Научная статья на тему 'Программный комплекс для расчета процесса нанесения покрытия в псевдоожиженном слое'

Программный комплекс для расчета процесса нанесения покрытия в псевдоожиженном слое Текст научной статьи по специальности «Прочие технологии»

CC BY
124
86
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Программный комплекс для расчета процесса нанесения покрытия в псевдоожиженном слое»

сов формируется система планирования ресурсного обеспечения диверсифицированного промышленного предприятия. Система планирования позволяет разработать стратегии снабжения для каждой группы материально-технических ресурсов и реализовать принятую на предприятии стратегию развития.

Основные этапы предлагаемой методики следующие:

1-й этап: проведение АВС-анализа;

2-й этап: проведение XYZ-анализа;

3-й этап: проведение EUS-анализа;

4-й этап: совмещение полученных результатов;

5-й этап: прогнозирование потребности в ресурсах с учетом произведенной группировки;

6-й этап: разработка стратегий материально-технического снабжения.

Методики формирования групп АВС и XYZ подробно описаны различными отечественными и зарубежными авторами [1-4].

Для определения границ номенклатурных групп при проведении EUS-анализа применяется аналитический метод [1, 3].

На первом этапе вводим показатель доли наименований товаров, производимых предприятием, содержащих исследуемый вид ресурса, в общей номенклатуре выпускаемых товаров (di). Далее по каждому виду закупаемых материалов выполняем расчет di, осуществляем ранжирование и располагаем все в убывающей последовательности: da>db>...>d¡>dm, затем присваиваются новые индексы: а=1, в=2, ..., m=N, где N - общее количество наименований закупаемых ресурсов. Величины di суммируются нарастающим итогом и представляются в виде графика или в табличной форме.

Количество наименований закупаемых ресурсов N нормируется в интервале 0-1, и вводится аргумент x. Далее подбирается вид аналитической зависимости y=f(x, ap) для аппроксимации интегральной кривой, где ар - коэффициенты, вычисляемые с помощью метода наименьших квадратов. Для определения координат точки, являющейся границей группы S, используется теорема Лагранжа.

На следующем этапе вводится новая система координат, принимающая за начало отсчета абсциссу xS и ординату y(xS).

Таким образом, для проведения основных этапов ABC-, XYZ-, EUS-анализа рекомендуется применение аналитического метода определения границ номенклатурных групп, так как на данный момент эмпирических данных явно недостаточно, чтобы говорить о существовании какой-либо закономерности в распределении ресурсов по номенклатурным группам в зависимости от степени уникальности. Кроме того, аналитический метод расчета позволяет применять предложенную автором классификацию в любой сфере промышленного производства.

Литература

1. Модели и методы теории логистики; [под ред. В.С. Лу-кинского]. СПб: ПИТЕР, 2003.

2. Корпоративная логистика. 300 ответов на вопросы профессионалов; [под общ. и науч. ред. проф. В.И. Сергеева]. М.: ИНФРА-М, 2004.

3. Методические основы управления снабжением запасными частями автотранспортных предприятий / В.С. Лукин-ский [и др.]. Ставрополь: Интеллект-сервис, 1997.

4. Coyle John J., Bardi Edward J., Langlay John Jr. The Management of Business Logistics. A. Supply Chain Perspective, 7-th South-Western device of Thomson Harming, 2003.

5. Маликов О.Б. Деловая логистика. СПб: Политехника,

2003.

УДК 519.688, 66.047-912

ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ РАСЧЕТА ПРОЦЕССА НАНЕСЕНИЯ ПОКРЫТИЯ В ПСЕВДООЖИЖЕННОМ СЛОЕ

Ю.В. Маковская; Е.С. Голомидов; М.Г. Гордиенко, к.т.н.; Н.В. Меньшутина, д.т.н.

(Российский химико-технологический университет им.. Д.И. Менделеева, сЪет^сот@тис1г.ги)

В статье представлен программный комплекс для расчета и оптимизации процесса нанесения покрытия в аппаратах псевдоожиженного слоя, позволяющий сократить этап разработки и исследования, оценить параметры проведения процесса и качество получаемого продукта.

Ключевые слова: программный комплекс, оптимизация, математическое моделирование, теплообмен, массо-обмен, псевдоожиженный слой, нанесение покрытия.

Производство новых высокоэффективных материалов, способных изменять свойства в зависимости от условий окружающей среды благодаря

специальным функциональным покрытиям, активно развивается. Технологии нанесения покрытия и инкапсуляции нашли широкое применение в

фармацевтике, медицине и здравоохранении, в сельском хозяйстве, пищевой, агрохимической, лакокрасочной отраслях промышленности, при производстве предметов бытовой химии и взрывчатых веществ. Для проектных задач или оптимизации процесса нанесения покрытий в псевдоожиженном слое был разработан программный комплекс, использование которого позволит сократить количество экспериментальных исследований и оптимизировать время и параметры процесса нанесения покрытия при производстве различных продуктов. Возможности комплекса: • анализ рабочих условий проведения процесса нанесения покрытия для получения продукта с требуемыми свойствами;

• предварительный расчет параметров процесса и качества продукта;

• определение продолжительности процесса для достижения заданной толщины покрытия;

• расчет и минимизация потерь наносимого материала;

• минимизация энергозатрат при проведении процесса;

• анализ и подбор оптимального состава полимерного покрытия.

Представленный в статье программный комплекс дает возможность сократить время подбора условий проведения процесса, а следовательно, потери дорогостоящего материала при экспериментальных исследованиях, а также предсказать качество продукта, получаемого методом нанесения покрытий в аппаратах псевдоожиженного слоя, что имеет большую ценность как для разработки новых технологий, так и для модернизации работающих производств.

Нанесение покрытия в псевдоожиженном слое

Процесс инкапсуляции в псевдоожиженном слое заключается в нанесении оболочки с заданными свойствами на частицы, содержащие активное вещество, и представляет собой сложную процедуру, включающую множество микропроцессов, протекающих взаимосвязанно [1]. В аппарат псевдоожиженного слоя подаются воздух и полимерный раствор, который диспергируется при помощи пневматической форсунки. Образующиеся капли раствора сталкиваются с частицами, находящимися в слое. При успешном столкновении и адгезии происходит растекание

капли по поверхности частицы, что обеспечивает формирование вокруг нее однородной оболочки. В результате циркуляции частиц в слое и столкновения со все новыми каплями покрытие утолщается до заданного значения.

Математическое моделирование процесса

Разработанная математическая модель процесса нанесения покрытия в псевдоожиженном слое описывает тепло- и массообмен между тремя фазами (воздух, частицы и капли диспергируемого раствора для покрытия). Модель состоит из уравнений изменения влагосодержания для частиц, капель и воздуха, уравнений, описывающих изменение температуры каждой из трех фаз, уравнения для изменения количества полимерного покрытия на частице и уравнения изменения количества капель по высоте слоя. При разработке математиче-

Система фильтрации

воздуха

Пневматическая форсунка

Подача раствора для покрытия в слой частиц

L— Отходящий

воздух

Моделируемая область аппарата

^обш/п

! 4 ♦ ' \ ▲

! + + ! . \ А

1! \ А

V,

: + * ! *■

У2

: ♦ ♦ ! Г Ж

V,

Частицы слоя ■ Капли раствора • Ожижающий воздух

I \

Ожижающий воздух

Рис. 1. Схема разбиения аппарата и характер движения трех фаз в псевдоожиженном слое при моделировании процесса нанесения покрытия

ского описания процесса были сделаны следующие допущения:

• капли, получаемые при помощи пневматической форсунки, монодисперсны и имеют сферическую форму; отсутствуют соударения между каплями и их деформация;

• слой характеризуется одинаковой порозно-стью по всему объему;

• движение фаз по высоте слоя одномерное;

• рабочий объем камеры разделен по высоте слоя на п слоев, каждый из которых имеет постоянный объем УаппМ (Уапп - объем аппарата) и постоянное число частиц №; интенсивность перемешивания между слоями описывается эмпирическим коэффициентом г, зависящим от скорости движения газовой фазы, а также от свойств частиц слоя;

• частицы не слипаются друг с другом и не налипают на стенки аппарата.

Разбиение аппарата на слои, а также схема движения трех фаз в псевдоожиженном слое представлены на рисунке 1.

Выбор компьютерного

средства для создания программного комплекса

Программный комплекс написан на объектно-ориентированном языке C# на платформе .NET. Преимуществами данной платформы являются модульность и возможность совмещения программного кода. Это позволяет подключать службы и библиотеки, написанные на других языках, например, на Delphi и Visual Basic .NET.

Программа включает в себя несколько расчетных модулей: модуль аппроксимации физических свойств полимерных составов и сушильного агента в зависимости от температуры, модуль расчета параметров процесса и модуль визуализации рассчитанных параметров, алгоритм взаимодействия которых показан на рисунке 2 [2]. Кроме того, в программе есть БД, где хранятся шаблоны параметров процесса и конфигурации аппарата. Данные хранятся в зашифрованном виде в файле с расширением *.props. Взаимодействие пользователя и системы происходит через интуитивно понятный интерфейс, который отправляет запросы блокам систе-

мы и возвращает пользователю конечный результат. Далее для выбранного полимерного состава и при заданных параметрах проведения процесса рассчитывается тепло- и массообмен в аппарате в ходе процесса нанесения покрытия в псевдоожи-женном слое. Возможности системы позволяют оптимизировать процесс нанесения покрытия для достижения наилучших показателей качества продукта.

Алгоритм работы программного комплекса

После запуска программы из БД выбираются конфигурация аппарата с требуемыми параметрами и необходимый полимерный состав с учетом задач инкапсуляции. Можно изменять и дополнять данные шаблоны, загружать новые в зависимости от конструкции аппарата и свойств веществ, участвующих в процессе. Класс-обработчик считывает все файлы с расширением *.props в папке с данными и предоставляет пользователю возможность выбрать один из них. Выбранный шаблон расшифровывается, при этом создается объект

Рис. 2. Алгоритм взаимодействия расчетных блоков программы

класса констант с заданными свойствами. Для выбранного шаблона рассчитываются величины, не меняющиеся с течением времени, а также начальные и граничные условия. Для этого создается объект класса величин, не меняющихся во время процесса, и записывается в область оперативной памяти. На следующем этапе решается система дифференциальных уравнений для трех взаимодействующих фаз - воздух, капли раствора полимерного покрытия, частицы с активным веществом. С учетом гидродинамики псевдоожиженного слоя и конструкционных особенностей аппарата производится расчет параметров процесса в рабочем объеме камеры. Следует отметить, что в программе имеется возможность рассчитывать параметры до заданного времени процесса, до заданной толщины полимерного покрытия и до заданного конечного влагосодержания частицы. Расчет параметров ведется в двух циклах. Первый цикл бесконечен по времени, условием выхода из него является достижение параметра, заданного пользователем (остаточное влагосодержание, конечная толщина полимерной пленки или время процесса). Второй цикл вложен в первый, в нем рассчитываются параметры процесса по высоте рабочего объема камеры аппарата. Для записи промежуточных результатов создается объект класса результатов, куда по мере расчета итеративно вносятся рассчитанные параметры и который активно использует блок визуализации.

Разработанный программный комплекс позволяет визуализировать результаты расчета параметров процесса. В зависимости от установленных пользователем параметров визуализации на экран выводятся изменения температуры или массы различных фаз по высоте аппарата или по времени процесса.

Исходные и рассчитанные значения всех переменных сохраняются в формате электронной таблицы MS Excel (*.xls), что упрощает ввод начальных данных, позволяет анализировать данные вне программного комплекса, а также передавать их для обработки в другие программные пакеты. В параметрах визуализации можно выбирать график, который следует выводить пользователю (теплообмен или массообмен), а также точки для добавления в график. Например, для ускорения работы программы можно добавлять в него не все рассчитанные точки, а лишь часть из них. Предусмотрена возможность усечения оси диаграммы для наглядности отображения графика. Изображения графиков можно сохранять в файлы как в формате изображения *.jpeg, так и в формате электронных документов *.pdf.

Проверка адекватности программного комплекса

Адекватность программного комплекса подтверждается экспериментами на лабораторной установке для проведения инкапсуляции методом нанесения покрытий в псевдоожиженном слое Hüttlin Mycrolab (Hüttlin GmbH). Процесс заключался в нанесении модельного вещества на частицы плацебо из микрокристаллической целлюлозы, не оказывающей какого-либо негативного воздействия на организм и применяющейся в фармацевтической и пищевой отраслях.

Была проведена серия исследований, включающая 33 эксперимента по нанесению полимерного кишечно-растворимого покрытия на частицы с модельным лекарственным веществом при различных условиях [3]. Для каждого эксперимента при помощи программного комплекса рассчитаны

50

45

-, 40 л

Q.

а. 35

и

30

25

20

0,5

Те

Те

Тем

пе

ра

тура тура

тура

воздух

ка

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

частиц

пель

1,5 2 2,5

Высота псевдоожиженного слоя, см

3,5

Рис. 3. Пример результата работы программы; расчет распределения температуры по высоте аппарата

0

1

3

4

следующие показатели: конечное влагосодержа-ние продукта, толщина полимерного покрытия на частицах, время проведения процесса, доля потерь наносимого полимерного состава (эффективность процесса). Кроме того, рассчитан коэффициент среднеквадратичного отклонения по показателю «эффективность процесса», который изменяется в диапазоне 0,02^0,10 для всех экспериментов, что подтверждает адекватность математической модели.

Программный комплекс позволяет визуализировать параметры проведения процесса и их изменение во времени или по высоте аппарата. На рисунке 3 представлен пример расчета температуры частиц, капель и воздуха по высоте аппарата на момент т=гкон/2.

Разработка новых проектных решений в процессах нанесения покрытий в настоящее время невозможна без всесторонних испытаний методом проб и ошибок, которые в большинстве случаев

требуют серьезных материальных затрат. Созданный программный комплекс станет весомым инструментом для специалистов-исследователей и технологов. Представленный комплекс позволяет значительно сократить этапы разработки и исследования, оценить параметры проведения процесса и качество получаемого продукта, подобрать полимерный состав для достижения требуемых целей.

Литература

1. Ronsse F., Pieters J.G., Dewettinck K. Numerical Spray Model of the Fluidized Bed Coating Process // Drying Technology. 2007. Vol. 25, pp. 1491-1514.

2. Голомидов Е.С., Маковская Ю.В. Информационный портал по технологии сушки // Успехи в химии и химической технологии: сб. науч. тр. М.: РХТУ им. Д.И. Менделеева, 2010. Т. XXIV. № 1 (106). С. 55-58.

3. Гордиенко М.Г. [и др.]. Исследование и оптимизация процесса инкапсуляции лекарственного вещества в полимерную оболочку в аппарате псевдоожиженного слоя // Вестн. МИТХТ. 2010. Т. 5. № 1. С. 93-97.

УДК 004.869:621.73.042

МУЛЬТИАГЕНТНЫЙ ГРАФИЧЕСКИЙ РЕДАКТОР

САПР КОВКИ

(Работа выполнена в рамках программы Президиума РАН №14 «Интеллектуальные информационные технологии, математическое моделирование, системный анализ и автоматизация» и гранта инновационных молодежных проектов УрО РАН)

О.Ю. Муйземнек,, к.т.н.; А.В. Коновалов, д.т.н.; П.Ю. Гагарин

(Институт машиноведения УрО РАН, г. Екатеринбург, avk@mach.uran.ru)

Графический редактор деталей и поковок в САПР ковки рассматривается как мультиагентная система. Определены основные агенты и их свойства. Описан ряд задач, решаемых агентами в процессе своей автономной работы. Показано преимущество агентно-ориентированного подхода по сравнению с объектно-ориентированным. Ключевые слова: САПР ковки, графический редактор, мультиагентная система.

Институтом машиноведения Уральского отделения РАН разработана и успешно внедрена на Уральском турбинном заводе (г. Екатеринбург) интеллектуальная САПР технологического процесса ковки ступенчатых валов САПР ВАЛ [1]. Основной графической составляющей данной системы является графический редактор, осуществляющий ввод исходной геометрической информации о детали и отображение спроектированной поковки, а также поддерживающий постоянный диалог с пользователем во избежание принятия им неправильных решений.

Несмотря на наличие на рынке стандартных графических редакторов, таких как AutoCAD и Компас, было принято решение разработать собственный специализированный графический редактор для конкретной предметно-ориентированной области [2]. Это позволило повысить

интеллектуальность редактора при решении графических задач, уменьшить объем программного кода системы и сделать графическое представление информации более дружественным.

Первоначально графический редактор разрабатывался в соответствии с принципами объектно-ориентированного программирования [3], согласно которым определены объекты - классы, их свойства и обработчики событий. Основными объектами редактора являются исходная деталь и поковка в процессе проектирования. Однако дальнейшее развитие графического редактора показало, что для повышения его интеллектуальности необходимо перейти к парадигме агентно-ориен-тированного подхода [4], при котором под агентом понимается единица модели, способная самостоятельно действовать, влиять на окружающую среду и общаться с другими агентами. Поведение

i Надоели баннеры? Вы всегда можете отключить рекламу.