УДК 669.168.3
ПРОИЗВОДСТВО ХРОМОРУДНЫХ ОКАТЫШЕЙ ИЗ МЕЛКОДИСПЕРСНЫХ ОТХОДОВ
А.К. Жунусов, Н.К. Кулумбаев, Ж.О. Нурмаганбетов, J1.Б. Толымбекова
Павлодарский государственный университет им. С. Торайгырова, г. Павлодар, Экибастузский инженерно-технический институт им. К. Сатпаева, Инновационный Евразийский университет
Мацалада усацдисперл1 крлдъщтарынан хромрудалы окатыштер eHdipicmifj технологиясы бейнеленеЫ.
В статье описывается технология производства хромо рудных окатышей из мелкодисперсных отходов.
The article describes the manufacture technology of chromium ore pellets from fine-dispersed waste materials.
Основное направление технического прогресса ферросплавного производства - это внедрение мощных, высокомеханизированных и автоматизированных закрытых электропечей, обеспечивающих улучшение технико-экономических показателей производства и условий труда обслуживающего персонала. Для нормальной работы закрытых электропечей требуется кусковой материал [1].
Современный уровень развития ферросплавной промышленности характеризуется вовлечением в сферу металлургического передела мелкой ^менее 10 мм) хромитовой руды. В настоящее время в мире добывается 13-14 млн. т. хромитовых руд, в которых содержание фракции 0-10 мм составляет 75-80%, около 30% руды находится в порошковом и даже в пылеватом виде [2, 3]. Аналогичная ситуация сложилась и на Донском ГОКе, обеспечивающем отечественные ферросплавные заводы хромовой рудой [4].
40
НАУКА И ТЕХНИКА КАЗАХСТАНА
Взрывные работы и механизация добычи полезных ископаемых приводят к переизмельчению добываемых руд и увеличению в них доли мелкозернистых фракций. Кроме того, из-за ограниченности запасов богатых руд в добычу вовлекаются в возрастающих количествах бедные руды, которые необходимо обогащать. В процессе обогащения полезные компоненты руды перераспределяются между фракциями крупности, и значительное количество ценного сырья концентрируется в мелкозернистых и тонкодисперсных (-3 мм) фракциях.
Использование последних в металлургическолПчеределе затрудняет плавку и повышает энергетические затраты. Кроме того, тонкодисперсные материалы выносятся из технологических агрегатов тягодутьевым режимом и практически вращаются в технологическом цикле, загружая газоочистные сооружения. Поэтому большое количество руд и уже обогащенных концентратов оказывается практически непригодными для непосредственного использования в производственных процессах и требуют специальной подготовки - окускования [6].
С образованием мелкой фракции хромовой руды при добыче и подготовке, на рудниках и ГОКах аналогичная проблема возникает на ферросплавных предприятиях Казахстана. В частности при выплавке высокоуглеродистого феррохрома на Аксуском заводе ферросплавов.
В настоящее время на Аксуском заводе ферросплавов выплавка высокоуглеродистого феррохрома ведется на рудовосстановительных печах мощностью 21 МВА и 63 МВА. Разливка феррохрома осуществляется на разливочные поддоны (цех№2) и на разливочных машинах длиной 70 м (цех№6). Готовая продукция дробится на щековых дробилках в СГП. Таким образом, при дроблении феррохрома образуется большое количество мелкой фракции, улавливается пыль аспираци-онными установками (около 30% от выхода годного металла). Аспи-рационная пыль представляет мелкодисперсную мелочь фракции 0,01-1 мм с содержанием ведущего элемента 65-69%, и практически является некондиционным материалом. Вовлечение аспирационной пыли в дальнейшее ферросплавное производство считается нецелесообразным, так как при загрузке пыли в печь для дальнейшего переплава происходит улет этого материала на 60-75%.
Объём образующейся пыли пригодных для получения окатышей без ~тедварительного измельчения составляет:
1 Хромовая пыль газоочистки печи № 62 (Сг20з- до 42 %, С-6-7 %)-
15000 т/год;
2 Хромовая аспирационная пыль дозировочных отделений и трак-■: = подачи шихтовых материалов (Сг20з- до 40 %)- 5500 т/год;
3 Аспирационная пыль от дробления феррохрома (Сг- до 69%) -1000
тгод;
Насыпная масса исходных материалов: 3 Хромовая пыль газоочистки -1700 кг/м3; 2 Хромовая аспирационная пыль - 1700 кг/м3; 5 Аспирационная пыль от дробления феррохрома -2600 кг/м3; На Аксуском заводе ферросплавов были проведены лабораторные ис-. елования по получению окатышей из пылеватых отходов ферросплавного производства.
По гранулометрическому составу пыли, подлежащие утилизации, пред-г-г&лены на 70-75% классом менее 0,01, что полностью удовлетворяет тгбованиям процесса окатывания.
Сырые окатыши формируются при окатывании на барабанных или на - 1гельчатых грануляторах из тонкодисперсного материала, увлажненно-" : ло определенной степени. Комкуемостью называют скорость образования и роста гранул и их прочность. Поскольку скорость образования .¿2 иснгг от прочности сцепления частиц, то комкуемость может характе-т изоваться прочностью сцепления частиц. На прочность сцепления час-тнц влияют следующие факторы: Содержание влаги в шихте; 2 Гранулометрический состав сыпучего материала; 5 Природа комкуемости материала; - ^&довия образования гранул. Прочность комка Р° подчиняется зависимости:
Р=к5р[(1-г)/е],
где Б- удельная поверхность шихты; £ - пористость окатышей;
к- коэффициент учитывающий природу и влажность материала;
р-плотность материала.
42
НАУКА И ТЕХНИКА КАЗАХСТАНА
С целью повышения металлургических свойств окатышей детально прорабатывался вопрос ввода в шихту колошниковой пыли. При отработке режимов окатывания пылеватых шихт были получены окатыши с удовлетворительными прочностными характеристиками. Барабанная проба в среднем по ГОСТ 15137-77 прочности на удар соответствовала 65-75% на истирание 7-12 %, в связи с различным содержанием связующего материала.
Окатыши изготавливали на тарельчатом гранулятэре с использованием в качестве связующего лигносульфаната (8-12%) и жидкого стекла (8-13%) при соотношении в шихте аспирационной и колошниковой пыли 25:75%, 50:50%, 75:25%, 100%.
Анализируя литературные данные по производству окатышей и брикетов можно сделать вывод, что брикеты на лингосульфонатах, безобжиговые окатыши из хромитовых руд обладают либо недостаточной прочностью, либо влагостойкостью, поэтому до сих пор не нашли применения в промышленном производстве хромистых сплавов. Брикеты на жидком стекле являются достаточно дорогим окускованным материалом, и обладают низкими характеристиками (такими, как транспортабельность и то ко стойкость). Металл изованные хромитоугольные окатыши могут дать значительный экономический эффект, особенно при использовании их в горячем состоянии, что достигается при строительстве новых цехов.
Параметры гранулятора: Диаметр тарели 1,00 м, угол наклона 45°, скорость вращения 10 мин1.
Полученные окатыши подвергали естественной упрочняющей сушке в течении 3 суток при комнатной температуре и часть окатышей сушили в электропечи при температуре 100° и 200°. После сушки окатыши охлаждаемые на воздухе подвергли испытанию на гидравлическом прессе, эти окатыши имели прочность 0,3 кН/окатыш. Окатыши высушенные при температуре 100° и 200° имели прочность от 1,2 кН/окатыш и 0,8-1,3 кН/ окатыш соответственно.
Окатыши в соотношении 50% из аспирационной пыли и 50% колошниковой пыли подвергли обжигу при температуре 600°С. Прочность обожженных окатышей после испытания на гидропрессе соответствовала в
:т«еднем 2,1 кН/окатыш. Барабанная прочность на удар и истирание по ГОСТ 15137-77 равняется 74,3 % и 4,8% соответственно.
Таблица 1
Номера проб Кол-во сбросов сырых окатышей Прочность после сушки, кН/окатыш
На воздухе (3 суток) При 100°С При 200°С
1 2 0,35 1,00 1,20
2 3 0,27 1,90 1,80
3 4 0,48 1,00 1,80
4 4 0,37 0,90 1,20
5 15 0,40 0,80 0,90
Среднее 5,60 0,30 1,10 1,20
Таким образом, из проведенных лабораторных исследований видно, -то наиболее оптимальным режимом окатывания для отходов хромосо-^ержащих материалов является содержания в шихте 50:50% аспираци-: иной и колошниковой пыли, с содержанием связующих 8-12%. Применение лигносульфаната в качестве связующих удешевляет себестоимость : катышей, чем на жидком стекле. Но обожженные окатыши, полученные при 600°С на связующем лигносульфанате, имеют довольно хорошую -рочность. Необходимо учитывать также содержание в колошниковой пыли 6-7% топлива. При производстве хромистых сплавов существует теальная возможность сокращения количества восстановителя в навеске шихты, в виду присутствия в окатышах топлива.
ЛИТЕРАТУРА
1. Колоярцев В.Л., Пупышев Н.В., Беллогуров В Я. и др. Использование мелких хромовых руд в производстве углеродистого и передельного эеррохрома.-М., 1984, (Обзорная информация / ин-т «Черметинформа-ция». сер. Ферросплавное производство, вып. 2.)
2. Жучков В.И., Гальперин Л Л., Кашин В.В. и др. // Элекгрометаллур-ци£.-2003.-№9. С. 35-42.
3. Мазалецкий Т.Д. // Электрометаллургия. 2003. №9. С.32-35
4. Кадар мэтов Х.Н. Состав и металлургические свойства Актюбинс-ких хромовых руд В.сб.: Производство ферросплавов. Челябинск. Южноуральское кн. изд-во, 1972. Вып. 1. С.6-17.
5. Абдулабеков Е.Э., Гриненко В.И., Избёмбетов Д.Д., Нурмаганбетов Ж.О., Байсанов С.О. Производство хромитовых окатышей для выплавки высокоуглеродистого феррохрома Сталь.-2003.-№5.-С.39-41.
6. Лякишев Н.П, ГасикМ.И. Металлургия хрома. М.:ЭЛИЗ, 1999. -582 с.