеток фиброзного кольца под действием BMP-2, 7, 14 (p<0,01), а также в группе дегенерированных клеток пульпозного ядра под действием BMP-14 (p<0,01). Пролиферативная активность дегенерированных клеток пульпозного ядра была незначительно снижена в сравнении со здоровыми клетками (p=0,03), в то же время у здоровых и дегенерированных клеток фиброзного кольца ее значения статистически значимо не различались. Культивирование дегенерированных клеток пульпозного ядра в присутствии BMP не позволило достичь показателей пролиферативной активности здоровых клеток. Морфологическая форма не явилась качественным отличием между типами клеток: клетки и пульпозного ядра, и фиброзного кольца имели фибробластоподобную форму (звездчатую распластанную, веретенообразную с длинными отростками). Заключение. Выявлены незначительные изменения пролиферативной активности клеток МПД под влиянием BMP-2, 7, 14. Костные морфогенетические белки не оказывают значительного влияния на пролиферацию клеток МПД, что является позитивным в аспекте дефицита питательных веществ и сниженного нутритивного транспорта в диске. Отмеченные различия в скорости роста клеток пульпозного ядра и фиброзного кольца могут свидетельствовать о различной степени толерантности клеточных популяций МПД к дегенерации либо о преимущественной роли клеток пульпозного ядра в клеточном звене дегенерации МПД.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по фундаментальной медицине , автор научной работы — Бардонова Л.А., Белых Е.Г., Giers M.B., Preul M.C., Бывальцев В.А.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Proliferative activity of healthy and Degenerated Intervertebral Disc Cells in vitro under Bone Morphogenetic Proteins’ Influence: Implications for Cell Therapy

The aim of the study was to evaluate the effect of bone morphogenetic proteins (BMP) on the proliferative activity of healthy and degenerated cells of the intervertebral disc (IVD) in vitro. Materials and Methods. Cells obtained from the human annulus fibrosus and the nucleus pulposus of healthy and degenerated intervertebral discs were cultured in the absence and presence of BMP-2, BMP-7, and BMP-14. A daily cell count was performed using micrographs obtained by phase contrast microscopy and the Fiji program. On day 4, cells were fixed and stained with Alexa Fluor 633 phalloidin (for F-actin) and DAPI (for nuclear DNA), and imaged using laser confocal microscopy. The rate of cell growth was calculated at their exponential growth phase by mathematical modeling. Results. In the presence of BMP-2, 7, and 14, insignificant changes in the growth rates of cells from the annulus fibrosus and the nucleus pulposus of the IVD (both healthy and degenerated) were noted. Changes in the proliferative activity were found in healthy cells of the annulus fibrosus supplemented with BMP-2, 7, and 14 (p<0.01), and also in degenerated cells of the nucleus pulposus in the presence of BMP-14 (p<0.01). Proliferative activity of degenerated cells from the nucleus pulposus was reduced in comparison with healthy cells (p=0.03), while in annulus fibrosus cells there was no significant difference between the two compared groups. The addition of BMP did not restore proliferative activity of cells from the degenerated nucleus pulposus to the level of healthy cells. Morphological characteristics of the cells were similar: both, the nucleus pulposus cells and the annulus fibrosus cells resembled fibroblasts by having spread-eagle, stellate, spindle-like shapes with long protrusions. Conclusion. Minor changes in the proliferative activity of IVD cells co-incubated with BMP-2, 7, and 14 were observed. Bone morphogenetic proteins had no significant effect on proliferation of IVD cells, which can be regarded as a positive factor under conditions of nutrient deficiency and reduced nutrient transport in the disc. The observed differences in growth rate between the nucleus pulposus cells and the annulus fibrosus cells may be due to different degrees of tolerance to degeneration or reflect the predominant role of the nucleus pulposus in the cellular degeneration of the IVD.

Текст научной работы на тему «Пролиферативная активность здоровых и дегенерированных клеток межпозвонкового диска in vitro при воздействии костных морфогенетических протеинов: возможности для клеточной терапии»

ПРОЛИФЕР ЗДОРО МЕЖ

ПРИ воз

МОРФ

вОз

DOI: 10

ДЛЯ КЛЕТОЧНОЙ ТЕРАПИИ

Л.А. Бардонова, аспирант курса нейрохирургии1; Е.Г. Белых, ассистент курса нейрохирургии1;

M.B. Giers, PhD, Assistant Professor, Department of Chemical, Biological, and Environmental Engineering2; M.C. Preul, Professor, Director, Neurosurgery Research Laboratory3;

В.А. Бывальцев, д.м.н., профессор, зав. курсом нейрохирургии1; профессор кафедры травматологии, ортопедии и нейрохирургии4; руководитель научно-клинического отдела нейрохирургии5; руководитель Центра нейрохирургии6

1Иркутский государственный медицинский университет, Иркутск, 664003, ул. Красного восстания, 1; 2Oregon State University, 1500 SW Jefferson St., Corvallis, OR, 97331, USA; 3Department of Neurosurgery Research, Barrow Neurological Institute, 350 W Thomas Rd., Phoenix, AZ, 85013, USA;

"Иркутская государственная медицинская академия последипломного образования — филиал Российской медицинской академии непрерывного профессионального образования Минздрава России, Иркутск, 664049, микрорайон Юбилейный, 100;

5Иркутский научный центр хирургии и травматологии, Иркутск, 664003, ул. Борцов Революции, 1; Дорожная клиническая больница на ст. Иркутск-Пассажирский ОАО «РЖД», Иркутск, 664005, ул. Боткина, 10

Цель исследования — оценить эффективность влияния костных морфогенетических протеинов — bone morphogenetic proteins (BMP) на динамику пролиферативной активности здоровых и дегенерированных клеток межпозвонкового диска (МПД) в экспери-

Материалы и методы. Клеточные культуры, полученные из фиброзного кольца и пульпозного ядра здорового и дегенериро-ванного межпозвонковых дисков, культивировали в четырех средах: в контрольной и с добавлением BMP-2, BMP-7, BMP-14. Ежедневный подсчет количества клеток проводили в программе Fiji на микрофотографиях, полученных с помощью фазово-контрастной микроскопии. На 4-е сутки клетки фиксировали и окрашивали Alexa Fluor 633 phalloidin (на F-актин) и DAPI (на ядерную ДНК) с последующим исследованием на лазерном конфокальном микроскопе. Скорость роста клеток в каждом случае вычисляли путем математического моделирования в их экспоненциальной фазе роста.

Результаты. Выявлены незначительные изменения темпов роста клеток фиброзного кольца и пульпозного ядра МПД (и здоровых, и дегенерируемых) под влиянием BMP-2, 7, 14. Изменения в пролиферативной активности отмечены в группах здоровых клеток фиброзного кольца под действием BMP-2, 7, 14 (p<0,01), а также в группе дегенерированных клеток пульпозного ядра под действием BMP-14 (p<0,01). Пролиферативная активность дегенерированных клеток пульпозного ядра была незначительно снижена в сравнении со здоровыми клетками (p=0,03), в то же время у здоровых и дегенерированных клеток фиброзного кольца ее значения статистически значимо не различались. Культивирование дегенерированных клеток пульпозного ядра в присутствии BMP не позволило достичь показателей пролиферативной активности здоровых клеток. Морфологическая форма не явилась качественным отличием между типами клеток: клетки и пульпозного ядра, и фиброзного кольца имели фибробластоподобную форму (звездчатую распластанную, веретенообразную с длинными отростками).

Заключение. Выявлены незначительные изменения пролиферативной активности клеток МПД под влиянием BMP-2, 7, 14. Костные морфогенетические белки не оказывают значительного влияния на пролиферацию клеток МПД, что является позитивным в аспекте дефицита питательных веществ и сниженного нутритивного транспорта в диске. Отмеченные различия в скорости роста клеток пульпозного ядра и фиброзного кольца могут свидетельствовать о различной степени толерантности клеточных популяций МПД к дегенерации либо о преимущественной роли клеток пульпозного ядра в клеточном звене дегенерации МПД.

Для контактов: Бывальцев Вадим Анатольевич, e-mail: byval75vadim@yandex.ru

//////////////////////^^^^

76 СТМ i 2018 — ТОМ 10, №2 Л.А. Бардонова, Е.Г. Белых, M.B. Giers, M.C. Preul, В.А. Бывальцев

Ключевые слова: межпозвонковый диск; дегенерация межпозвонкового диска; костный морфогенетический белок; клеточная пролиферация; клеточная терапия.

Как цитировать: Bardonova L.A., Belykh E.G., Giers M.B., Preul M.C., Byvaltsev V.A. Proliferative activity of healthy and degenerated intervertebral disc cells in vitro under bone morphogenetic proteins' influence: implications for cell therapy. Sovremennye tehnologii v medicine 2018; 10(2): 76-82, https://doi.org/10.17691/stm2018.10.2.08

English

Proliferative Activity of Healthy and Degenerated Intervertebral Disc Cells in vitro under Bone Morphogenetic Proteins' Influence: Implications for Cell Therapy

L.A. Bardonova, PhD Student, Neurosurgery Course1;

E.G. Belykh, MD, Assistant, Neurosurgery Course1;

M.B. Giers, PhD, Assistant Professor, Department of Chemical, Biological, and Environmental Engineering2;

M.C. Preul, Professor, Director, Neurosurgery Research Laboratory3;

V.A. Byvaltsev, MD, DSc, Professor, Head of the Neurosurgery Course1; Professor, Department of Traumatology,

Orthopedics, and Neurosurgery4; Head of the Scientific and Clinical Unit of Neurosurgery5;

Chief of the Neurosurgery Center6

Irkutsk State Medical University, 1 Krasnogo Vosstaniya St., Irkutsk, 664003, Russia;

2Oregon State University, 1500 SW Jefferson St., Corvallis, OR, 97331, USA;

3Department of Neurosurgery Research, Barrow Neurological Institute, 350 W Thomas Rd., Phoenix,

AZ, 85013, USA;

"Irkutsk State Medical Academy for Postgraduate Education — Branch of the Russian

Medical Academy of Continuing Professional Education of the Ministry Healthcare

of the Russian Federation, 100 Yubileyny Microdistrict, Irkutsk, 664049, Russia;

5Irkutsk Scientific Center of Surgery and Traumatology, 1 Bortsov Revolutsii St., Irkutsk, 664003, Russia;

6Railway Clinical Hospital at the Irkutsk-Passagirsky Station, 10 Botkin St., Irkutsk, 664005, Russia

The aim of the study was to evaluate the effect of bone morphogenetic proteins (BMP) on the proliferative activity of healthy and degenerated cells of the intervertebral disc (IVD) in vitro.

Materials and Methods. Cells obtained from the human annulus fibrosus and the nucleus pulposus of healthy and degenerated intervertebral discs were cultured in the absence and presence of BMP-2, BMP-7, and BMP-14. A daily cell count was performed using micrographs obtained by phase contrast microscopy and the Fiji program. On day 4, cells were fixed and stained with Alexa Fluor 633 phalloidin (for F-actin) and DAPI (for nuclear DNA), and imaged using laser confocal microscopy. The rate of cell growth was calculated at their exponential growth phase by mathematical modeling.

Results. In the presence of BMP-2, 7, and 14, insignificant changes in the growth rates of cells from the annulus fibrosus and the nucleus pulposus of the IVD (both healthy and degenerated) were noted. Changes in the proliferative activity were found in healthy cells of the annulus fibrosus supplemented with BMP-2, 7, and 14 (p<0.01), and also in degenerated cells of the nucleus pulposus in the presence of BMP-14 (p<0.01). Proliferative activity of degenerated cells from the nucleus pulposus was reduced in comparison with healthy cells (p=0.03), while in annulus fibrosus cells there was no significant difference between the two compared groups. The addition of BMP did not restore proliferative activity of cells from the degenerated nucleus pulposus to the level of healthy cells. Morphological characteristics of the cells were similar: both, the nucleus pulposus cells and the annulus fibrosus cells resembled fibroblasts by having spread-eagle, stellate, spindle-like shapes with long protrusions.

Conclusion. Minor changes in the proliferative activity of IVD cells co-incubated with BMP-2, 7, and 14 were observed. Bone morphogenetic proteins had no significant effect on proliferation of IVD cells, which can be regarded as a positive factor under conditions of nutrient deficiency and reduced nutrient transport in the disc. The observed differences in growth rate between the nucleus pulposus cells and the annulus fibrosus cells may be due to different degrees of tolerance to degeneration or reflect the predominant role of the nucleus pulposus* in the cellular degeneration of the IVD.

Key words: intervertebral disc; degeneration of the intervertebral disc; bone morphogenetic protein; cell proliferation; cellular therapy.

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Введение

Дегенерация межпозвонкового диска (МПД) является сложным процессом, включающим в себя изменения в питании МПД, снижение жизнеспособности и

количества клеток, количественные и качественные изменения межклеточного матрикса, а также изменения биомеханики [1]. Остается не до конца выясненным, какие из этих процессов являются первичными, а какие — вторичными. Более того, в развитии данной

экСпЕрИМЕНтАЛьНыЕ ИССЛЕДоВАНИя

патологии значительную роль играет генетический фактор [2, 3]. Сложность патофизиологических механизмов развития дегенерации МПД затрудняет поиск потенциальных терапевтических мишеней и использование методов биологической коррекции.

Консервативное лечение дегенеративных процессов МПД преимущественно направлено на снятие острого болевого синдрома, в большинстве случаев является симптоматическим и непродолжительным по эффективности. Хирургическое лечение требуется чаще на последних стадиях дегенерации, сопряжено с рисками инвазивного вмешательства и в некоторых случаях ведет к изнашиванию смежных МПД из-за изменений в биомеханике [4]. Перспективным направлением исследований в настоящее время является поиск подходов к регенерации МПД, в частности терапия факторами роста, генная терапия, клеточная терапия и тканевая инженерия [5, 6]. Результаты биологической терапии могут отличаться в зависимости от используемой методики и степени дегенерации МПД. Одной из активно изучаемых стратегий биологической коррекции ранней степени дегенерации МПД является терапия факторами роста. В частности, надсемейство трансформирующего фактора роста бета (TGF-ß) состоит из ряда пептидов, которые, как полагают, связаны с синтезом коллагена и протеогликанов и играют важную роль в накоплении межклеточного матрикса. К TGF-ß относятся в том числе и костные морфогене-тические белки (bone morphogenetic proteins — BMP): BMP-2, BMP-7, BMP-14 [7, 8]. На ранней стадии дегенеративного процесса факторы роста стимулируют экспрессию компонентов межклеточного матрикса функционально активными клетками МПД, что может способствовать в дальнейшем восстановлению структуры и функции диска [6, 9]. Успешность данной терапии напрямую зависит от наличия достаточного числа жизнеспособных клеток [10].

Цель исследования — оценить эффективность влияния костных морфогенетических протеинов на динамику пролиферативной активности здоровых и дегенерированных клеток межпозвонкового диска в эксперименте.

Материалы и методы

Дизайн эксперимента. В работе использовали клеточные культуры, полученные из фиброзного кольца (ФК) и пульпозного ядра (ПЯ) МПД человека.

В качестве клеток здорового МПД использовали клеточные культуры, полученные из ФК и ПЯ здорового донора без вертеброгенной патологии (Sciencell Research Laboratories, США). Клетки размораживали на водяной бане при 37°С и культивировали в монослое в стерильных флаконах с площадью поверхности 25 см2 в питательной среде, состоящей из 89% среды Dulbecco's Modified Eagle's Medium/F-12 (Thermo Fisher Scientific, США), дополненной 10% эмбриональной телячьей сыворотки (ЭТС) (Life Technologies,

США) и 1% раствора пенициллина и стрептомицина (Sigma, США), при температуре 37°С, 95% влажности и 5% содержании СО2.

Клетки дегенерированного МПД получали путем выделения из биоптатов тканей ПЯ и ФК дегенерированного МПД человека при выполнении плановых операций на поясничном отделе позвоночника.

Исследование проведено в соответствии с Хельсинкской декларацией (2013) и одобрено Этическим комитетом Иркутского государственного медицинского университета. От каждого пациента получено информированное согласие.

Критерии включения в исследование: дегенеративно-дистрофические заболевания МПД; II-IV степени дегенерации МПД на основании классификации по Pfirrmann [11]; возраст пациентов — от 18 до 65 лет; наличие выраженного болевого синдрома в нижней части спины; отсутствие эффекта от консервативной терапии в течение более 4 нед.

Критериями исключения явились перенесенные ранее оперативные вмешательства на пояснично-крест-цовом отделе позвоночника, применение химиотера-певтических препаратов, проведение радиотерапии в области позвоночника, наличие сколиоза, сахарный диабет.

Фрагменты МПД сразу после экстракции помещали в питательную среду (89% Dulbecco's Modified Eagle's Medium/F-12, 10% ЭТС и 1% раствора пенициллина и стрептомицина) и доставляли в лабораторию. Ткани ПЯ и ФК тщательно отделяли друг от друга, отмывали в однократном натрий-фосфатном буферном растворе (PBS) с 5% содержанием пенициллина и стрептомицина. Используя методику ферментативной дезагрегации [12], ткани механически измельчали, инкубировали в 0,24% растворе проназы (Sigma, США) в течение 1 ч и затем — в 0,05% растворе коллагеназы типа II (Sigma, США) в течение 6 ч в термостате при температуре 37°С. Раствор коллагеназы со взвесью клеток пропускали через нейлоновый фильтр с диаметром пор 70 мкм (Thermo Fisher Scientific, США), затем клетки дважды отмывали в питательной среде и центрифугировали при 150 g в течение 10 мин. Клеточный осадок эксплантировали в культуральный флакон с площадью поверхности 25 см2 и подготовленной питательной средой и культивировали при температуре 37°С, 95% влажности, 5% СО2.

Замену среды осуществляли каждые двое суток. После 5 сут культивирования непрерывный слой культуры заполнял 85-90% поверхности флакона. Клетки с поверхности культурального флакона снимали с помощью 0,25% раствора трипсина (GE Healthcare Life Sciences, США), а затем пересевали в чашки Петри диаметром 35 мм с покровным стеклом в дне толщиной 1,5 мм и диаметром 10 мм.

После первого пассажа клеточные линии клеток ПЯ и клеток ФК разделены на 4 группы каждая: 1) клетки, выращиваемые в среде с добавлением BMP-2; 2) клетки, выращиваемые в среде с добавлением

//////////////////////^^^^

78 СТМ | 2018 — том 10, №2 Л.А. Бардонова, Е.Г. Белых, Morgan B. Giers, Mark C. Preul, В.А. Бывальцев

BMP-7; 3) клетки, выращиваемые в среде с добавлением BMP-14 (Bone Morphogenetic Proteins Human Recombinant; ProSpec, США); 4) клетки, выращиваемые в среде без добавления BMP (контрольная среда). Смену питательных сред проводили каждые два дня. Культивирование клеток в контрольной среде и в средах с добавлением BMP-2, 7, 14, выполняли в течение 4 сут.

Оценка морфологии и количества клеток.

Морфологию клеток оценивали методом фазово-кон-трастной микроскопии с помощью инвертированного микроскопа с зеленым светофильтром (Axio Vert. A1; Carl Zeiss, Германия). Цифровые изображения для дальнейшей обработки получали путем фотографирования камерой Canon при увеличении 2QQ (окуляр — х10, объектив — х20) 6 полей зрения каждой культуральной чашки. Фотографирование проводили ежедневно в течение 4 дней в одно и то же время. Полученные файлы сохраняли в формате JPEG. Анализ цифровых изображений выполняли в программе Fiji (NIH, США) с использованием плагина для подсчета клеток [13].

После 4 сут культивирования в средах, обогащенных BMP-2, 7 и 14, клетки фиксировали в 4% растворе параформальдегида, окрашивали красителем Alexa Fluor 633 phalloidin (Life Technologies, США) на F-актин и DAPI (NucBlue Fixed Cell ReadyProbes; Life Technologies, США) на ядерную ДНК с последующим исследованием методом лазерной конфокальной микроскопии (Zeiss LSM 7 Duo; Carl Zeiss, Германия).

Статистическая обработка данных. Статистическую обработку проводили в программах Microsoft Excel и Statistica 9.Q с использованием критерия ANOVA для сравнения нормализованных показателей количества клеток, а также post-hoc t-test — для независимых групп. Количество клеток было нормализовано по отношению к плотности засеивания. Различия считали статистически значимыми при p<0,05. Анализ пролиферации выполняли с использованием математической модели [14]:

P=P0ert,

где P — это нормализованная популяция; P0 — изначально нормализованная популяция, r — коэффициент скорости роста и t — время. В этом исследовании Р0 всегда равно 1 из-за нормализации наших данных. Также анализировали темп роста клеток и коэффициенты корреляции.

Результаты и обсуждение

Для учета разницы в исходном количестве здоровых клеток ФК и ПЯ при сравнении пролиферации клеточных популяций данные нормализованы к изначальной плотности культур клеток.

Увеличение числа клеток ПЯ наблюдали в течение четырех дней эксперимента (от p=0,01 до p=0,04), ФК — в течение первых двух дней (p<0,01), затем по-

являлся непрерывный слой. В последующие дни эксперимента увеличения экспоненциального роста не отмечалось вследствие контактного ингибирования пролиферации. В связи с этим рост популяции клеток рассчитан с учетом трех дней для культур клеток ФК и пяти дней — для ПЯ (рис. 1).

Модель роста клеток рассчитывали исходя из нормализованного числа клеток, что позволило определить коэффициенты роста для клеточных популяций. Выявлено отсутствие статистически значимых различий коэффициентов пролиферации в группах дегенерированных и здоровых клеток ФК (p>0,9). В то же время пролиферативная активность дегенерирован-ных клеток ПЯ была значимо снижена в сравнении со здоровыми клетками ПЯ (p=0,03). Коэффициенты роста культур здоровых и дегенерированных клеток МПД представлены в таблице.

При общем сравнении роста клеток в культурах по критерию ANOVA выявлено отсутствие значимого эффекта от всех типов BMP на пролиферацию здоровых клеток (p=0,17), в то же время обнаружено их влияние на дегенерированные клетки ПЯ и ФК (p<0,01) (см. рис. 1).

По сравнению с контрольной группой отмечается некоторое увеличение роста здоровых клеток ФК под влиянием всех BMP (p<0,01), а также дегенерированных клеток ФК под влиянием BMP-14 (p<0,01). Выявлено незначительное влияние всех BMP на рост здоровых клеток ПЯ (p=0,51), в то же время в группе дегенерированных клеток ПЯ отмечено увеличение количества клеток под действием BMP-7 и BMP-14 (p=0,01).

При проведении иммуноцитохимического исследования с окраской на актиновый цитоскелет клетки ПЯ и ФК как здорового, так и дегенерированного МПД

Коэффициенты пролиферации дегенерированных и здоровых клеток пульпозного ядра и фиброзного кольца под воздействием костных морфогенетических протеинов (BMP)

Среда Дегенерированные клетки Здоровые клетки

культиви- фиброзного пульпозного фиброзного пульпозного

рования кольца ядра кольца ядра

Коэффициент пролиферации (r)

Контрольная 0,36 0,17 0,21 0,39

BMP-2 0,36 0,2 0,42 0,36

BMP-7 0,39 0,22 0,51 0,4

BMP-14 0,46 0,24 0,36 0,42

Коэффициент Пирсона (R2)

Контрольная 0,93 0,91 0,68 0,84

BMP-2 0,91 0,87 0,76 0,86

BMP-7 0,91 0,87 0,75 0,89

BMP-14 0,93 0,92 0,8 0,92

ф

го ш о

СП

S ^

го

CP

о X

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

■ Д, контроль

□ Д, ВМР-2

□ Д, ВМР-7

□ Д, ВМР-14

■ З, контроль

□ З, ВМР-2

□ З, ВМР-7 3 ПЗ, ВМР-14

1-е

12

10

ф о

го ш О' СП S

ц го

CP

'

X

■Д, □Д, □Д, □Д, ■ З, □ З, З, З,

контроль

ВМР-2

ВМР-7

ВМР-14

контроль

ВМР-2

ВМР-7

ВМР-14

Клетки фиброзного кольца

р<0,01

р<0,01

IWiffi

Время исследования, сут

Клетки пульпозного ядра

р<0,01

р<0,01

iTfl

Л Jiff

р=0,01

г

1-е

2-е

3-и

4-е

5-е

б

Время исследования, сут

Рис. 1. Сравнение нормализованных значений динамики количества здоровых (3) и дегенерированных Д) клеток:

а — фиброзного кольца; б — пульпозного ядра; значения представлены как среднее ± стандартное отклонение

а

имели схожие морфологические формы (рис. 2). При 100% конфлюенции клетки ФК и ПЯ имели схожую веретенообразную форму с продольной ориентацией в одном направлении либо радиальной — к центрам скопления клеток. Клетки в культурах, не достигших полной конфлюенции, имели продолговатую или звездчатую форму с 3-4 отростками, реже — веретенообразную. Часть клеток ПЯ и реже — ФК образовывали тонкие длинные отростки, которые у клеток ПЯ

были значительно длиннее, чем у клеток ФК, достигая 250 мкм в длину. Актиновый цитоскелет хорошо выражен, микрофиламенты располагаются равномерно по всей площади клетки, сопровождая выпячивания. Ближе к краю клеток актиновые филаменты образуют окрашенные гиперинтенсивные скопления в виде глы-бок, свидетельствуя об активной сборке актина при формировании выпячиваний. Ядра клеток — ровные, овальные, размером от 15 до 30 мкм в диаметре.

//////////////////////^^^^

80 СТМ J 2018 - ТОМ 10, №2 Л.А. Бардонова, Е.Г. Белых, Morgan B. Giers, Mark C. Preul, В.А. Бывальцев

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Рис. 2. Иммуноцитохимическая окраска клеток фиброзного кольца и пульпозного ядра здорового (а и б соответственно) и дегенерированного (в и г соответственно) межпозвонкового диска, фиксированных на 4-й день культивирования

Окраска на F-актин (Alexa Fluor 633 phalloidin, отмечено красным цветом) и на ядерную ДНК (DAPI, отмечено желтым цветом); изображения сделаны с использованием лазерной сканирующей микроскопии (бар — 50 мкм)

Заключение

В исследовании in vitro клеток пульпозного ядра и фиброзного кольца межпозвонкового диска выявлены незначительные, но статистически значимые изменения пролиферативной активности под влиянием костных морфогенетических протеинов — BMP-2, 7, 14. Культивирование дегенерированных клеток пульпоз-ного ядра в присутствии BMP не позволило достичь показателей пролиферативной активности здоровых клеток. В то же время пролиферативная активность здоровых и дегенерированных клеток фиброзного кольца значимо не отличалась. Костные морфогенети-ческие протеины не оказывают значительного влияния на пролиферацию клеток межпозвонкового диска, что является позитивным в аспекте дефицита питательных веществ и сниженного нутритивного транспорта в диске. Отмеченные различия в скорости роста клеток пульпозного ядра и фиброзного кольца могут свидетельствовать о различной степени толерантности клеточных популяций межпозвонкового диска к дегенерации либо о преимущественной роли клеток пуль-позного ядра в клеточном звене дегенерации межпозвонкового диска.

Финансирование исследования. Работа выполнена за счет средств гранта Российского научного фонда (проект №15-15-30037).

Конфликт интересов. Авторы подтверждают отсутствие финансовых и других конфликтных интересов, способных оказать влияние на их работу.

Таким образом, в настоящем исследовании проведена оценка пролиферативной активности клеток ПЯ и ФК in vitro в средах с добавлением BMP-2, BMP-7 и BMP-14 по сравнению с контролем. Ранее исследования показали [15], что BMP-2 стимулирует продукцию межклеточного матрикса, в частности синтез протеогликанов. BMP-7 также известен как «осте-огенный белок 1» и, подобно BMP-2, используется для активизации процессов остеосинтеза при проведении операции спондилодеза и других ортопедических вмешательств на костной ткани [16]. BMP-7 также показал потенциал в стимуляции продукции компонентов межклеточного матрикса МПД [17]. BMP-14 (иначе известный как growth differentiation factor 5), еще один член семейства TGF-p, оказывает стимулирующее действие на клетки МПД, увеличивая синтез протеогликанов и экспрессию коллагена 2-го типа [18].

В связи с дефицитом питательных веществ в МПД подходы к регенеративной терапии должны учитывать численность клеток и спрос на питательные вещества. В данном исследовании мы показали, что ВМР-2, 7 и 14 не оказывают выраженного влияния на пролиферацию здоровых клеток ПЯ, незначительно увеличивая пролиферацию дегенерированных клеток ПЯ и ФК.

fluTepaTypa/References

1. Evans C. Potential biologic therapies for the intervertebral disc. J Bone Joint Surg Am 2006; 88(Suppl 2): 95-98, https://doi.org/10.2106/jbjs.e.01328.

2. Virtanen I.M., Karppinen J., Taimela S., Ott J., Barral S., Kaikkonen K., Heikkila O., Mutanen P., Noponen N., Mannikko M., Tervonen O., Natri A., Ala-Kokko L. Occupational and genetic risk factors associated with intervertebral disc disease. Spine 2007; 32(10): 1129-1134, https://doi. org/10.1097/01.brs.0000261473.03274.5c.

3. Martirosyan N.L., Patel A.A., Carotenuto A., Kalani M.Y., Belykh E., Walker C.T., Preul M.C., Theodore N. Genetic alterations in intervertebral disc disease. Front Surg 2016; 3: 59, https://doi.org/10.3389/fsurg.2016.00059.

4. Maldonado C.V., Paz R.D., Martin C.B. Adjacent-level degeneration after cervical disc arthroplasty versus fusion. Eur Spine J 2011; 20(Suppl 3): 403-407, https://doi.org/10.1007/ s00586-011-1916-1.

5. Kepler C.K., Anderson D.G., Tannoury C., Ponnappan R.K. Intervertebral disk degeneration and emerging biologic treatments. J Am Acad Orthop Surg 2011; 19: 543553, https://doi.org/10.5435/00124635-201109000-00005.

6. Moriguchi Y., Alimi M., Khair T., Manolarakis G., Berlin C., Bonassar L.J., Hartl R. Biological treatment approaches for degenerative disk disease: a literature review of in vivo animal and clinical data. Global Spine J 2016; 6(5): 497-518, https://doi.org/10.1055/s-0036-1571955.

чшшшшт^тчтчшшшшш^тчтчтчшт

Пролиферативная активность клеток межпозвонкового диска СТМ | 2018 — том 10, №2 81

экСпЕрИМЕНтАЛьНыЕ ИССЛЕДоВАНИя

7. Than K.D., Rahman S.U., Vanaman M.J., Wang A.C., Lin C.Y., Zhang H., La Marca F., Park P. Bone morphogenetic proteins and degenerative disk disease. Neurosurgery 2012; 70(4): 996-1002, https://doi.org/10.1227/ neu.0b013e318235d65f.

8. Belykh E., Giers M., Bardonova L., Theodore N., Preul M., Byvaltsev V. The role of bone morphogenetic proteins 2, 7, and 14 in approaches for intervertebral disk restoration. World Neurosurg 2015; 84(4): 871-873, https://doi. org/10.1016/j.wneu.2015.08.011.

9. Masuda K., An H.S. Prevention of disc degeneration with growth factors. Eur Spine J 2006; 15(Suppl 3): S422-S432, https://doi.org/10.1007/s00586-006-0149-1.

10. Vasiliadis E.S., Pneumaticos S.G., Evangelopoulos D.S., Papavassiliou A.G. Biologic treatment of mild and moderate intervertebral disc degeneration. Mol Med 2014; 20: 400-409, https://doi.org/10.2119/molmed.2014.00145.

11. Pfirrmann C.W.A., Metzdorf A., Zanetti M., Hodler J., Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26(17): 18731838, https://doi.org/10.1097/00007632-200109010-00011.

12. Chan L.K., Leung V.Y., Tam V., Lu W.W., Sze K.Y., Cheung K.M. Decellularized bovine intervertebral disc as a natural scaffold for xenogenic cell studies. Acta Biomater 2013; 9(2): 5262-5272, https://doi.org/10.1016/j. actbio.2012.09.005.

13. Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S.,

Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P., Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9(7): 676-682, https://doi.org/10.1038/nmeth.2019.

14. Bardonova L.A., Belykh E.G., Byvaltsev V.A., Theodore N., Preul M.C., Giers M.B. Mathematical model of bone morphogenetic proteins' influence on intervertebral disc cell proliferation in vitro. New Armenian Medical Journal 2017; 11(11): 55-60.

15. Kim H., Lee J.U., Moon S.H., Kim H.C., Kwon U.H., Seol N.H., Kim H.J., Park J.O., Chun H.J., Kwon I.K., Lee H.M. Spine 2009; 34: 1834-1838, https://doi.org/10.1097/ brs.0b013e3181ae18ba.

16. Lo K.W., Ulery B.D., Ashe K.M., Laurencin C.T. Studies of bone morphogenetic protein-based surgical repair. Adv Drug Deliv Rev 2012; 64(14): 1277-1291, https://doi.org/10.1016/j. addr.2012.03.014.

17. Imai Y., Miyamoto K., An H.S., Thonar E.J., Andersson G.B., Masuda K. Recombinant human osteogenic protein-1 upregulates proteoglycan metabolism of human anulus fibrosus and nucleus pulposus cells. Spine 2007; 32(12): 1303-1310, https://doi.org/10.1097/ brs.0b013e3180593238.

18. Li X., Leo B.M., Beck G., Balian G., Anderson G.D. Collagen and proteoglycan abnormalities in the GDF-5-deficient mice and molecular changes when treating disk cells with recombinant growth factor. Spine 2004; 29(20): 22292234, https://doi.org/10.1097/01.brs.0000142427.82605.fb.

//////////////////////^^^^

82 СТМ i 2018 — том 10, №2 Л.А. Бардонова, Е.Г. Белых, Morgan B. Giers, Mark C. Preul, В.А. Бывальцев

i Надоели баннеры? Вы всегда можете отключить рекламу.