Math-Net.Ru
В. П. Радченко, Е. А. Афанасьева, М. Н. Сауш-кин, Прогнозирование высокотемпературной реологической деформации и длительной прочности вязкопластического материала по образцу-лидеру, Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2023, номер 2, 292-308
001: 10.14498^^2001
Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением
http://www.mathnet.ru/rus/agreement
Параметры загрузки:
IP: 109.252.33.182
29 сентября 2024 г., 12:09:22
Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2023. Т. 27, № 2. С. 292-308 ISSN: 2310-7081 (online), 1991-8615 (print) d https://doi.org/10.14498/vsgtu2001
EDN: EPOTNP
УДК 519.248:531
Прогнозирование высокотемпературной реологической деформации и длительной прочности вязкопластического материала по образцу-лидеру
В. П. Радченко, Е. А. Афанасьева, М. Н. Саушкин
Самарский государственный технический университет,
Россия, 443100, Самара, ул. Молодогвардейская, 244.
Аннотация
Предложен и реализован метод прогнозирования ползучести и длительной прочности в условиях вязкого механизма разрушения. Вводится предположение, что у материала при нагружении отсутствуют мгновенно-пластическая деформация и первая стадия ползучести, выполняется гипотеза несжимаемости. В разработанном методе показано, что если для заранее испытанного образца (образец-лидер) известны кривая ползучести при постоянном напряжении и время до ее разрушения, то для получения диаграммы реологического деформирования и длительной прочности материала при других уровнях напряжений достаточно знать лишь начальную минимальную скорость деформации ползучести (в начальный момент времени) образцов для этих уровней напряжений.
Выполнена проверка адекватности разработанного метода экспериментальным данным для ряда сплавов в условиях растяжения и кручения образцов. Показано, что результаты прогнозирования не зависят от выбора образца-лидера из ряда образцов, испытанных при различных напряжениях.
Результаты исследования показывают, что с помощью разработанного метода возможно не только прогнозирование кривых ползучести и длительной прочности (в асимптотической постановке), но и оптимальное планирование экспериментальных исследований для получения серии стационарных кривых ползучести при постоянных напряжениях.
Механика деформируемого твердого тела Научная статья
© Коллектив авторов, 2023 © СамГТУ, 2023 (составление, дизайн, макет)
Q ©® Контент публикуется на условиях лицензии Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/deed.ru) Образец для цитирования
Радченко В. П., Афанасьева Е. А., Саушкин М. Н. Прогнозирование высокотемпературной реологической деформации и длительной прочности вязкопластического материала по образцу-лидеру // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2023. Т. 27, № 2. С. 292-308. EDN: EPOTNP. DOI: 10.14498/vsgtu2001. Сведения об авторах
Владимир Павлович Радченко © https://orcid.org/0000-0003-4168-9660 доктор физико-математических наук, профессор; заведующий кафедрой; каф. прикладной математики и информатики; e-mail: [email protected] Елена Андреевна Афанасьева А https://orcid.org/0000-0001-7815-2723 аспирант; каф. прикладной математики и информатики; e-mail: [email protected] Михаил Николаевич Саушкин © https://orcid.org/0000-0002-8260-2069 кандидат физико-математических наук, доцент; доцент; каф. прикладной математики и информатики; e-mail: [email protected]
Ключевые слова: прогнозирование, ползучесть, длительная прочность, вязкое разрушение, образец-лидер.
Получение: 1 марта 2023 г. / Исправление: 18 мая 2023 г. / Принятие: 25 мая 2023 г. / Публикация онлайн: 28 июня 2023 г.
Введение. Проблема прогнозирования неупругой деформации и длительной прочности материалов в условиях ползучести является одной из актуальных задач современного машиностроения при проектировании элементов конструкций, эксплуатируемых в условиях высоких температур, что отмечается в необозримом количестве монографий и публикаций, в частности в [1—13]. Одной из основных задач в области реологического деформирования является разработка феноменологических моделей поведения материалов — уравнений состояния ползучести и длительной прочности. Современное состояние данного научного направления изложено в монографии А. М. Ло-кощенко [7] и его обзоре с соавторами [14]. Феноменологические уравнения состояния реологического деформирования являются основой для решения соответствующих краевых задач, однако построение этих моделей является сложным и трудоемким процессом из-за реализации технически сложного эксперимента при высоких температурах и длительности испытаний. Поэтому на первый план выходит оптимизация экспериментальных исследований для получения кривых стационарной ползучести при постоянных напряжениях, являющихся основой для серии построенных реологических моделей материала.
Разнообразие свойств реологической деформации и характеристик длительной прочности (наличие трех стадий ползучести или их комбинаций меньшей размерности, обратимая деформация при полной разгрузке, существенный разброс деформации ползучести, различные механизмы деформирования и разрушения материала в зависимости от диапазонов изменения температуры и напряжений и другие эффекты) не позволяют построить универсальные теории ползучести и длительной прочности для всех возможных значений температур и напряжений. Более-менее достоверные результаты дают реологические модели, построенные в рамках одного механизма разрушения (вязкого, хрупкого или смешанного) с соответствующими ограничениями на диапазон изменения параметров температурно-силового нагружения.
В настоящей работе рассматривается построение модели ползучести и длительной прочности частного вида в рамках принятия гипотезы вязкого механизма разрушения, которая позволяет получить не только кривую ползучести, но и время до разрушения образцов при различных постоянных напряжениях по экспериментально известной информации о диаграмме деформирования некоторого одиночного образца-лидера (прототипа). Предполагается, что в рамках принятой гипотезы отсутствует упрочнение материала (на кривой деформирования при постоянном напряжении не наблюдается первая стадия ползучести).
1. Метод прогнозирования ползучести и длительной прочности по образцу-лидеру. Метод базируется на возможности по установленным параметрам длительной прочности определять параметры установившейся
ползучести (и наоборот) на основе феноменологической зависимости
(;Pmin)fc t* = a, (1)
где pmin — скорость установившейся ползучести, t* — время до разрушения, к и а — параметры материала (в частном случае к = 1).
Соотношение (1) получено на основе обработки экспериментальных данных для различных материалов [17-20]. Однако оно может быть получено и теоретически из схемы вязкого разрушения. Для этого случая вводятся следующие гипотезы:
- разрушение образца происходит при большом удлинении и сопровождается появлением шейки;
- у материала отсутствует первая стадия ползучести;
- в момент нагружения пренебрегаем мгновенно-упругой и пластической деформацией;
- деформация ползучести по длине образца является однородной вплоть до образования шейки;
- выполняется гипотеза несжимаемости материала.
Исходя из этих гипотез в [2] получена связь между номинальным сто = Q/Fq и истинным ст = Q/F напряжениями вида
a(t) = ст0 exp[p(i)j,
где F и Fo — текущая и первоначальная площади поперечного сечения цилиндрического образца, Q = const — приложенная к образцу нагрузка, р = p(t) — деформация ползучести. Исходя из степенной зависимости для скорости деформации ползучести
р = астп,
а и п — постоянные величины, в [2] получены следующие зависимости:
^ = (1 - antCT%)-1/n, p(t) = -~ ln |1 - antCT%l (2)
Сто n
Из (2) следует, что зависимость р = p(t) имеет вертикальную асимптоту. На заключительной стадии деформирования в некоторой точке кривой ползучести при сто = const образуется шейка, и время разрушения t = t* можно определить, полагая ст(£*) = ж, а значит, и p(t*) = те. Тогда из (2) имеем
t* (сто) = . (3)
апст$
Учитывая, что аст$ —значение мгновенной (и минимальной) скорости установившейся ползучести в начальный момент времени (t = 0), т.е. аст$ = = й)(сто) = pmin, из (3) находим зависимость
Jpmint = П ,
которая является частным случаем (1) при к = 1. Из (3) следует, что при ст = const эта зависимость описывает диаграмму длительной прочности.
Зависимости (2) и (3) получены в предположении реализации схемы вязкого разрушения в «чистом» виде. В этом случае увеличение истинного напряжения связано лишь с геометрическим уменьшением площади поперечного сечения образца в соответствии с гипотезой несжимаемости материала. Однако при вязком механизме разрушения наблюдается внутризеренное накопление повреждений, которое приводит к дополнительному снижению эффективной площади поперечного сечения, воспринимающего нагрузку. В связи с этим Г. Ф. Лепиным [6] для учета поврежденности была предложена экспериментально обоснованная связь истинного а и номинального ао напряжений в виде
а = ао ехр(вр), (4)
где в ^ 1 — феноменологический параметр, значение которого для некоторых материалов может достигать величины нескольких десятков. Из (3) с учетом (4) получаем зависимости
р(г) = -11п(1 - анв^), (5)
** Ы = , (6)
апзаО;
которые в дальнейшем будем использовать для теоретического обоснования разработанного метода прогнозирования по изделию-лидеру.
Предположим, что экспериментально получена кривая деформирования материала вплоть до момента разрушения для образца-лидера при номинальном напряжении ао. Перепишем (6) в виде
1 (а°) ш'ро((7о), (7)
где ро(&о) = а&о —начальная минимальная скорость установившейся ползучести для образца-лидера. Пусть теперь испытывается исследуемый образец при номинальном напряжении а\ и зафиксирована его начальная скорость р0(&1) = аа™. Тогда, записывая для этого образца соотношение аналогично (7), для времени разрушения Ь1(а1) получаем
««) = г Ы (8)
Таким образом, если известны начальная скорость ползучести ро(&о) образца-лидера и время его разрушения, а также начальная скорость исследуемого образца при напряжении а1 любой реализации р0 (^1), то время разрушения исследуемого образца можно получить на основании (8).
Покажем, что можно прогнозировать и кривую деформации исследуемого образца при любом напряжении по известной кривой ползучести образца-лидера. Для этого в соотношении (5) необходимо найти зависимость времени от деформации и напряжения:
1 _ е-пвр 1 _ е-пвр
*(Р, ао) =-— =-. (9)
апваЦ шр0(а0)
Аналогичная зависимость для номинального напряжения и\ исследуемого образца имеет вид
= • (10)
Тогда из (9) и (10) для времени достижения обеими реализациями при напряжениях сто (для образца-лидера) и ст1 (для исследуемого образца) одного и того же значения деформации ползучести р получаем
1(р,аг)= 1(р,ао) ^^ • (11)
Таким образом, из (11) следует, что кривая ползучести исследуемого образца при номинальном напряжении Ст1 может быть получена с помощью преобразования подобия из кривой ползучести образца-лидера при номинальном напряжении сто с коэффициентом подобия, равным отношению начальных скоростей деформации образца-лидера и исследуемого образца р0(ст0)/,[)0(ст1).
2. Проверка адекватности моделей прогнозирования ползучести и длительной прочности материала экспериментальным данным.
Для проверки адекватности разработанного метода использовались экспериментальные данные из независимых источников.
2.1. В работе [8] представлена экспериментальная информация по ползучести и длительной прочности коррозионно-стойкого сплава 12Х18Н10Т при температуре 850 С. На рис. 1 сплошными линиями приведены экспериментальные кривые ползучести для четырех уровней напряжения сто = = {40, 50, 60, 80} МПа, осредненные по 6, 7, 6 и 2 реализациям соответственно. Для иллюстрации разработанного метода в качестве образца-лидера использовалась реализация при сто = 40 МПа (кривая 1). В табл. 1 приведены экспериментальные [8] значения для начальной скорости установившейся ползучести ро(сто) и времени до разрушения для всех четырех уровней номинального напряжения сто. С использованием этих экспериментальных значений по формуле (8) получены значения времени до разрушения ¿2 по разработанной методике (см. табл. 1). Для сравнения в табл. 1 приведены расчетные значения времени до разрушения ¿3 по модели авторов [8].
.0.10
« 0.05
20 30 40 Time, t (hrs)
Рис. 1. Экспериментальные (сплошные линии) [8] и расчетные (штриховые линии) кривые ползучести коррозионно-стойкого сплава 12Х18Н10Т при температуре 850 °С, построенные по образцу-лидеру (линия 1); маркеры (номинальные напряжения): 1 — 40 МПа; 2 — 50 МПа; 3 — 60 МПа; 4 — 80 МПа
[Figure. 1. Experimental (solid lines) [8] and calculated (dashed lines) creep curves of the corrosion-resistant 12Kh18N10T alloy at a temperature of 850 C constructedbased on the leader sample (line 1); markers (nominal stresses): 1 — 40 MPa; 2 — 50 MPa; 3 — 60 MPa; 4 — 80 MPa]
a
Таблица 1
Значения длительной прочности сплава 12Х18Н10Т при температуре 850 С
[Values of the long-term strength of the 12Kh18N10T alloy at a temperature of 850 °C]
Сто, MPa Experimental data [8] Calculated data
ро(сто), h 1 il, h il, h il, h Д2, % Дз, %
40 50 60 80 0.00082 0.0019 0.0030 0.0077 54.0 23.5 15.4 6.0 54.0 23.3 14.8 5.75 51.0 25.2 14.1 5.7 0.85 3.9 4.2 5.6 7.2 8.4 5.0
В двух последних столбцах табл. 1 приведены значения относительных погрешностей Д2 и Д3 (%), вычисленных по формуле
А.
t* -11
t*
• 100%, i = 2,3 (12)
для моделей (12) и модели авторов [8] соответственно. Согласно этим данным, погрешность вычисления времени до разрушения по модели (8) для стационарных кривых ползучести меньше, чем по более сложной модели [8].
На рис. 1 штриховыми линиями показаны расчетные зависимости для деформации ползучести, полученные на основании (11), при этом использовались лишь экспериментальные данные для образца-лидера (линия 1) и начальные скорости деформации ползучести для остальных реализаций (линии 2-4).
2.2. В работе [16] приведены экспериментальные данные по деформации ползучести титанового сплава при температуре 600 С (представлены на рис. 2 сплошными линиями). По ним определялись начальные скорости деформации ползучести ро (ао) и время до разрушения ¿*, значения которых приведены в табл. 2. С целью вариативности разработанного подхода для одних и тех же экспериментальных данных использовались различные реализации в качестве образца-лидера: на рис. 2, а в качестве образца-лидера использовался образец 3, а на рис. 2, Ь — образец 1. На рис. 2 штриховыми линиями пока-
Time, t (hrs) Time, t (hrs)
a b
Рис. 2. Экспериментальные (сплошные линии) [16] и расчетные (штриховые линии) кривые ползучести титанового сплава при температуре 600 °С, построенные по образцу-лидеру 3 (a) и образцу-лидеру 1 (b); маркеры (номинальные напряжения): 1 — 300 МПа; 2 —350 МПа;
3 — 400 МПа
[Figure. 2. Experimental (solid lines) [16] and calculated (dashed lines) creep curves of a titanium alloy at a temperature of 600 С constructed based on the leader sample 3 (a) and the leader sample 1 (b); markers (nominal stresses): 1 — 300 MPa; 2 — 350 MPa; 3 — 400 MPa]
Таблица 2
Значения длительной прочности титанового сплава при температуре 600 С [Values of the long-term strength of titanium alloy at a temperature of 600 С]
Сто, MPa Ро(сто), h 1 il, h the leader sample 3 the leader sample 1
il, h Д2, % il, h Д2, %
300 0.00059 107 109.2 2.1 107 —
350 0.0012 55 53.7 2.4 52.6 4.4
400 0.0023 28 28 - 27.4 2.1
заны расчетные зависимости для деформации ползучести по формуле (11), а в табл. 2 приведены расчетные значения времени разрушения ¿2 по (8) и погрешности Д2 величины ¿2 относительно экспериментального значения t* в соответствии с (12). Из представленных на рис. 2 и в табл. 2 данных следует, что результаты расчетов по (8) и (11) практически не зависят от выбора образца-лидера.
2.3. Применим разработанный подход к экспериментальным данным [9] по ползучести для образцов при одноосном растяжении (рис. 3, a) и кручении (рис. 3, b). В работе [9] диаграммы деформирования представлены в координатах «время - удельная работа напряжений на деформациях», т.е. по оси
абсцисс на рис. 3 приведены значения работы A(t) = / ст^-dpij. Поэтому фор-
J о
мальное применение основных расчетных соотношений (8) и (11) в данном случае сводится к замене начальных скоростей деформации ро на начальные значения скорости А® (фактически — удельной мощности) в начальный момент времени (t = 0). В качестве образца-лидера в данном случае рассматривается реализация при номинальном напряжении сто = 70 МПа (линия 4 на рис. 3, a).
С использованием экспериментальных данных, представленных на рис. 3, вычислены начальные скорости Âо для обоих видов нагружения, значения
ю
1 » ■ « ■ 1 ■ 1 • •з 2 • • ;. 4 .
■ 1 -i 1 • ' • •
•1 >• 1 > p s '. . • • • . • • • • • •
ю
5,5
200 400
Time, t (his]
200 400
Time, t (hrs)
b
Рис. 3. Экспериментальные (точки) [9] и расчетные (штриховые линии) диаграммы для удельной работы напряжений на деформациях ползучести сплава Д16Т при температуре 250°С, построенные по образцу-лидеру (линия 4) в условиях одноосного растяжения (а) и кручения (b); маркеры (номинальные напряжения): 1 — 100 МПа; 2 — 90 МПа; 3 — 80 МПа;
4 — 70 МПа 5 —46.2 МПа; 6 — 40.5 МПа; 7 —37.0 МПа; 4 — 34.6 МПа [Figure. 3. Experimental (points) [9] and calculated (dashed lines) diagrams for specific work of stresses on creep deformations of D16T alloy at a temperature of 250 С constructed based on the leader sample (line 4) under conditions of uniaxial tension (a) and torsion (b); markers (nominal stresses): 1 — 100 MPa; 2 — 90 MPa; 3 — 80 MPa; 4 — 70 MPa; 5 — 46.2 MPa; 6 —
40.5 MPa; 7 — 37.0 MPa; 8 — 34.6 MPa]
a
Таблица 3
Значения длительной прочности сплава Д16Т при температуре 250 С [Values of the long-term strength of D16T alloy at a temperature of 250 С]
Uniaxial tension
Сто, MPa А о, (N/mm2) • h t\, h i*, h Д2, %
70 1.65 • 10-3 719 719 -
80 3.78 • 10-3 345 314 9.0
90 6.74 • 10-3 195 176 9.7
100 1.21 • 10-2 107 98 8.4
Torsion
то, MPa Ао, (N/mm2) • h t*, h i*, h Д2, %
34.6 1.62 • 10-3 730 732.3 0.3
37.0 2.7 • 10-3 487 439.4 9.8
40.5 4.3 • 10-3 293 276 5.8
46.2 9.46 • 10-3 150 125.4 16.4
которых приведены в табл. 3. Расчетные значения времени разрушения по (8) с соответствующей заменой ро (для случая растяжения) и то (для случая сжатия) на Ао даны для всех вариантов при различных постоянных значениях номинальных растягивающих и касательных напряжений в табл. 3. Здесь же представлены и относительные погрешности Д£2 (%) отклонения расчетных данных ¿2 от экспериментальных ¿1. Штриховыми линиями на рис. 3 показаны расчетные диаграммы для работы А = полученные с использованием (11).
Из приведенного примера следует, что прогнозирование по одному образцу-лидеру возможно и для разных видов напряженного состояния. В целом здесь наблюдается хорошее соответствие расчетных и экспериментальных данных как для длительной прочности, так и для диаграмм деформирования.
2.4. В работе [9] приведены экспериментальные диаграммы деформирования титанового сплава ВТ-9 при температуре 600 С, представленные на рис. 4. В качестве образцов-лидеров рассматриваются реализации при номинальных напряжениях ао = 250 МПа (линия 3 на рис. 4, а) и ао = 450 МПа (линия 1 на рис. 4, Ь).
С использованием экспериментальных данных, представленных на рис. 4, вычислены начальные скорости Ао, значения которых приведены в табл. 4. Расчетные значения времени разрушения V* по (8) с соответствующей заменой ро на Ао даны для всех вариантов в табл. 4. Здесь же представлены и относительные погрешности Д£2 (%) отклонения расчетных данных ¿2 от экспериментальных Штриховыми линиями на рис. 4 показаны расчетные диаграммы для работы А = полученные с использованием (11).
Как следует из приведенного примера, прогнозирование по одному образцу-лидеру возможно и для разных видов напряженного состояния. В целом здесь наблюдается хорошее соответствие расчетных и экспериментальных данных как для длительной прочности, так и для диаграмм деформирования.
2.5. Рассмотрим теперь диаграммы испытаний на ползучесть для сплава ОТ-4 при температуре 550С [9], представленные на рис. 5. В табл. 5 приве-
дены расчетные значения времени разрушения ¿2 по (8) и погрешности Д2 величины ¿2 относительно экспериментального значения ¿1 в соответствии с (12). Из приведенных данных следует, что результаты расчетов по (8) и (11) практически не зависят от выбора образца-лидера.
2.6. Рассмотрим экспериментальные данные [9], представленные в виде диаграмм деформирования титанового сплава ВТ-5 при температурах 450 С и 550 С на рис. 6.
С использованием экспериментальных данных, представленных на рис. 6, вычислены начальные скорости Ао, значения которых приведены в табл. 6. Расчетные значения времени разрушения по (8) с соответствующей заменой ро на Ао даны для всех вариантов в табл. 6. Здесь же представлены и относительные погрешности Д£2 (%) отклонения расчетных данных от экспериментальных ¿1. Для сравнения в табл. 6 приведены расчетные значения времени до разрушения ¿3 по модели, предложенной в [9], и относительные погрешности Д£з (%) отклонения расчетных данных от экспериментальных ¿1. Штриховыми линиями на рис. 6 показаны расчетные диаграммы для работы А = А(£), полученные с использованием (11).
2.7. Рассмотрим диаграммы испытаний на ползучесть сплава 09Г2С [21], представленные на рис. 7-9. По диаграммам определялись начальные скорости деформации ползучести ро (сто) и время до разрушения ¿1, значения которых приведены в табл. 7. С целью вариативности разработанного подхода для одних и тех же экспериментальных данных использовались различные реализации в качестве образца-лидера: на рис. 7, а, 8, а и 9, а в качестве образца-лидера использовался образец 1, а на рис. 7, Ь, 8, Ь и 9, Ь — образец 2. На рис. 7-9 штриховыми линиями показаны расчетные зависимости для деформации ползучести по формуле (1), а в табл. 7 приведены расчетные значения времени разрушения по (8) и погрешности Д2 величины ¿2 относительно экспериментального значения в соответствии с (12). Из представленных на рис. 7-9 и в табл. 7 данных следует, что результаты расчетов по (8) и (11) также практически не зависят от выбора образца-лидера.
Заключение. Таким образом, разработан метод прогнозирования кривых стационарной ползучести и времени разрушения материала для исследуемых образцов по начальной (минимальной) скорости ползучести на начальном участке деформирования исследуемых образцов и известной кривой ползучести образца-лидера в условиях механизма вязкого разрушения. Проведена проверка адекватности моделей на экспериментальных данных из независимых источников в широком диапазоне материалов и параметров температурно-силового нагружения.
Коснемся прикладных вопросов применимости полученных в работе результатов к планированию экспериментальных исследований по получению информации о стационарных кривых ползучести. Строго говоря, все результаты данной статьи применимы лишь в рамках реологического вязкопла-стического деформирования материала (гипотеза вязкого разрушения) при выполнении сформулированных выше ограничений. Одним из «диагностических» признаков можно считать отсутствие первой стадии ползучести. Тогда, если имеется экспериментальная кривая ползучести образца-лидера (при известном номинальном значении напряжения сто), то, измерив начальную скорость деформации ползучести конкретного исследуемого образца при другом
250
•
Jr V 3 •
i r i .
• i i r •
1 / •
» 4 •
t / •
1 * •
f / •
/ г • •
* » . •
i / . •
f. • _
250
10
Time, t (hrs)
20
10 20 Time, t (hrs)
b
Рис. 4. Экспериментальные (точки) [9] и расчетные (штриховые линии) диаграммы для удельной работы напряжений на деформациях ползучести сплава ВТ-9 при температуре 600 °С, построенные по образцу-лидеру 3 (а) и образцу-лидеру 1 (b); маркеры (номинальные напряжения): 1 —450 МПа; 2 —350 МПа; 3 — 250 МПа
[Figure. 4. Experimental (points) [9] and calculated (dashed lines) diagrams for specific work of stresses on creep deformations of VT-9 alloy at a temperature of 600 С constructed based on the leader sample 3 (a) and the leader sample 1 (b); markers (nominal stresses): 1 — 450 MPa;
2 — 350 MPa; 3 — 250 MPa]
a
100
1 • 2 • • 3: -
i ' 1 1 1 J IS » ^ . / . • • •
300 600
Time, t (hrs)
300 Time, t (hrs)
b
600
Рис. 5. Экспериментальные (точки) [9] и расчетные (штриховые линии) диаграммы для удельной работы напряжений на деформациях ползучести сплава ОТ-4 при температуре 550С, построенные по образцу-лидеру 3 (а) и по образцу-лидеру 4 (b); маркеры (номинальные напряжения): 1 — 80 МПа; 2 —60 МПа; 3 —50 МПа; 4 — 40 МПа
[Figure. 5. Experimental (points) [9] and calculated (dashed lines) diagrams for specific work of stresses on creep deformations of OT-4 alloy at a temperature of 550С constructed based on the leader sample 3 (a) and the leader sample 4 (b); markers (nominal stresses): 1 — 80 MPa;
2 — 60 MPa; 3 — 50 MPa; 3 — 40 MPa]
a
Таблица 4
Значения длительной прочности сплава ВТ-9 при температуре 600 С [Values of the long-term strength of VT-9 alloy at a temperature of 600 С]
ao, MPa Ao, (N/mm2) • h t\, h the leader sample 3 the leader sample 1
i|, h Д2, % i|, h Д2, %
250 3.07 21.7 22.8 5.1 21.7 -
350 9.11 7.6 7.7 1.3 7.3 3.95
450 34.2 2.05 2.05 - 1.95 4.88
160
ё,80
л j 3i t 2 1. ' « 1 4 . • •
* >f J
J ' i 1 t •/ • •
• •
100
50
300 600
Time, t (hrs)
• 6
5," • 1 7
b 1 • 1 •
k 1
» / •
I У •V, t • / . • • • • •
150
Time, t (hrs) b
450
Рис. 6. Экспериментальные (точки) [9] и расчетные (штриховые линии) диаграммы для удельной работы напряжений на деформациях ползучести сплава ВТ-5 при температуре 450°С, построенные по образцу-лидеру 4 (а), и при температуре 550°С, построенные по образцу-лидеру 7 (b); маркеры (номинальные напряжения): 1 — 370 МПа; 2 — 350 МПа;
3 — 330 МПа; 4 — 300 МПа; 5 —150 МПа; 6 —130 МПа; 7 —110 МПа [Figure. 6. Experimental (points) [9] and calculated (dashed lines) diagrams for specific work of stresses on creep deformations of VT-5 alloy at a temperature of 450 С constructed based on the leader sample 4 (a) and at a temperature of 550С on the leader sample 7 (b); markers (nominal stresses): 1 — 370 MPa; 2 — 350 MPa; 3 — 330 MPa; 4 — 300 MPa; 5 — 150 MPa;
6 — 130 MPa; 7 — 110 MPa]
a
Таблица 5
Значения длительной прочности сплава ОТ-4 при температуре 550 С [Values of the long-term strength of the OT-4 alloy at a temperature of 550 С]
Сто, MPa Ао, MPa • h t{, h the leader sample 3 the leader sample 4
t**, h Д2, % t**, h Д2, %
40 0.0189 608.3 601.5 1.12 608.3 —
50 0.0283 401.7 401.7 - 406.2 1.12
60 0.099 116.7 114.8 1.6 116.1 0.51
80 0.23 50 49.4 1.2 50 0
Таблица 6
Значения длительной прочности сплава ВТ-5 при различных температурах
[Values of the long-term strength of VT-5 alloy at various temperatures]
T, С сто, MPa А о, (N/mm2) • h t*, h i*, h Д2, % is, h Дз, %
450 300 0.05 785 785 — 777 1.02
450 330 0.13 296 302 2.03 335 13.17
450 350 0.187 225 210 6.67 192 14.67
450 370 0.33 123 119 3.25 123 —
550 110 0.06 460 460 — 471 2.39
550 130 0.14 182 197 8.24 229 25.82
550 150 0.27 110 102 7.27 104 5.45
0123401234 Time, 4 (hrs) Time, t (hrs)
a b
Рис. 7. Экспериментальные (точки) [21] и расчетные (штриховые линии) кривые ползучести сплава 09Г2С при температуре 700 °С, построенные по образцу-лидеру 1 (а) и по образцу-лидеру 2 (b); маркеры (номинальные напряжения): 1 — 69.67 МПа; 2 — 58.86 МПа
[Figure. 7. Experimental (points) [21] and calculated (dashed lines) diagrams for specific work of stresses on creep deformations of 09G2S alloy at a temperature of 700С constructed based on the leader sample a (a) and the leader sample 2 (b); markers (nominal stresses): 1 — 69.67 MPa;
2 — 58.86 MPa]
0.6
I
0.4
1 4 /
• • *
• • .........v •.........
..............•.............. • ^
0.6
I
0.4
f 1 1 2 •
•> f /
t • ...............•............ •
у . • '
Time, t (his) ~ Time, t (hrs)
ab Рис. 8. Экспериментальные (точки) [21] и расчетные (штриховые линии) кривые ползучести сплава 09Г2С при температуре 730С, построенные по образцу-лидеру 1 (а) и по образцу-лидеру 2 (b); маркеры (номинальные напряжения): 1 — 58.86 МПа; 2 — 49.05 МПа
[Figure. 8. Experimental (points) [21] and calculated (dashed lines) diagrams for specific work of stresses on creep deformations of 09G2S alloy at a temperature of 730C constructed based on the leader sample a (a) and the leader sample 2 (b); markers (nominal stresses): 1 — 58.86 MPa;
2 — 49.05 MPa]
0.6
Г 0.2
Time, t (hrs)
a
1 . 2w
• • / ..............V
.......................• • • **
• • 4
0.8
i^m-1-;-;-
0 1 2 3 4 S
Time, t (hrs)
b
Рис. 9. Экспериментальные (точки) [21] и расчетные (штриховые линии) кривые ползучести сплава 09Г2С при температуре 750С, построенные по образцу-лидеру 1 (а) и по образцу-лидеру 2 (b); маркеры (номинальные напряжения): 1 — 49.05 МПа; 2 — 38.24 МПа
[Figure. 9. Experimental (points) [21] and calculated (dashed lines) diagrams for specific work of stresses on creep deformations of 09G2S alloy at a temperature of 750 С constructed based on the leader sample a (a) and the leader sample 2 (b); markers (nominal stresses): 1 — 49.05 MPa;
2 — 38.24 MPa]
Таблица 7
Значения длительной прочности сплава 09Г2С при различных температурах [Values of the long-term strength of the 09G2S alloy at various temperatures]
T, c сто, MPa А о, MPa • h t\, h the leader sample 1 the leader sample 2
t*2, h Д2, % t2, h Д2, %
700 69.67 0.075 2.61 2.61 — 2.57 1.5
700 58.86 0.053 3.64 3.69 1.37 3.64 -
730 58.86 0.195 1.14 1.14 - 1.13 0.88
730 49.05 0.070 3.14 3.18 1.27 3.14 -
750 49.05 0.088 1.64 1.64 - 1.63 0.61
750 39.24 0.030 4.79 4.81 0.42 4.79 -
значении напряжения, можно спрогнозировать и кривую ползучести, и время до его разрушения. Эта информация позволяет оптимальным образом планировать «загрузку» испытательного оборудования, что важно в силу длительности и технической сложности экспериментальных исследований в области высокотемпературной ползучести.
Конкурирующие интересы. Конфликта интересов в отношении авторства и публикации этой статьи нет.
Авторский вклад и ответственность. Все авторы принимали участие в разработке концепции статьи и в написании рукописи. Авторы несут полную ответственность за предоставление окончательной рукописи в печать. Окончательная версия рукописи была одобрена всеми авторами.
Финансирование. Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации (тема № FSSE-2023-0003) в рамках государственного задания Самарского государственного технического университета.
Библиографический список
1. Качанов Л. М. Теория ползучести. М.: Физматлит, 1960. 455 с.
2. Работнов Ю. Н. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.
3. Гольденблат И. И., Баженов В. Л., Копнов В. А. Длительная прочность в машиностроении. М.: Машиностроение, 1977. 246 с.
4. Никитенко А. Ф. Ползучесть и длительная прочность металлических материалов. Новосибирск: НГАСУ, 1997. 278 с.
5. Радченко В. П., Еремин Ю. А. Реологическое деформирование и разрушение материалов и элементов конструкций. М.: Машиностроение-1, 2004. 264 с. EDN: QNATSX.
6. Лепин Г. Ф. Ползучесть металлов и критерии жаропрочности. М.: Металлургия, 1976. 344 с.
7. Локощенко А. М. Ползучесть и длительная прочность металлов. М.: Физматлит, 2016. 489 с.
8. Закономерности ползучести и длительной прочности / ред. C. А. Шестериков. М.: Машиностроение, 1983. 102 с.
9. Соснин О. В., Горев Б. В., Никитенко А. Ф. Энергетический вариант теории ползучести. Новосибирск: ИГиЛ СО РАН, 1986. 95 с.
10. Loktionov V., Lyubashevskaya I., Terentyev E. The regularities of creep deformation and failure of the VVER's pressure vessel steel 15Kh2NMFA-A in air and argon at temperature range 500-900°C// Nucl. Mat. Energy, 2021. vol.28, 101019. EDN: YNXXTF. DOI:https:// doi.org/10.1016/j.nme.2021.101019.
11. Loktionov V., Lyubashevskaya I., Sosnin O., Terentyev E. Short-term strength properties and features of high-temperature deformation of VVER reactor pressure vessel steel 15Kh2NMFA-A within the temperature range 20-1200 °C // Nucl. Eng. Des., 2019. vol. 352, 110188. EDN: LATTSR. DOI: https://doi.org/10.1016/j.nucengdes.2019.110188.
12. Банщикова И. А., Никитенко А.Ф. Ползучесть осесимметрично нагруженных пластин с учетом накопления повреждений в их материале // ПМТФ, 2006. Т. 47, №5. С. 157-168. EDN: NXKWMT.
13. Никитенко А. Ф., Любашевская И. В. Долговечность сосудов высокого давления // ПМТФ, 2007. Т. 48, №5. С. 173-182. EDN: ONMFXH.
14. Локощенко А. М., Фомин Л. В., Терауд В. В., Басалов Ю. Г., Агабабян В. С. Ползучесть и длительная прочность металлов при нестационарных сложных напряженных состояниях (обзор) // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки, 2020. Т. 24, №2. С. 275-318. EDN: OQCCVC. DOI: https://doi.org/10.14498/vsgtu1765.
15. Robinson E. L. Effect of temperature variation on the long-time rupture strength of steels // Trans. ASME, 1952. vol. 74, no. 5. pp. 777-780. DOI: https://doi.org/10.1115/1.4015916.
16. Omprakash C. M., Kumar A., Srivathsa B., Satyanarayana D. V. V. Prediction of creep curves of high temperature alloys using ^-projection concept // Procedia Engineering, 2013. vol.55. pp. 756-759. DOI: https://doi.org/10.1016/j.proeng.2013.03.327.
17. Lundin C. D., Aronson A. H., Jackman L. A., Clough W. R. Very-short-time, very-high-temperature creep rupture of type 347 stainless steel and correlation of data // J. Basic Eng., 1969. vol.91, no. 1. pp. 32-38. DOI: https://doi.org/10.1115/1.3571023.
18. Hoff N. J. The necking and the rupture of rods subjected to constant tensile loads // J. Appl. Mech., 1953. vol.20, no. 1. pp. 105-108. DOI: https://doi.org/10.1115/1.4010601.
19. Можаровская Т. Н. О зависимости времени до разрушения при длительном нагруже-нии в условиях плоского напряженного состояния от минимальной скорости деформаций ползучести// Пробл. прочн, 1982. №12. С. 51-54.
20. Волков И. А., Коротких Ю. Г. Уравнения состояния вязкоупругопластических сред с повреждениями. М.: Физматлит, 2008. 424 с. EDN: RYRTNT.
21. Бойко С.В. Моделирование формообразования элементов конструкций в условиях нестационарной ползучести: Дис. .. . канд. физ.-мат. наук: 01.02.04. Новосибирск: ИГиЛ СО РАН, 2020. 133 с.
Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki
[J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2023, vol. 27, no. 2, pp. 292-308 ISSN: 2310-7081 (online), 1991-8615 (print) d https://doi.org/10.14498/vsgtu2001
MSC: 74S60
Predicting high-temperature rheological deformation and long-term strength of a viscoplastic material using a leader sample
V. P. Radchenko, E. A. Afanaseva, M. N. Saushkin
Samara State Technical University,
244, Molodogvardeyskaya st., Samara, 443100, Russian Federation.
Abstract
A method for predicting creep and long-term strength in conditions of viscous failure mechanism has been proposed and implemented. It is assumed that when the material is loaded, there is no instant plastic deformation or the first stage of creep, and the hypothesis of incompressibility is satisfied. In the developed method, it is shown that if the creep curve under constant stress and the time to failure are known for a pre-tested sample (leader sample), then to obtain the rheological deformation diagram and long-term strength of the material at other stress levels, it is sufficient to know only the initial minimum creep deformation rate (at the initial moment of time) for the samples at these stress levels.
The adequacy of the developed method to experimental data for a range of alloys under conditions of tension and torsion of samples has been tested. It has been shown that the prediction results do not depend on the choice of a leader sample from the series of samples tested at different stress levels.
The research results demonstrate that the developed method allows not only predicting creep curves and long-term strength (in the asymptotic formulation), but also optimizing the planning of experimental studies to obtain a series of steady-state creep curves under constant stresses.
Mechanics of Solids Research Article
© Authors, 2023
© Samara State Technical University, 2023 (Compilation, Design, and Layout) 3 ©® The content is published under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) Please cite this article in press as:
Radchenko V. P., Afanaseva E. A., Saushkin M. N. Predicting high-temperature rhe-ological deformation and long-term strength of a viscoplastic material using a leader sample, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2023, vol. 27, no. 2, pp. 292-308. EDN: EPOTNP. DOI: 10.14498/vsgtu2001 (In Russian).
Authors' Details:
Vladimir P. Radchenko © https://orcid.org/0000-0003-4168-9660
Dr. Phys. & Math. Sci., Professor; Head of Dept; Dept. of Applied Mathematics & Computer Science; e-mail: [email protected]
Elena A. Afanaseva https://orcid.org/0000-0001-7815-2723 Postgraduate Student; Dept. of Applied Mathematics & Computer Science; e-mail: [email protected]
Mikhail N. Saushkin © https://orcid.org/0000-0002-8260-2069
Cand. Phys. & Math. Sci.; Associate Professor; Dept. of Applied Mathematics & Computer Science; e-mail: [email protected]
Keywords: prediction, creep, long-term strength, viscous fracture, leader sample.
Received: 1st March, 2023 / Revised: 18th May, 2023 / Accepted: 25th May, 2023 / First online: 28th June, 2023
Competing interests. We do not have any conflict of interest regarding the authorship and publication of this article.
Authors' contributions and responsibilities. All authors participated in the development of the article's concept and in writing the manuscript. Authors bear full responsibility for submitting the final manuscript for publication. The final version of the manuscript was approved by all authors.
Funding. This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FSSE-2023-000) under the state order of the Samara State Technical University.
References
1. Kachanov L. M. Teoriia polzuchesti [Creep Theory]. Moscow, Fizmatlit, 1960, 455 pp. (In Russian)
2. Rabotnov Yu. N. Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, vol. 7. Amsterdam, London, North-Holland Publ., 1969, xiv+822 pp.
3. Gol'denblat I. I., Bazhenov V. L., Kopnov V. A. Dlitel'naia prochnost' v mashinostroenii [Long-Term Strength in Machine Building]. Moscow, Mashinostroenie, 1977, 246 pp. (In Russian)
4. Nikitenko A. F. Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metallic Materials]. Novosibirsk, NGASU, 1997, 278 pp. (In Russian)
5. Radchenko V. P., Eremin Yu. A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological Deformation and Fracture of Materials and Structural Elements]. Moscow, Mashinostroenie-1, 2004, 264 pp. (In Russian). EDN: QNATSX
6. Lepin G. F. Polzuchest' metallov i kriterii zharoprochnosti [Creep of Metals and Heat-Resistance Criteria]. Moscow, Metallurgiya, 1976, 344 pp. (In Russian)
7. Lokoshchenko A. M. Creep and Long-Term Strength of Metals. Boca, Raton, CRC Press, 2018, xviii+545 pp. EDN: YKQNZJ. DOI: https://doi.org/10.1201/b22242.
8. Zakonomernosti polzuchesti i dlitel'noi prochnosti [Regularities of Creep and Long-Term Strength], ed. S. A. Shesterikov. Moscow, Mashinostroenie, 1983, 102 pp. (In Russian)
9. Sosnin O. V., Gorev B. V. Nikitenko A. F. Energeticheskii variant teorii polzuchesti [Enegry Variant of Theory of Creep]. Novosibirsk, Lavrentyev Institute of Hydrodynamics, 1986, 95 pp. (In Russian)
10. Loktionov V., Lyubashevskaya I., Terentyev E. The regularities of creep deformation and failure of the VVER's pressure vessel steel 15Kh2NMFA-A in air and argon at temperature range 500-900°C, Nucl. Mat. Energy, 2021, vol.28, 101019. EDN: YNXXTF. DOI:https:// doi.org/10.1016/j.nme.2021.101019.
11. Loktionov V., Lyubashevskaya I., Sosnin O., Terentyev E. Short-term strength properties and features of high-temperature deformation of VVER reactor pressure vessel steel 15Kh2NMFA-A within the temperature range 20-1200°C, Nucl. Eng. Des., 2019, vol.352, 110188. EDN: LATTSR. DOI: https://doi.org/10.1016/j.nucengdes.2019.110188.
12. Banshchikova I. A., Nikitenko A. F. Creep of axisymmetrically loaded plates with allowance for damage accumulation in their material, J. Appl. Mech. Tech. Phys., 2006, vol.47, no. 5, pp. 747-756. EDN: KGLJUZ. DOI: https://doi.org/10.1007/s10808-006-0111-3.
13. Nikitenko A. F., Lyubashevskaya I. V. Service life of pressurized vessels, J. Appl. Mech. Tech. Phys., 2007, vol.48, no. 5, pp. 766-773. EDN: LKOBVH. DOI: https://doi.org/10.1007/ s10808-007-0099-3.
14. Lokoshchenko A. M., Fomin L. V., Teraud W. V., Basalov Yu. G., Agababyan V. S. Creep and long-term strength of metals under unsteady complex stress states (Review), Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2020, vol.24, no. 2, pp. 275-318 (In Russian). EDN: OQCCVC. DOI: https://doi. org/10.14498/vsgtu1765.
15. Robinson E. L. Effect of temperature variation on the long-time rupture strength of steels, Trans. ASME, 1952, vol. 74, no. 5, pp. 777-780. DOI: https://doi.org/10.1115/1.4015916.
16. Omprakash C. M., Kumar A., Srivathsa B., Satyanarayana D. V. V. Prediction of creep curves of high temperature alloys using 0-projection concept, Procedia Engineering, 2013, vol.55, pp. 756-759. DOI: https://doi.org/10.1016Zj.proeng.2013.03.327.
17. Lundin C. D., Aronson A. H., Jackman L. A., Clough W. R. Very-short-time, very-high-temperature creep rupture of type 347 stainless steel and correlation of data, J. Basic Eng., 1969, vol. 91, no. 1, pp. 32-38. DOI: https://doi.org/10.1115/1.3571023.
18. Hoff N. J. The necking and the rupture of rods subjected to constant tensile loads, J. Appl. Mech., 1953, vol.20, no. 1, pp. 105-108. DOI: https://doi.org/10.1115/1.4010601.
19. Mozharovskaya T. N. Relationship of the time until failure in long-term loading under conditions of the plane stressed state to the minimum rate of creep deformations, Strength Mater., 1982, vol. 14, no. 12, pp. 1635-1639. EDN: XLUTEH. DOI: https://doi.org/10.1007/ BF00768650.
20. Volkov I. A., Korotkikh Yu. G. Uravneniia sostoianiia viazkouprugoplasticheskikh sred s povrezhdeniiami [Equations of State for Viscoelastic-Plastic Media with Damage]. Moscow, Fizmatlit, 2008, 424 pp. (In Russian). EDN: RYRTNT
21. Boyko S.V. Modeling the Formation of Structural Elements under Unsteady Creep Conditions, Thesis of Dissertation (Cand. Phys. & Math. Sci.). Novosibirsk, Lavrentyev Institute of Hydrodynamics, 133 pp. (In Russian)