Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 2024. N. 2 ISSN2072-9502 (Print), ISSN2224-9761 (Online)
Control, modeling, automation
Научная статья УДК 517.926
https://doi.org/10.24143/2072-9502-2024-2-47-56 EDN QXIZBY
Прогнозирование рисковых ситуаций крена катамарана в штормовых условиях
Иван Юрьевич Липко
Севастопольский государственный университет, Севастополь, Россия, [email protected]
Аннотация. Рассматривается проблема неопределенности поведения катамарана во время шторма. Основная опасность неопределенности состоит в величине крена, на который отклонится катамаран, т. к. это может привести к нежелательным последствиям с грузом или корпусом судна. Изучение этой неопределенности рассматривается с двух позиций: исследование управляющих воздействий при реализации наихудших вариантов волнения на этапе выбора системы управления и онлайн-прогнозирование пороговых величин крена. Применяется комплексная модель катамарана и внешних возмущений. Внешние возмущения получаются с помощью формирующего фильтра и линейной аппроксимации спектра Пирсона - Московица, сил и моментов. Исследование качества управления осуществляется путем расчета наиболее вероятных траекторий к заданным пороговым состояниям и последующего их сопоставления друг с другом. Этот расчет выполняется путем решения оптимизационной задачи типа Лагранжа - Понтрягина с функционалом действия в качестве критерия и комплексной модели катамарана и внешних возмущений в качестве уравнения связи. С применением методов теории больших уклонений получены оценки вероятностей движения к пороговым значениям вдоль наиболее вероятных траекторий. Использование этих оценок и сопоставление их с текущим состоянием катамарана позволило реализовать прогноз рисковых ситуаций. Приводятся примеры траекторий, приводящих к пороговым состояниям, для нескольких случаев ветра и курсовых углов судна, полученных при разных контурах управления. При этом видно, что в зависимости от управления возникают колебания, на которые необходимо обращать внимание при проектировании управления. Приводится пример оценки вероятности движения к пороговому состоянию во время качки катамарана. Применение профилей пороговых состояний позволяет не только получить полезную информацию при проектировании систем управления, но и улучшить безопасность мореходства.
Ключевые слова: катамаран, качка, внешние возмущения, прогноз рисковых ситуаций, профиль пороговых состояний, теория больших уклонений
Для цитирования: Липко И. Ю. Прогнозирование рисковых ситуаций крена катамарана в штормовых условиях // Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2024. № 2. С. 47-56. https://doi.org/10.24143/2072-9502-2024-2-47-56. EDN QXIZBY.
Original article
Forecasting of catamaran roll risk situations in stormy conditions
Ivan Iu. Lipko
Sevastopol State University, Sevastopol, Russia, [email protected]
Abstract. The problem of uncertainty of catamaran behavior during a storm is considered. The main danger of uncertainty lies in the magnitude of the roll by which the catamaran will deviate, since this can lead to adverse consequences with the cargo or the hull of the vessel. The study of this uncertainty is considered from two positions: the study of control actions in the implementation of the worst-case scenarios of unrest at the stage of selecting a control system and online forecasting of roll thresholds. A complex model of catamaran and external disturbances is used. External perturbations are obtained using a formative filter and linear approximation of the Pearson-Moskowitz spectrum, forces and moments. The study of the quality of management is carried out by calculating the most likely trajectories to the specified threshold states and then comparing them with each other. This calculation is performed by solving an optimization problem of the Lagrange-Pontryagin type with an action functional as a criterion and a complex catamaran model and external disturbances as a coupling equation. Using the methods of the theory of large deviations, estimates of the probabilities of movement to threshold values along the most likely trajectories are obtained. Using these estimates and comparing them with
© Липко И. Ю., 2024
Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2024. № 2
ISSN2072-9502 (Print), ISSN2224-9761 (Online)
Управление, моделирование, автоматизация
the current state of the catamaran made it possible to realize the forecast of risky situations. Examples of trajectories leading to threshold states are given for several cases of wind and heading angles of the vessel obtained with different control circuits. At the same time, it can be seen that depending on the control, fluctuations arise, which must be paid attention to when designing the control. An example of estimating the probability of movement to the threshold state during the rolling of the catamaran is given. The use of threshold state profiles allows not only to obtain useful information in the design of control systems, but also to improve the safety of navigation.
Keywords: catamaran, pitching, external disturbances, prediction of risky situations, profile of threshold states, theory of large deviations
For citation: Lipko I. Iu. Forecasting of catamaran roll risk situations in stormy conditions. Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 2024;2:47-56. (In Russ.). https://doi.org/10.24143/2072-9502-2024-2-47-56. EDN QXIZBY.
и «
я я
ср G
и G Я
Ч
Введение
Все морские суда, морские технические сооружения, находящиеся в открытом море, подвергаются таким внешним возмущениям, как ветер, волны и течения. Одним из важнейших факторов, влияющих на безопасную эксплуатацию судна, является возможность управлять им [1, 2]. Выбор управляющих контуров, исследование их предельных возможностей и запасов устойчивости - важные этапы проектирования систем управления судами.
Среди всех классов судов катамаран выделяется наличием двух одинаковых корпусов, что придает как положительные, так и отрицательные качества судну [3]. Например, катамаран, не имеющий достаточного удлинения, может совершать переворот через нос, но катамаран имеет большую площадь палубного пространства. Изучение восприимчивости судна к бортовой качке является важным этапом проектирования, потому что она влияет на сохранность груза и людей. Следует отметить, что через бортовую качку реализуются и другие нежелательные события, например параметрическая качка, возникающая в продольном к волнению движении [4, 5].
Основные подходы к уменьшению бортовой качки связаны с изучением разного типа управления [6-8]: ПИД, линейно-квадратичный, робаст-ный и т. д., где исполнительным механизмом является руль и движительная установка. Изменением скорости движения судна или угла перекладки руля можно влиять на амплитуду качки. Не реже используют и специальные выдвижные успокоители качки и водометы [9, 10]. Но некоторая неопределенность и риск остаются.
Рисковая ситуация связана с неопределенностью будущего состояния катамарана. При ветро-вол-новых воздействиях есть вероятность исходов с такими негативными последствиями, как переворачивание судна, изломы и деформации, повреждение груза и т. п. [11]. Очевидно, что какие бы хорошие управляющие системы ни были, они могут уменьшить амплитуду воздействий, но не исключить их полностью. При этом вероятность возникновения рисковых ситуаций уменьшается, но не исчезает.
Реализация таких рисковых ситуаций ожидаема при наступлении штормовых условий. Поэтому в статье будет рассматриваться состояние моря в 5, 6 баллов по шкале Бофорта и симулироваться
комплексная модель катамарана и ветро-волновых воздействий. В параметры воздействий входят скорость ветра и курсовой угол судна на генеральное направление волны.
В данной статье будет рассмотрена методика прогноза рисковых ситуаций, основанная на знании наиболее вероятных реализаций опасных ситуаций, рассчитанных с использованием математической модели катамарана и внешних возмущений. Расчет наиболее вероятных траекторий выполняется с применением методов теории больших уклонений, симулирование качки - с помощью метода Рунге - Кутта 4 порядка.
Катамаран, управление и внешние возмущения
Катамаран представляет собой судно с двумя одинаковыми корпусами, которые соединены друг с другом палубой (рис. 1).
Рис. 1. Общий вид катамарана
Fig. 1. General view of the catamaran
В статье используется известная модель катамарана из [6, 9]. Этот катамаран соответствует
Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 2024. N. 2 ISSN 2072-9502 (Print), ISSN 2224-9761 (Online)
Control, modeling, automation
судну, предназначенному для перевозки пассажиров, легковых и грузовых автомобилей. Размеры катамарана указаны в таблице
Размеры катамарана
Catamaran dimensions
Параметр Значение
Длина, м 90
Ширина, м 25,96
Осадка, м 2,6
Водоизмещение, т 734,54
Катамаран, помимо главной движительной установки, обеспечен подводными крыльями для снижения амплитуды качки и закрылками для балансирования во время движения и выполнения перемещений при швартовке.
На рис. 2 приведена структурная схема [6, 9], на которой показано взаимодействие элементов катамарана (динамика объекта, контур управления по состоянию катамарана, исполнительные механизмы) и возмущений.
г "3'
Закрылки и подводные крылья
Управляющие сигналы
Силы и моменты возмущения
Рис. 2. Схема влияния управляющих сигналов от управления по состоянию xCat и возмущения xDistb на катамаран
Fig. 2. The scheme of the influence of control signals from xCat and disturbances xDistb on the catamaran
Считаем, что возмущения от ветровой волны воздействуют на судно посредством силы и момента, зависят от курсового угла. Дифференциальное уравнение, соответствующее такой схеме, описывается как
X = Ax + B 4(t), с н. у. x(0) = О,
(6X1),
(1)
где A =
ACat Aw
0 An,.„
динамику катамарана с управлением и формирую-
щий фильтр внешних возмущений; B =
О6: B
О6х1 - матрица из нулей размером в 6 строк и 1 стол-
бец; ^(t) - белый шум; x =
вектор состоя-
ния, хСса - вектор состояния катамарана, х£,ыъ - вектор состояния формирующего фильтра возмущения.
Раскроем величины и способы получения каждого элемента уравнения и схемы.
Модель катамарана
Катамаран с системой уменьшения качки [6, 9] описывается в виде модели пространства состояния
Cat ACat xCat + BCatW
yCat = C
xC
(2)
- блочная матрица, включающая
где xCat = [n. С П Z 0. 0]T
вектор состояния,
включающии, соответственно, скорость вертикальной качки, м/с, скорость дифферента, °/с, вертикальную качку, м, угол дифферента, скорость крена, °/с, угол крена, ACat = ACat - BCatK — матрица системы катамарана с обратной связью, Acat — матрица объекта, BCat — матрица управления, K — матрица обратной связи; w = [Fw Mw ]Г — вектор возмущений, включающий силу, Н, и момент, Н-м, действующие на корпус судна; yCat — вектор выхода; CCat — матрица выхода. Числовые значения матриц системы, управления, выхода получены с использованием гидродинамической теории сечений (англ. strip theory) [1, 2]:
x
x
Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2024. № 2
ISSN2072-9502 (Print), ISSN2224-9761 (Online)
Управление, моделирование, автоматизация
ч
о ¡у
а >я я я
ет
я
о
ср
е 2
К о и я я Ч
ACat =
-0,90 - 25,10 -14,15 -17,49 0,0001 0
0,05 -0,50 0,24 -12,40 0,0001 0
1 0 0 0 0 0
0 1 0 0 0 0
0,0001 0,0001 -0,01 -0001 -5 -15
0 0 0 0 1 0
" 0,0082 0,0000083"
- 0,00016 0,000017
BCat = 0 0 0 0 ;
0,002 0,0000083
0 0
Ccat = I6x6, где Inxm - единичная (n х m) матрица; матрица
"59,3 26,6 18 336,7 2 006,9 -1 807,6 -2 950,1" -1,2 2,5 14,2
K =
-2,8
2,1
93,5
обратной связи получена путем синтеза линейно-квадратичного регулятора с критерием
J =
i ;<■
XTatQxc
. + u
Ru ) dt,
где Q - постоянная положительно-определенная матрица такого же размера, как и матрица А; и - управляющий сигнал; R - положительно-определенная симметричная матрица.
Такой регулятор позволяет уменьшить амплиту-
ду качки путем создания сил и FClap) и мо-
ментов (Мтщ и Мс1ар) с помощью подводных крыльев и подруливающих клапанов.
Модель внешних возмущений
Качка катамарана возникает в результате воздействия внешних сил и моментов, создаваемых морскими волнами. Имитация этих сил и моментов выполнена с помощью метода формирующего фильтра [12] (рис. 3).
Состояние моря, спектр волнения
Белый шум
Линейная аппроксимация спектра волнения
Амплитуда волны
Линейная аппроксимация сил и моментов
Силы и моменты
(xDistb) -►
Рис. 3. Формирование возмущающих сил и моментов Fig. 3. Formation of disturbing forces and moments
На вход фильтра подается белый шум, а на выходе получается вектор хаыь сил и моментов внешнего возмущения.
Формирующий фильтр состоит из двух частей. Первая - это линейная аппроксимация спектра Пирсона - Московица
£ (ш) = 8,1 • 10-3 • 9,82ш-5 • ехр (-0,74 • 0,92ш-4),
где ш - частота. На рис. 4 показано сравнение спектра Пирсона - Московица с его линейной аппроксимацией.
Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 2024. N. 2 ISSN 2072-9502 (Print), ISSN 2224-9761 (Online)
Control, modeling, automation
Рис. 4. Спектр Пирсона - Московица в сравнении с его линейной аппроксимацией
Fig. 4. The Pearson - Moskowitz spectrum in comparison with its linear approximation
Вторая часть - это линейная аппроксимация сил и моментов с помощью коэффициента Крм- Все вместе можно представить в виде двух передаточных функций одинакового вида: с одинаковым входом, но выходами как сила и момент соответственно
Hw ( s ) =
• Ka s
s2 + 2Xœ0 s + œ^
r
где KFM = {KWaveForce, KWaveMoment} — трр^еГ^
характеризующий линейную аппроксимацию преобразования высоты волны в силу или в момент соответственно; Кю = 2Хю0о, X — демпфирующий коэффициент, ю0 — доминирующая частота волнения, о2 = max S(ю) — константа интенсивности
волнения. Расчет коэффициентов X, о, ю0 возможен аналитически или численно, а выбор коэффициентов KwaveForce и KwaveMoment определяется путем многократного моделирования. Выбранные величины параметров соответствуют 5-му состоянию моря (по шкале Бофорта) со значительной высотой волн 2,14 м и средней скоростью ветра 10 м/с. Полученная в результате симуляции статистика качки соответствует таковой для соразмерных судов в этих погодных условиях и тому, что было показано авторами модели катамарана в статьях [6, 9], что говорит о том, что выбранные значения коэффициентов подходят.
Используя две эти передаточные функции, формируем модель в виде пространства состояний с матрицами
"-0,4404 -0,7302 0 0 ] [ 128 "
1 0 0 0 0
A= ADistb 0 0 -0, 4404 -0,7302 ; B _ ; °Distb ~ 4 096
0 0 1 0 0
и вектором состояния xD¡stb =
M w
Mw
Fw F
где Mw - мо-
мент, Н-м; Fw - сила, Н; и получаем матрицу передачи возмущений в катамаран
Aw =
0 0 0 0 "
0 0 0 0
0 0 0 0
0 1,3610 0 0,0307
0 0 0 0
0 -0,0265 0 0,0629
Методика прогнозирования рисковых ситуаций
Получение наиболее вероятных траекторий может быть проведено с помощью метода Монте-Карло и его модификаций, но в данной статье воспользуемся теорией больших уклонений [13-15] и построим наиболее вероятную траекторию (НВТ) аналитически. Для этого в уравнение системы (1)
вводится малый параметр s:
X = Ax + sB^(t), x(0) = x0,
(3)
и решается задача минимизации для случая бесконечного слева времени
x* = arg ( F (O, xthr ) , (4)
x(-»)=°, x(0)=xthr
где V (х, у) = и£ттф0 = ф( = ySt (ф) - квазипотенциал, который характеризует движение системы на большом интервале времени, на котором превышение порога хп точно произойдет; х* - это наиболее вероятная траектория движения из аттрактора О к хп при воздействии малых случайных возмуще-
ний;
(х) = ^ (х - Ах) (ооТ )1 (х - Ах)функционал действия, Т - оператор транспонирования, о = В.
Задача (4) имеет смысл, потому что для системы (3) известна из [13] оценка вероятности Р пересечения траекторией ф области Б э хп:
Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2024. № 2
ISSN2072-9502 (Print), ISSN2224-9761 (Online)
Управление, моделирование, автоматизация
ч
о ¡у
а >я я я tí
РТ я
о
ср
е 2
К о и я я Ч
lime2P (х e D) = - min St (ф).
e—>0 ' yeDuSD ' v '
В результате решения задачи (4) с уравнением связи (3) получаем НВТ х*, реализацию возмущения V* и квазипотенциал V* с вероятностью P* « exp{-1 /eV*} вдоль НВТ, которые объединяем в кортеж Zx = {х*, P*, V*, V*, t} - профиль
порогового состояния хп.
На практике профиль порогового состояния используется при проектировании и выборе управляющего воздействия, что будет показано в следующем разделе. Другой вариант использования этого результата состоит в реализации супервизора управлений. Соотнося текущее состояние системы хс с НВТ х* можно утверждать, что оценки вероятности P и времени Тп того, что система под воздействием случайных возмущений пересечет хп, будут близки к соответствующим величинам профиля:
времени или вероятности:
ТП (Хс ) = tf - arg
min х.
- х * (t) :
Pn (Хс ) = P * I arg min Хс - х * (t)
te[0,tf J
(5)
(6)
Принимать решение о переключении управлений или сигнализации можно на основе текущей оценки
Tn > Т п или Pn > Рп .
где Рп и Тп - пороговые значения вероятности и времени. Уровень порога устанавливается эмпирически. Смысл этой оценки вероятности заключается в понимании вероятности наихудшего сценария развития событий: НВТ - это наихудший вариант для системы, потому что нежелательное событие реализуется наискорейшим образом. Малый параметр е можно воспринимать как склонность к риску при принятии управляющих решений.
Профили пороговых состояний при синтезе управлений
При проектировании судна чаще всего исходят из свойств самого корпуса судна, а уже потом думают о системе управления, которая будет поддерживать это судно в заданном режиме. В этом разделе мы покажем, как ведет себя катамаран при реализации наихудших сценариев штормовых условий при разных управляющих контурах.
Для системы (1) была решена задача (3), (4) несколько раз для разных скоростей ветра и курсовом угле на ветер, в результате чего получены профили пороговых состояний крена в 8, 10 и 12° (рис. 5).
е,
10
о -10
/
о 10
о -10
10
10
9,0
10
о -10
I
10
о -10
10 о -10
о
10
10
Время, с
Время, с
а б
Рис. 5. Траектории экстремальных значений крена для управления К: а - курсовой угол 45°; б - 0° верхний ряд - ветер - 5 м/с, средний - 10 м/с, нижний - 15 м/с
Fig. 5. Trajectories of extreme roll values for K control: a - heading angle 45°; 6 - 0° upper row - wind - 5 m/s, middle - 10 m/s, lower - 15 m/s
(el 0,t
Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 2024. N. 2 ISSN 2072-9502 (Print), ISSN 2224-9761 (Online)
Control, modeling, automation
При разных значениях ветра и курса траектории имеют разную форму. Из-за симметричности корпуса эффект для левого и правого борта судна идентичен. Когда курсовой угол равен нулю, влияние соотношений крена, тангажа и дифферента значительно: формы траекторий искажены и «скачкообразны» (рис. 5, а). Когда курсовой угол равен 45°, влияние крена, тангажа и крена несущественно и траектории достаточно гладкие (рис. 5, б).
Первое наблюдение соответствует известной практике: во время шторма следует уменьшать
курсовой угол. Другое наблюдение говорит о том, что слабый ветер требует много энергии для реализации большого крена, поэтому видна «раскачка» судна. Таким образом, необходимо следить, чтобы частота колебаний судна не совпала с собственной частотой колебаний судна.
Для сравнения на рис. 6 показаны те же самые величины для другой матрицы в управлении системой (2), равной
K2 =
-0,24 0,005 1 734,5 549,9 -1 366 -2 177 -0,005 0,014 3,1 -2,50 1,296 74,9
9,° ю
5 0
-5
ю
10 5 0 -5
0
е,0 ю о
-10
е,° ю о -10
10
10
Время, с
Время, с
б
Рис. 6. Траектории экстремальных значений крена для управления K2: а — курсовой угол 45°; б — 0°; верхний ряд — ветер — 5 м/с, средний — 10 м/с, нижний — 15 м/с
Fig. 6. Trajectories of extreme roll values for K2 control: a — heading angle 45°; б — 0°; upper row — wind — 5 m/s, middle — 10 m/s, lower — 15 m/s
Видно, что в этом случае движение к пороговым значениям происходит плавнее, что говорит об улучшении уровня комфорта.
Прогноз рисковых ситуаций
Рассмотрим результаты прогноза рисковых ситуаций с помощью профилей пороговых состояний, основанных на оценках времени Тп и вероятности Рп, функционирования катамарана в штормовых условиях. Рассматриваемая рисковая ситуация будет состоять в достижении крена более чем 5° (основной порог), что будет означать неблагоприятные последствия.
Для системы (1) были получены профили поро-
говых состояний для крена от 1 до 11°. Применение нескольких профилей обусловлено тем, что движение к большим порогам происходит через пересечение маленьких, а наличие порогов выше основного порога позволит также выделить и основной порог.
С помощью метода Рунге - Кутта 4 порядка про-симулировали систему (1), т. е. получили решение задачи Коши на интервале времени [0, Тх] в дискретные моменты времени ^ = 0 < ^ < ... < ^ = Т& с фиксированным шагом V} = tj+1 - tJ, где Т8 - длительность симуляции. В каждый момент времени ^ инкремент шума £,^ ) ~ N(0, VJ). В результате
получили реализацию качки катамарана, гисто-
а
Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2024. № 2
ISSN2072-9502 (Print), ISSN2224-9761 (Online)
Управление, моделирование, автоматизация
граммы которой показаны на рис. 7, а пример реа- лизации на рис. 8.
и «
я я
ср С
Рис. 7. Гистограммы качки катамарана Fig. 7. Histograms of catamaran pitching
и я я Ч
V лГ
103 110 112 114 116 113 120 122 124 126
Время, с
Рис. 8. Оценки вероятности наступления рисковых
ситуаций с использованием нескольких профилей пороговых состояний
Fig. 8. Estimates of the probability of occurrence of risky situations using several profiles of threshold states
Затем для каждого момента времени по формулам (5) и (6) осуществили оценки времени Тп и вероятности p.
На рис. 8 показан участок траектории и оценки вероятности движения к заданному порогу: чем темнее, тем выше вероятность пересечь порог этого уровня. Так, например, прогноз вполне удачен в смысле предугадывания будущего пересечения основного порога для интервалов времени 114-117 с и 120-125 с и менее удачен для 118-120 с.
Обнаружение возможного пересечения порога действительно происходит заранее (на 1-1,5 с). Но
сделать это еще раньше пока что затруднительно. Подтверждением этому может служить накопленная статистика качки. Рис. 9 показывает плотность траекторий крена (по оси абсцисс указан угол крена, по оси ординат - время, с, до пересечения порога в 4°): в большинстве случаев выход крена из области допустимых колебаний (около 3°) и пересечение порога происходит за менее чем 1 с. Эта статистика также служит и подтверждением результатов, изображенных на рис. 6.
I D0Û ¡2
Рис. 9. Плотность траекторий при движении к порогу в 4° крена
Fig. 9. The density of trajectories when moving to the threshold of 4° roll
Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 2024. N. 2 ISSN2072-9502 (Print), ISSN2224-9761 (Online)
Control, modeling, automation
Из рис. 6 и рис. 9 следует вывод о том, что при последующем решении задачи управления необходимо не только быстрое прогнозирование, но и столь же быстрое управление.
Заключение
Для комплексной модели качки катамарана и ветро-волновых возмущений были построены профили пороговых состояний, показывающие возможные наихудшие реализации большого крена. Профили пороговых состояний могут быть применены на этапе проектирования системы управления для оценки качества управляющего контура путем
визуальной оценки качества переходных процессов и числовых значений величин возмущающих воздействий и критерия оптимизации. В результате симулирования комплексной модели качки катамарана и ветро-волновых возмущений было показано, что профили пороговых состояний могут быть использованы во время функционирования катамарана в штормовых условиях для оценки риска возникновения большого крена. Дальнейшее развитие этой методики прогнозирования связано с накоплением опыта применения на других моделях и увеличением окна прогноза.
Список источников
1. Семенов-Тян-Шанский В. В. Статика и динамика корабля. Л.: Судостроение, 1973. 608 с.
2. Faltinsen O. M. Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press, 2005. 454 p.
3. Manuel С. G. de la J., Joaquin A., Maria G.-S. J., Francisco V. Improving the comfort of a fast ferry // IEEE Control Systems Magazine. 2004. V. 24 (2). P. 47-60.
4. Вагущенко Л. Л, Вагущенко А. Л., Заичко С. И. Бортовые автоматизированные системы контроля мореходности. Одесса: Феникс, 2005. 272 с.
5. Антоненко С. В., Китаев М. В. Бортовая качка и динамическая остойчивость судна // Вологдин. чтения. Владивосток: Изд-во Дальневосточ. федер. ун-та, 2004. № 40. С. 54-60.
6. Liang L., Yuan J., Zhang S. Application of model predictive control technique for wave piercing catamarans ride control system // 2016 IEEE International Conference on Mechatronics and Automation. Harbin, 2016. P. 726-731.
7. Wang Y., Bai L., Liu S. Nonlinear control of hydrofoil catamaran course in three DOF // 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). Beijing, 2014. P. 1-6.
8. Kapitanyuk Y., Proskurnikov A., Cao M. Optimal controllers for rudder roll damping with an autopilot in the loop // IFAC-Papers Online. 2016. V. 49. N. 23. P. 562-567.
9. Zhang S., Li S., Liang L., Sun M. Ride control method of wave-piercing catamaran with T-foil and flaps // IEEE International Conference on Mechatronics and Automation. Tianjin, 2014. P. 509-514.
10. Лукомский Ю. А., Ле Тхань Тунг, Шпекторов А. Г. Использование нейросетевых технологий при построении систем управления движением скоростных судов // Изв. СПбГЭТУ «ЛЭТИ». Сер.: Автоматизация и управление. 2006. Вып. 1. С. 14-18.
11. Ваганов А. Б., Тан Н. Н. Динамика судна при сложном внезапном воздействии внешних сил // Вестн. Астрахан. гос. техн. ун-та. Сер.: Морская техника и технология. 2014. № 4. С. 13-20.
12. Fossen T. I. Handbook of marine craft hydrodynamics and motion control. Jhon Wiley & Sons, 2011. 600 p.
13. Вентцель А. Д., Фрейдлин М. И. Флуктуации в динамических системах под действием малых случайных возмущений. М.: Наука, 1979. 424 с.
14. Дубовик С. А., Кабанов А. А. Функционально устойчивые системы управления: асимптотические методы синтеза. М.: Инфра-М, 2019. 249 с.
15. Dubovik S. A., Kabanov A. A. Quasipotentials in synthesis of control system based on knowledge // International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). Saint Petersburg, 2017. P. 1-4.
References
1. Semenov-Tian-Shanskii V. V. Statika i dinamika korablia [Ship statics and dynamics]. Leningrad, Sudostroenie Publ., 1973. 608 p.
2. Faltinsen O. M. Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press, 2005. 454 p.
3. Manuel S. G. de la J., Joaquin A., Maria G.-S. J., Francisco V. Improving the comfort of a fast ferry. IEEE Control Systems Magazine, 2004, vol. 24 (2), pp. 47-60.
4. Vagushchenko L. L, Vagushchenko A. L., Zaichko S. I. Bortovye avtomatizirovannye sistemy kontrolia morekhod-nosti [On-board automated seaworthiness control systems]. Odessa, Feniks Publ., 2005. 272 p.
5. Antonenko S. V., Kitaev M. V. Bortovaia kachka i dinamicheskaia ostoichivost' sudna [On-board pitching and dynamic stability of the vessel]. Vologdinskie chteniia. Vladivostok, Izd-vo Dal'nevostoch. feder. un-ta, 2004. No. 40. Pp. 54-60.
6. Liang L., Yuan J., Zhang S. Application of model pre-
dictive control technique for wave piercing catamarans ride control system. 2016 IEEE International Conference on Mechatronics and Automation. Harbin, 2016. Pp. 726-731.
7. Wang Y., Bai L., Liu S. Nonlinear control of hydrofoil catamaran course in three DOF. 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). Beijing, 2014. Pp. 1-6.
8. Kapitanyuk Y., Proskurnikov A., Cao M. Optimal controllers for rudder roll damping with an autopilot in the loop. IFAC-Papers Online, 2016, vol. 49, no. 23, pp. 562-567.
9. Zhang S., Li S., Liang L., Sun M. Ride control method of wave-piercing catamaran with T-foil and flaps. IEEE International Conference on Mechatronics and Automation. Tianjin, 2014. Pp. 509-514.
10. Lukomskii Iu. A., Le Tkhan' Tung, Shpektorov A. G. Ispol'zovanie neirosetevykh tekhnologii pri postroenii sistem upravleniia dvizheniem skorostnykh sudov [The use of neural network technologies in the construction of high-speed
и G я
Ч
Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика. 2024. № 2
ISSN2072-9502 (Print), ISSN2224-9761 (Online)
Управление, моделирование, автоматизация
vessel traffic control systems]. Izvestiia SPbGETU «LETI». Seriia: Avtomatizatsiia i upravlenie, 2006, iss. 1, pp. 14-18.
11. Vaganov A. B., Tan N. N. Dinamika sudna pri slozhnom vnezapnom vozdeistvii vneshnikh sil [Ship dynamics under complex sudden impact of external forces]. Vestnik Astra-khanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Morskaia tekhnika i tekhnologiia, 2014, no. 4, pp. 13-20.
12. Fossen T. I. Handbook of marine craft hydrodynamics and motion control. Jhon Wiley & Sons, 2011. 600 p.
13. Venttsel' A. D., Freidlin M. I. Fluktuatsii v dinamich-eskikh sistemakh pod deistviem malykh sluchainykh vozmushche-
nii [Fluctuations in dynamical systems under the action of small random disturbances]. Moscow, Nauka Publ., 1979. 424 p.
14. Dubovik S. A., Kabanov A. A. Funktsional'no ustoichivye sistemy upravleniia: asimptoticheskie metody sinteza [Functionally stable control systems: asymptotic synthesis methods]. Moscow, Infra-M Publ., 2019. 249 p.
15. Dubovik S. A., Kabanov A. A. Quasipotentials in synthesis of control system based on knowledge. International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). Saint Petersburg, 2017. Pp. 1-4.
и «
я я
Статья поступила в редакцию 24.02.2024; одобрена после рецензирования 28.03.2024; принята к публикации 10.04.2024 The article was submitted 24.02.2024; approved after reviewing 28.03.2024; accepted for publication 10.04.2024
CP
G
Информация об авторе / Information about the author
Иван Юрьевич Липко - старший преподаватель кафедры информатики и управления в технических системах; Севастопольский государственный университет; [email protected]
Ivan Iu. Lipko - Senior Lecturer of the Department of Informatics and Control in Technical Systems; Sevastopol State University; [email protected]