Научная статья на тему 'Прогноз вариаций площади ледяного покрова Охотского моря методом последовательных спектров'

Прогноз вариаций площади ледяного покрова Охотского моря методом последовательных спектров Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
307
53
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
когерентная компонента / метод последовательных спектров / накопленная площадь ледяного покрова / прогноз / coherent component / sequential spectra method / cumulative ice cover / Ice forecasting

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Пищальник Владимир Михайлович, Иванов Владимир Васильевич, Трусков Павел Анатольевич

Предложен прогноз вариаций ледовитости Охотского моря на ближайшие 20 лет. В качестве исходных данных использована накопленная площадь ледяного покрова, вычисленная по трем вариантам: вариант 1 сумма площадей льда за 2 мес (февраль-март), вариант 2 за 4 мес (с января по апрель) и вариант 3 за 6 мес (с декабря по май). Анализировались ряды различной продолжительности: с 1935 по 2010 г. и с 1957 по 2010 г. Прогноз опирался на выделение когерентных периодических вариаций, которое проведено методом последовательных спектров. При применении метода к вариациям ледовитости обнаружен значительный вклад некогерентной компоненты. Чтобы обойти эту трудность, предложено раздельно прогнозировать высокочастотную и низкочастотную компоненты. Сравнение прогнозов по выборкам различной длительности показывает, что увеличение длительности ряда приводит к заметному уменьшению оценки отрицательного тренда вариаций площади ледяного покрова, который обычно рассматривается как эффект глобального потепления. Сравнение периодов и фаз когерентных колебаний ледяного покрова и солнечной активности показывает, что вариации тренда аккумулятивной площади ледяного покрова связаны с вариациями солнечной активности, важнейшими из которых являются вариации с периодами 10,7 и 2,3 года.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам , автор научной работы — Пищальник Владимир Михайлович, Иванов Владимир Васильевич, Трусков Павел Анатольевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Ice cover variations in the Okhotsk Sea are forecasted for the nearest two decades on the base of spectral analysis of three data sets for 1935-2010 and 1957-2010: i) the cumulative ice cover for February-March; ii) the cumulative ice cover for January-April; and iii) the cumulative ice cover for December-May. The forecast is based on revealing of coherent periodical variations by the method of sequential spectra. When applying the method to the ice cover variation, a significant contribution from a non-coherent component was discovered, so the high-frequency and low-frequency components of variability were extrapolated separately. Negative trend of the ice cover is revealed that is usually considered as the result of global warming, but its inclination decreases significantly for longer data series. Coherent fluctuations of the cumulative ice cover were compared with solar activity variations and good co-relations are found for the fluctuations with period 10.7 and 2.3 years.

Текст научной работы на тему «Прогноз вариаций площади ледяного покрова Охотского моря методом последовательных спектров»

2011

Известия ТИНРО

Том 165

УДК 551.467.3.03(265.53)

В.М. Пищальник1, В.В. Иванов2, П.А. Трусков3*

1 Сахалинский государственный университет, 693008, г. Южно-Сахалинск, ул. Ленина, 290;

2 Институт морской геологии и геофизики ДВО РАН, 693022, г. Южно-Сахалинск, ул. Науки, 1Б;

3 Сахалин Энерджи Инвестмент Компании, Лтд., 123242, г. Москва, Новинский бул., 31

ПРОГНОЗ ВАРИАЦИЙ ПЛОЩАДИ ЛЕДЯНОГО ПОКРОВА ОХОТСКОГО МОРЯ МЕТОДОМ ПОСЛЕДОВАТЕЛЬНЫХ

СПЕКТРОВ

Предложен прогноз вариаций ледовитости Охотского моря на ближайшие 20 лет. В качестве исходных данных использована накопленная площадь ледяного покрова, вычисленная по трем вариантам: вариант 1 — сумма площадей льда за 2 мес (февраль-март), вариант 2 — за 4 мес (с января по апрель) и вариант 3 — за 6 мес (с декабря по май). Анализировались ряды различной продолжительности: с 1935 по 2010 г. и с 1957 по 2010 г. Прогноз опирался на выделение когерентных периодических вариаций, которое проведено методом последовательных спектров. При применении метода к вариациям ледовитости обнаружен значительный вклад некогерентной компоненты. Чтобы обойти эту трудность, предложено раздельно прогнозировать высокочастотную и низкочастотную компоненты. Сравнение прогнозов по выборкам различной длительности показывает, что увеличение длительности ряда приводит к заметному уменьшению оценки отрицательного тренда вариаций площади ледяного покрова, который обычно рассматривается как эффект глобального потепления. Сравнение периодов и фаз когерентных колебаний ледяного покрова и солнечной активности показывает, что вариации тренда аккумулятивной площади ледяного покрова связаны с вариациями солнечной активности, важнейшими из которых являются вариации с периодами 10,7 и 2,3 года.

Ключевые слова: когерентная компонента, метод последовательных спектров, накопленная площадь ледяного покрова, прогноз.

Pishchalnik V.M., Ivanov V.V., Truskov P.A. Forecasting the ice cover variation in the Okhotsk Sea by the method of sequential spectra // Izv. TINRO. — 2011. — Vol. 165. — P. 158-171.

Ice cover variations in the Okhotsk Sea are forecasted for the nearest two decades on the base of spectral analysis of three data sets for 1935-2010 and 19572010: i) the cumulative ice cover for February-March; ii) the cumulative ice cover for January-April; and iii) the cumulative ice cover for December-May. The forecast is based on revealing of coherent periodical variations by the method of sequential

* Пищальник Владимир Михайлович, доктор технических наук, профессор, e-mail: [email protected]; Иванов Владимир Васильевич, доктор физико-математических наук, ведущий научный сотрудник, e-mail: [email protected]; Трусков Павел Анатольевич, доктор технических наук, начальник отдела, e-mail: [email protected].

spectra. When applying the method to the ice cover variation, a significant contribution from a non-coherent component was discovered, so the high-frequency and low-frequency components of variability were extrapolated separately. Negative trend of the ice cover is revealed that is usually considered as the result of global warming, but its inclination decreases significantly for longer data series. Coherent fluctuations of the cumulative ice cover were compared with solar activity variations and good co-relations are found for the fluctuations with period 10.7 and 2.3 years.

Key words: coherent component, sequential spectra method, cumulative ice cover, ice forecasting.

Введение

В сверхдолгосрочных прогнозах ледовых условий на дальневосточных морях традиционно нуждаются такие отрасли народного хозяйства, как мореходство и рыболовство. В последние десятилетия к ним добавилась еще и нефтегазовая. Условия технологического обслуживания нефтедобывающих платформ предполагают круглогодичную работу судов-снабженцев как на судоходных трассах, так и непосредственно в местах добычи нефтяных углеводородов. Планируемый период освоения одного месторождения на шельфе о. Сахалин по оценкам экспертов составляет 40-50 лет. В Охотском море в зимний период помимо повышенной штормовой активности серьезным препятствием для планомерной работы судов является наличие ледяного покрова. Средняя продолжительность ледового сезона у восточного побережья Сахалина составляет 190-200 дней (Плотников, 2002). В связи с этим для нефтедобывающих компаний вопросы мониторинга состояния и прогнозирования ледяного покрова на ближайшую и отдаленную перспективу приобретают особое значение (Тамбовский, Пищаль-ник, 2010). И наконец, ледовые прогнозы на фоне глобальных климатических изменений имеют и чисто научный аспект.

Исследование формирования ледяного покрова является составной частью общего исследования изменения климата Земли, которое в последние годы наиболее заметно проявляется в условиях высоких широт. В этих исследованиях важно в трендах гидрометеорологических параметров выделять вариации, связанные с антропогенной деятельностью, которые происходят на фоне естественных вариаций разнообразных геофизических процессов (Huang, 2010). Последнее обстоятельство часто приводит к неоднозначности толкования причин изменений климата и, как следствие, неопределенности в принятии решений.

В предлагаемой работе на основе 75-летнего ряда наблюдений за изменениями площади ледяного покрова в Охотском море с помощью метода последовательных спектров, который позволяет корректно отфильтровывать шумы, выделяя присущие данному явлению когерентные колебания, и восстанавливать впоследствии очищенные от шумов тренды (Иванов, 2002), предпринята попытка прогноза вариаций ледовитости на ближайшие 20 лет.

Материалы и методы

Исходными данными в настоящей работе являются результаты расчетов ежемесячной площади ледяного покрова для зимних сезонов в период с 19281929 по 2009-2010 гг. По способу производства наблюдений за ледяным покровом в исследуемом периоде условно можно выделить три этапа. Первый этап с 1929 г. по конец 1950-х гг.; второй — с конца 1950-х по 1992 г. и третий — с 1993 г. по настоящее время.

На первом этапе вычисление площади ледяного покрова, оценка состояния льда внутри массива и определение местоположения его кромок производились по нерегулярным (попутным) судовым донесениям и эпизодическим данным ледовых авиационных разведок. Наиболее освещены наблюдениями были акватории судоходных трасс в прол. Лаперуза и на подходах к порту Магадан, а

также районы традиционного зимнего промысла гидробионтов. По сведениям А.Н. Крындина (1964), за период с 1928-1929 по 1959-1960 гг. для Охотского моря составлено 360 карт фактической ледовой обстановки, по которым была вычислена площадь ледяного покрова. С помощью графиков годового хода разрозненные по времени наблюдения приводились к одной дате на середину месяца и вычислялись вполне сравнимые среднемесячные значения ледовитости. Таблицы расчетных ежемесячных значений ледовитости по всем дальневосточным морям опубликованы ранее (Крындин, 1964).

В период безусловного наличия ледяного покрова в Охотском море (с декабря по май) для 50 мес (26 % случаев) ежемесячные ледовые карты не были составлены из-за недостаточности исходной информации. Наиболее значительные пропуски относятся к начальному периоду наблюдений. Так, например, за 1931 г. А.Н. Крындину (1964) за весь сезон не удалось составить ни одной полной ледовой карты. По одной карте было составлено в ледовые сезоны 1930, 1933 и 1934 гг. Поэтому в настоящей работе за начало исходного ряда был принят ледовый сезон 1934/35 г. с полным комплектом ледовых карт. Имеющиеся отдельные пропуски данных в период с 1936 по 1951 г. (17 % случаев) были восстановлены методом прямой интерполяции.

Второй этап — регулярные авиационные наблюдения за состоянием ледяного покрова с обязательным определением местоположения кромок льда — для Охотского моря продолжался с 1957 по 1992 г. Ледовые авиационные разведки проводились планомерно один раз в декаду. Они выполнялись с ноября по июнь и равномерно покрывали галсами всю заполненную дрейфующим льдом акваторию моря. При этом для решения специальных задач (обеспечение безопасности судоходства, промысла морского зверя, проектирования и обустройства морских нефтегазовых месторождений и т.д.) в этот период не исключалось проведение дополнительных наблюдений на ограниченных акваториях. Все карты ледовой обстановки, включая данные прибрежных наблюдений гидрометеорологических станций и постов, усреднялись для данной декады по всему морю. Таким образом, минимальная дискретность карт ледовой обстановки на втором этапе исследований составляла одну декаду. Определенные на их основе характеристики ледяного покрова эквидистантны, что позволило получить надежные статистические характеристики (Плотников, Якунин, 1998; Плотников, 2002). В исходный ряд наблюдений включены данные ежемесячных значений ледовитости Охотского моря для периода с 1960 по 2000 г., приведенные ранее (Плотников, 2002).

Основу наблюдений третьего этапа составляют данные дистанционного зондирования Земли. Сканеры первого поколения с искусственных спутников Земли серий "NOAA", "МЕТЕОР", "КОСМОС" и т.п. начиная с 1970 г. позволяли ежедневно получать черно-белое изображение ледяного покрова дальневосточных морей как в видимом диапазоне, так и в режиме радиолокации. С 2002 г. для Дальнего Востока основным инструментом мониторинга земной поверхности служит 36-канальный сканер MODIS с разрешением 250-1000 м, установленный на спутниках "TERRA" и "AQUA". Из-за сильного влияния облачности на точность определения границ массива льда дешифрирование спутниковых снимков в видимом диапазоне для получения расчетных характеристик ледяного покрова в рамках всего моря на регулярной основе не производится. Для определения местоположения кромок ледяного массива и границ зон различной сплоченности внутри него японские исследователи с 1970 г. используют методику обработки данных радиолокационного зондирования, основанную на принципе распознавания образов. Полученные результаты в виде карт-схем (с выделенными штриховкой (для черно-белых) или цветовой гаммой зонами различной сплоченности льда) с частотой от двух раз в неделю до двух раз в месяц выставляются Национальными центрами обработки гидрометеорологической информации Японии (Japan Meteorological Acency) и США (National/Naval Ice Center) в Интер-

нете (http://goos.kishou.go.jp/rrtdb/img/goosmail_white.gif; http:// www.natice.noaa.gov/pub). Таким образом, минимальная дискретность карт-схем ледовой обстановки на третьем этапе исследований составляла 3-4 сут. Однако в исходный ряд были включены только данные с месячной дискретностью, вычисленные как среднее арифметические по результатам всех съемок, выполненных во второй декаде каждого календарного месяца ледового сезона.

Оценка точности результатов расчетов площади ледяного покрова всегда вызывала острые дискуссии у специалистов и должна являться результатом самостоятельного исследования. А.Н. Крындин (1964) оценивает ошибку своих расчетов в 10 % от оцененной площади ледяного покрова. На последующих этапах исследований точность оценки площади ледяного покрова не была ниже, поэтому с определенной долей вероятности искомую величину ошибки можно применить ко всему исходному ряду.

В работе В.В. Иванова (2002) предложен методический прием выделения когерентных колебаний в длительных рядах наблюдений за гидрометеорологическими параметрами. Под когерентными подразумеваются такие периодические колебания, которые сохраняют неизменными амплитуду и фазу на всем временном отрезке исследуемого ряда. Признаком когерентности является возможность вычисления параметров гармоники соответствующего спектрального максимума. Для получения очищенных от когерентных колебаний трендов предлагается предварительно вычитать такие компоненты из исследуемого сигнала. Их оценка и последовательное вычитание из искомой записи и составляют суть метода последовательных спектров. Окончанием процесса вычисления является момент, когда после вычитания гармоника вновь появляется в спектре.

Предложенный метод успешно применялся для анализа рядов гидрометеорологических параметров большой длительности (длительность ряда определяет максимальное значение периода когерентного колебания, которое может быть вычтено из основного сигнала) (Иванов, 2005; Иванов и др., 2011). С его помощью удается выделять относительно слабые, но чисто периодические эффекты на фоне непериодических вариаций большой амплитуды. Таких эффектов обнаруживается достаточно много, и в сумме они могут сильно искажать общее представление о самом тренде. Поэтому при построении последовательных спектров для любого циклического процесса на первом этапе определяются параметры главного максимума. В дальнейшем спектр вычисляется повторно, после вычитания из сигнала периодической компоненты, соответствующей главному максимуму. На каждом этапе вычислений строится спектр и определяются параметры одной гармоники, соответствующей максимальной спектральной амплитуде. Для каждой компоненты вычисляются период, амплитуда (в единицах измерения наблюдаемого сигнала) и фаза (в радианах), относящаяся к моменту начала записи. Результат вычисления представляется в виде последовательной суммы компонент, упорядоченных в порядке уменьшения амплитуд. Отметим, что с каждой из компонент может быть связан отдельный физический процесс, проявление которого в исследуемом явлении обнаруживается как появление гармоники на той же частоте. Тренд определяется после того, как из несущего сигнала будут вычтены все обнаруженные периодические компоненты.

С целью получения более устойчивой характеристики ледовитости (устранение высокочастотных шумов) для каждого ледового сезона в исследуемом ряду были вычислены три варианта ее аккумулированных сумм путем последовательного сложения среднемесячных величин площади льда в различных сочетаниях (рис. 1).

Анализируя представленные на рис. 1 ряды, можно сделать заключение, что накопленные площади льда для вариантов 1 и 2 изменяются практически синхронно, а для ряда варианта 3 проявляется эффект как появления дополнительных пиков (1940, 1960 гг.), так и их сглаживания (1999 г.). По-видимому, это

Рис. 1. Накопленные суммы площади ледяного покрова Охотского моря за период 1935-2010 гг.: вариант 1 — сумма ледовитости за 2 мес (февраль и март) в период максимального развития ледяного покрова; вариант 2 — за 4 мес (январь-апрель) — в период наиболее устойчивой направленности развития ледовых процессов; вариант 3 — за 6 мес (декабрь-май)

Fig. 1. Data sets of the cumulative ice cover in the Okhotsk Sea for 1935-2010: 1) for two months of the maximal ice cover (February-March); 2) for four months which show stable trends (January-April); 3) for six months (December-May)

следствие дополнительного учета ледовитости в начальный (декабрь) и завершающий (май) периоды ледового сезона. Характерной особенностью развития ледовых процессов в указанные месяцы является их значительная изменчивость, поэтому и в начале, и в конце ледового сезона тренд на нулевом уровне значимости выделить не удается (Плотников, 2002). Также хорошо видно, что при различных вариантах учета площади льда экстремумы наблюдаются в разные годы.

Результаты и их обсуждение

Как было отмечено выше, суть метода последовательных спектров заключается в обработке и анализе спектров. При вычислении спектра по ограниченному участку сигнала (каким, по сути, является любой ряд гидрометеорологических параметров) возникают существенные искажения, связанные с неучтенными участками исследуемого ряда. С целью устранения таких искажений из основного сигнала вычитают компоненту, полученную путем сглаживания сигнала по интервалу, превышающему половину периода наблюдений для данного ряда. Поэтому до начала оценки последовательного спектра (на этапе подготовки данных к расчетам) была выполнена процедура устранения эффекта ограниченной продолжительности ряда наблюдений посредством вычитания из основных сигналов результатов сглаживания по интервалу 40 лет по формуле

t+20

y(t) = J y(t )dt, (1)

t-20

где y(t) — непрерывное среднее с усреднением по интервалу 40 лет; y(t) — исходный сигнал. В краевых зонах, когда точки для построения среднего выходили за область задания сигнала, им присваивались значения, равные значению сигнала в крайней точке. Полученный таким образом сигнал являлся рабочим материалом (далее рабочий сигнал) для дальнейшего анализа. После выполнения описанной процедуры по оставшемуся сигналу вычислялись последовательные спектры низкочастотной составляющей S(ffl) по формуле

162

S(c) = i (y(t) - y(t)) exp(imt) dt,

(2)

где со — частота.

По спектру S(ffl) вычислялось положение максимума ю0, для которого определялась гармоника Re S(ffl0) exp(iffl0t). Эта гармоника вычиталась из сигнала, и процесс циклично продолжался с его остатком. Весь процесс вычислений предусматривал оценку параметров для 40 гармоник. Пороговой считалась та гармоника, после которой вычисленные значения периода повторялись с точностью до трех значащих цифр, а значения амплитуды не убывали.

В рабочем сигнале для варианта 3 удалось определить (и впоследствии вычесть из него) 10 гармоник, а для варианта 2 — 7 гармоник. Для варианта 1 процесс вычисления останавливался уже на первом шаге в связи с выходом на некогерентную гармонику. Другими словами, главная компонента вариации данного ряда является некогерентной, поэтому предлагаемый метод не работает. В связи с этим ряд для варианта 1 из дальнейшего анализа был исключен.

В качестве примера в табл. 1 приведены характеристики последовательного спектра рабочего сигнала для варианта 2. Отчетливо видны характерные периоды вариаций, известные из анализа солнечной активности (Терез и др., 2007). Это периоды 11 лет, 24 года и 46 лет, а также период 17 лет, полученный нами ранее при анализе спектров вариаций стока р. Амур (Иванов и др., 2011). Чтобы наглядно можно было оценить вклад каждой гармоники в вариации исходного ряда, эти данные на рис. 2 представлены в одном масштабе.

Таблица 1

Последовательный спектр вариаций рабочего сигнала для варианта 2

Table 1

Sequential spectrum for the data set 2

№ п/п_Амплитуда, км2_Период, год_Фаза, радиан

~~1 179,6411 10,1736 1,2900

2 317,6878 17,9960 0,1022

3 236,3805 10,0925 1,3340

4 222,5980 24,1195 0,9685

5 151,0227 11,8731 0,4031

6 194,0464 46,3506 1,0999

7 113,8385 14,8861 1,1237

8_64,9919_98,0557_0,8571

Рис. 2. Исходный ряд и гармоники его последовательного спектра для варианта 2. Номер у линии соответствует порядковому номеру гармоники в табл. 1. Вертикальный масштаб одинаков для всех кривых

Fig. 2. Initial data set 2 and harmonics of its sequential spectrum. Serial number of harmonics (the same as in Tab. 1) are shown near the lines

JitlrttU

Сравнительный анализ прогностической и фактической кривых (рис. 3) позволяет заключить, что значительная часть рабочего сигнала при таком подходе не прогнозируется. Значительно лучшие результаты можно получить, если сам сигнал разделить на три части: 1 — усредненная часть рабочего сигнала (тренд), 2 — низкочастотная часть рабочего сигнала (периоды которой больше периода первой некогерентной компоненты) и 3 — высокочастотная часть рабочего сигнала (периоды которой меньше периода первой некогерентной компоненты).

Рис. 3. Прогноз рабочего сигнала для варианта 2

Fig. 3. Extrapolation of the data set 2

При составлении прогноза низкочастотной компоненты рабочего сигнала расчеты часто прекращаются вследствие выхода процесса вычислений на нулевую частоту, превышающую длительность исходного ряда наблюдений. В таких случаях для продолжения расчетов необходимо заново вычесть теперь уже из рабочего сигнала компоненту, сглаженную по половине интервала наблюдений (которая впоследствии добавляется к суммарному тренду), а остаток сигнала прогнозировать тем же методом путем независимых вычислений. При такой обработке низкие частоты в последующих вычислениях ограничиваются частотами первой некогерентной гармоники. Именно такая ситуация и возникла при анализе низкочастотной компоненты для вариантов 2 и 3.

При анализе трендовых составляющих сначала вычисляется тренд исходного ряда, затем тренд низкочастотной составляющей. Очищенный суммарный тренд получается посредством вычитания из исходного его низкочастотной компоненты. На рис. 4 видно, что сигнал содержит интенсивные когерентные низкочастотные компоненты, которые в конце 1970-х гг. изменяют направление тренда в обоих вариантах расчета. Из этого следует, что эффект глобального потепления, рассматриваемый как отрицательная производная тренда ледовитости, после учета низкочастотной компоненты существенно уменьшается и в последующие тридцать лет практически сводится к нулю.

На следующем этапе анализа исследуем сигнал, оставшийся после вычитания из рабочего сигнала низкочастотной компоненты прогноза. Эта часть вариаций также может быть спрогнозирована методом последовательных спектров. Но при этом из-за повторного вычитания компоненты, сглаженной по половине интервала наблюдений, теперь при анализе гармоник рассматриваются только компоненты с периодами меньше 12 лет. Такой прием применяется нами впервые. Ранее (Иванов и др., 2011) при составлении прогноза в работе все вычисленные в пределах первой полусотни гармоники были когерентными. В качестве примера в табл. 2 приведен расчет последовательного спектра высокочастотного сигнала, полученного описанным выше способом для варианта 2.

На следующем этапе по вычисленному последовательному спектру сигнала, представленному в табл. 2, был построен прогноз высокочастотной компоненты вариаций площади ледяного покрова для варианта 2 (рис. 5). На графике видно,

Рис. 4. Компоненты трендов низкочастотной составляющей для вариантов 2 и 3 Fig. 4. Trends of the low-frequency component for the data sets 2 and 3

Таблица 2

Последовательный спектр высокочастотной компоненты сигнала для варианта 2

Table 2

Sequential spectrum of the high-frequency component for the data set 2

№ п/п Амплитуда, км2 Период, год Фаза, радиан

1 342,435247 6,652837 0,575941

2 261,999251 10,199603 0,474324

3 291,508561 2,558266 1,313869

4 192,428063 4,774144 1,252014

5 185,254449 2,442673 1,218333

6 168,600871 8,544865 1,022712

7 152,510175 3,144571 0,564197

8 136,819493 2,676473 0,074437

9 136,330459 5,681565 0,781137

10 138,454850 4,444967 0,626411

11 122,706412 2,811325 0,786211

12 121,186393 5,143625 1,048763

13 111,452149 2,182967 0,519884

14 101,814230 11,171775 1,127559

15 94,511969 7,293884 1,339983

16 91,673485 4,194067 0,256830

Рис. 5. Высокочастотная компонента сигнала и ее прогноз, вычисленный методом последовательного спектра по 16 гармоникам

Fig. 5. The high-frequency component and its extrapolation by the method of sequential spectra method by 16 harmonics

что сумма 16 гармоник достаточно надежно отражает все характерные черты искомой кривой.

Сумма тренда, прогноза низкочастотной компоненты и прогноза высокочастотной компоненты и представляет собой суммарный прогноз вариаций площади ледяного покрова в Охотском море, составленный методом последовательных спектров. При составлении прогноза вычисленный тренд линейно продлевался также на последующие 20 лет (рис. 6).

Рис. 6. Суммарный прогноз вариаций площади льда и ее тренда в Охотском море: а — для варианта 2; б — для варианта 3

Fig. 6. Forecast of the ice cover variation in the Okhotsk Sea based on the data sets 2 (a) and 3 (б)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

На графиках хорошо видно, что кривые суммарного прогноза для обоих вариантов достаточно надежно повторяют исходные ряды, но при этом каждая из них имеет свои особенности в отклонениях. Общим моментом является значительное занижение прогнозного минимума ледовитости в 2009 г. (на 13 % для варианта 2 и на 16 % для варианта 3 от его истинного значения). Приблизительно такая же ситуация сохраняется и в 2010 г. Если проанализировать относительную ошибку прогноза на каждом этапе исследования (имеющего свою точность вычисления прогнозируемой величины), то можно отметить, что минимальный размах в варианте 2 и максимальный в варианте 3 приходится на конец ряда наблюдений (табл. 3). На остальных этапах они примерно одинаковы, а для середины ряда, как и при оценке общей точности наблюдений, ошибка прогноза приближается к 20 %.

Таблица 3

Оценка относительной ошибки прогнозов, %

Table 3

Estimations of the forecast errors, %

1935-1956 гг. 1957-1992 гг. 1993-2010 гг.

Для расчета по варианту 2

+ 11...-21 +13...-18 + 17...-9

Для расчета по варианту 3

+ 11...-18 + 18...-13 +27...-20

Вычисленные методом последовательных спектров варианты прогнозов уточняют и дополняют сделанное ранее прогностическое предположение о регио-

нальном похолодании и ухудшении ледовой обстановки в Охотском море в ближайшие десятилетия (Шейкин и др., 2009). Такое предположение было сделано на основе анализа графиков накопленных значений многопараметрического индекса ENSO (Wolter, Timlin, 1993, 1998), на которых отчетливо проявляется 60-летний цикл колебаний феномена Эль-Ниньо — Ла-Нинья. Смена направления тенденций исследуемой величины с отрицательной на положительную произошла в 1976 г. Следующая смена направления тенденций приходится на период 2006-2007 гг. Wolter и Timlin (1993, 1998) показали, что в Охотском море отклик термического и ледового режимов на явления Эль-Ниньо (положительные значения индекса ENSO) и Ла-Нинья (отрицательные значения индекса ENSO) наблюдается с задержкой на 1-2 года после фиксации искомого события. Наиболее отчетливо колебания значений накопленной температуры воздуха в теплый и холодный периоды года и площадей ледяного покрова проявляются при абсолютной величине индекса ENSO > 1. Так, значимое увеличение ледовитости наступало после периодов ярко выраженного (сильного) Ла-Нинья в 1955-1957 гг., в 1964, в 1974-1976, в 1989, в 1999-2000 и в 2006 г. (рис. 6, исходный ряд). Прогнозируемые в данной работе периоды увеличения площади ледяного покрова в Охотском море в 2013-2014 и 2021-2022 гг. хорошо согласуются с логической схемой прогноза катастрофических и сильных Эль-Ниньо (Бендик, Яковлев, 2006). Данное направление требует дополнительных исследований.

В настоящее время сделать оценку прогноза на перспективу пока не представляется возможным. Она может быть оценена только апостериорно, после завершения срока наблюдения. Однако существует еще методическая ошибка, определяющаяся точностью и полнотой данных, которую можно посчитать. Основой такой оценки является сравнение прогнозов, полученных по рядам различной длительности наблюдений. Различия прогнозных величин площади ледяного покрова и определяют методическую погрешность, обусловленную неполнотой измерений. В настоящей работе такая оценка была выполнена для варианта 3 по вычисленным прогнозам для полного ряда наблюдений (1935-2010 гг.) и ряда наблюдений по второму и третьему этапам (1957-2010 гг.). На рис. 7 приведены графики прогноза обоих рядов для общего временного интервала. Хорошо видно, что прогностическая кривая, построенная по короткому ряду, при сохранении в целом характера изменчивости имеет значительно больший размах.

Рис. 7. Прогноз вариаций площади льда Охотского моря для варианта 3, рассчитанный по рядам разной продолжительности: ряд 1 — с 1936 по 2010 г.; ряд 2 — с 1956 по 2010 г.

Fig. 7. Forecasts of the ice cover variation in the Okhotsk Sea based on different samples from the data set 3: 1 — 1936-2010, 2 — 1956-2010

Для оценки качества прогноза удобно рассматривать безразмерную величину отношения квадрата разности первого и второго прогнозов к средней геометрической квадратов обеих величин (рис. 8). На рис. 8 видно, что при прогнозе по

167

короткому ряду наблюдаются ошибка тренда и ошибка фазы периода 11-летних колебаний, которые начинают сказываться на 10-й прогнозный год. Фактически это соответствует ошибке ~ 6 % к концу срока прогноза. Таким образом, суммируя все ошибки, можно заключить, что точность прогнозной оценки вариаций площади ледяного покрова в Охотском море для каждого конкретного года, рассчитанной методом последовательных спектров, будет составлять ~ 25-30 % от фактической площади льда.

Рис. 8. Методическая ошибка прогноза

Fig. 8. Relative difference between the forecasts based on the samples with different length

Согласно прогностической кривой, вычисленной для варианта 2 (см. рис. 6, а), увеличение ледовитости моря до среднего уровня и выше (средняя величина аккумулированной площади ледяного покрова для исследуемого ряда по варианту 2 составит 3 990 тыс. км2) должно произойти в ледовые сезоны 2013 и 2014 гг. Превышение будет незначительным, не более 5 % (годы-аналоги: 1999, 2002 и 2003). К 2016 г. ледовитость значительно снизится (год-аналог — 2006). Далее последует повышение ледовитости, и в ледовые сезоны 2021 и 2022 гг. она вновь может превысить средние значения приблизительно на 10 % (год-аналог — 1997). Во второй половине 2030-х гг. характерные ежегодные колебания будут происходить на общем фоне ее понижения.

Согласно прогностической кривой, вычисленной для варианта 3 (рис. 6, б), увеличение ледовитости моря до нормы также предполагается в 2013 и 2014 гг. (средняя величина накопленной площади ледяного покрова для исследуемого ряда по варианту 3 составит 4 690 тыс. км2). Затем заметное понижение ледови-тости к 1916 г. и далее характерные ежегодные колебания ледовитости в пределах ее средних значений до конца 2020-х гг., при этом повышение 2021 и 2022 гг. значимо не выражено.

Таким образом, оба варианта прогноза дают практически идентичный результат. Полученная оценка изменения ледовитости во втором десятилетии XXI века не противоречит сверхдолгосрочному прогнозу, представленному ранее (Сорокин и др., 2002). При таких сверхдолгосрочных прогнозах количественную величину прогноза целесообразно оценивать пока только на качественном уровне, поскольку она является многофакторной функцией, характеризующей эволюцию ледяного покрова комплексом прямых и обратных связей, происходящих в системе океан — ледяной покров — атмосфера. Корректнее говорить о направленности развития ледовых процессов в ту или иную сторону. В прогнозе суммарного тренда ледовитости отчетливо проявляются колебания периодов 17 и 46 лет (см. табл. 1). По другим сведениям (Сорокин и др., 2002), периоды этих колебаний составляют 18 и 50 лет.

Следует обратить внимание еще на один не основной, но достаточно неожиданный результат исследований. При анализе аккумулированных запасов тепла

и холода в атмосфере по 120-летним рядам наблюдений за среднесуточной температурой воздуха (Разуваев, 1993; http://cdiac.ornl.gov/climate/variables.html; http://www.rp5.ru/; http://meteo.ru/) был получен промежуточный вывод, что понижение ледовитости в последние 30 лет обусловлено повышением температуры воздуха в весенний период и соответственно смещением дат перехода температуры воздуха через 0 °С на более ранние сроки. Этот вопрос требует дополнительной проработки и должен стать предметом дальнейших исследований.

Также находит свое подтверждение выдвинутая ранее гипотеза (Хен, 1997; Плотников, 2002; Сорокин и др., 2002), что 11-летний цикл колебаний ледовитости связан с солнечной активностью. Анализ последовательных спектров солнечной активности, проведенный на основе измерений солнечного радиоизлучения на длине волны 10,7 см, проведен ранее (Терез и др., 2007). Последовательный спектр когерентных гармоник колебаний солнечной активности, записанной как вариация интенсивности радиоизлучения с длиной волны 10,7 см, показан в табл. 4. Аналогичный спектр был вычислен и для чисел Вольфа. На графиках (рис. 9) отчетливо видно, что с точностью до погрешностей вычисления фаза колебаний площади льда противоположна фазе солнечного радиоизлучения и фазе чисел Вольфа. Данный факт свидетельствует о том, что колебания площади льда с периодом 10,5 года связаны с вариациями колебаний солнечной активности.

Таблица 4

Спектральные линии вариаций солнечного радиоизлучения (Терез и др., 2007)

Table 4

Sequential spectrum of solar activity variation (from: Терез и др., 2007)

№ п/п Амплитуда, км2 Период, год Фаза, радиан

1 64,5291 10,7243 0,5074

2 -16,3683 7,9881 -0,9133

3 -14,7728 28,1129 -1,0801

4 11,810 5,3485 0,1818

5 7,1064 12,4669 -0,1137

6 5,7106 9,3858 -1,1805

7 5,4962 3,2283 -0,0100

8 5,4694 2,6515 -0,9745

9 5,0913 2,3234 -0,0082

10 -5,0778 0,9264 0,2178

11 4,7893 5,7988 -0,3914

12 4,3134 50,4093 0,1851

13 4,3281 3,5047 -0,6697

14 -4,0438 17,4297 1,2881

15 -3,7606 1,0106 0,2622

Следует обратить внимание на тот факт, что вывод о связи колебаний площади льда с вариациями солнечной активности (Хен, 1997) был сделан без выделения когерентных компонент, что привело к определенной неоднозначности. В частности, там утверждалось, что в период похолодания (до 1980-х гг.) фаза солнечной активности совпадала с фазой вариаций площади льда, а в период потепления фазы обоих процессов стали противоположными (как это и обнаружено в нашем исследовании). В работе Э.И. Тереза с соавторами (2007) показано, что колебание солнечной активности с 11-летним циклом является сложной комбинацией трех различных колебаний. Поэтому выделение когерентных компонент является необходимым условием для однозначных заключений, так как каждая из составных гармоник может быть связана со специфическим механизмом действия.

Некоторые замечания можно сделать и относительно вычисленной ранее высокочастотной компоненты (см. рис. 5). Источником этой компоненты также

Рис. 9. Сопоставление фаз колебаний гармоники площади льда (ряд 1) с фазой колебаний солнечной активности (числа Вольфа, ряд 2) и с фазой вариаций солнечного радиоизлучения на длине волны 10,7 см (ряд 3). Анализируется сильнейшая гармоника с периодом 10,5 года

Fig. 9. Comparison of phases for the strongest (10.5-year) harmonic of the ice cover variation in the Okhotsk Sea (1) and for the variations of solar activity (2) and solar radio emission on the wavelength 10.7 cm (3)

является солнечная активность (9-я строка последовательного спектра в табл. 4). Однако особенность ее проявления состоит в том, что она наблюдается на комбинации частот квазидвухлетней составляющей (период 2,3 года) и 10,7-летних колебаний, амплитуды которых значительно больше амплитуды самой гармоники периода 2,3 года, отчетливо прослеживающейся в последовательном спектре вариаций площади ледяного покрова (см. табл. 2).

Выводы

Прогноз вариаций площади ледяного покрова в Охотском море, выполненный методом последовательных спектров для двух вариантов подготовки исходных данных, позволяет составить сценарий ее изменчивости на период до 2030 г. В ближайшие годы будет преобладать тенденция увеличения ледовитости с достижением максимума в ледовые сезоны 2013 и 2014 гг. Затем знак тенденции поменяется на противоположный, и к 2016 г. ожидается понижение ледо-витости до минимума, примерно соответствующего ледовитости 2006 г. В последующее пятилетие ледовитость вновь увеличится до нормы (или даже несколько превысит ее) в ледовые сезоны 2021 и 2022 гг. Далее ежегодные колебания площади ледяного покрова будут происходить на общем фоне средних величин до конца 2030-х гг.

Вопрос о выборе предиктанта (аккумулированная сумма площадей льда за 4 или за 6 мес или дополнительный учет каких-либо других показателей эволюции ледяного покрова) на данном этапе исследований остается открытым. Для ответа на него необходимо предварительно выполнить детальную оценку точности вычисления ледовитости на всех этапах исследований и рассчитать переходные коэффициенты между ними, районировать акваторию моря по формальным ледово-географическим признакам и определиться с абсолютным значением величин площадей, вычисляемых в настоящее время с помощью ГИС-технологий, решить вопросы учета сплоченности, торосистости и толщины льда в массиве. Тогда появится возможность анализа изменчивости универсального предиктанта — объема льда в море или его отдельном районе, — который более тесным образом связан с гидрометеорологическими предикторами, чем ледовитость. В целом это позволит значительно улучшить качество прогноза.

Список литературы

Бендик А.Б., Яковлев В.Н. Комплексный подход к прогнозу Эль-Ниньо в юго-восточной части Тихого океана // Вопросы промысловой океанологии. — М. : ВНИРО, 2006. — Вып. 3. — С. 179-193.

Иванов В.В. Периодические колебания погоды и климата // Успехи физ. наук. — 2002. — Т. 122. — С. 777-811.

Иванов В.В. Тонкая структура годового спектра вариаций температуры в г. Алек-сандровск-Сахалинский // Метеорол. и гидрол. — 2005. — № 9. — С. 37-49.

Иванов В.В., Пищальник В.М., Леонов А.В., Любицкий Ю.В. К прогнозу разрушения ледяного покрова в устьях крупных рек // Изв. РАН. Сер. геогр. — 2011. — № 4.

Крындин А.Н. Сезонные и межгодовые изменения ледовитости и кромки льда на дальневосточных морях в связи с особенностями атмосферной циркуляции // Тр. ГОИН. — 1964. — Вып. 71. — С. 5-80.

Плотников В.В. Изменчивость ледовых условий дальневосточных морей России и их прогноз : монография. — Владивосток : Дальнаука, 2002. — 172 с.

Плотников В.В., Якунин Л.П., Петров А.Г. Ледовые условия и методы их прогнозирования // Проект "Моря". Гидрология и гидрохимия морей. Т. 9: Охотское море, вып. 1: Гидрометеорологические условия. — СПб. : Гидрометеоиздат, 1998. — С. 291-340.

Разуваев В.Н. Суточные данные о температуре воздуха и сумме осадков по 233 станциям СССР : монография. — Обнинск : НИИ гидрометеорол. информации, 1993. — 133 с.

Сорокин Ю.Д., Устинова Е.И., Хен Г.В. Долгопериодная изменчивость ледовито-сти дальневосточных морей и прогноз ее тенденций // 12-я Междунар. конф. по промысл. океанографии : тез. докл. — Калининград : АтлантНИРО, 2002. — С. 226-228.

Тамбовский В.С., Пищальник В.М. Мониторинг состояния ледяного покрова для обеспечения морских операций при поисковом бурении на нефть и газ на северном шельфе о. Сахалин // Лед и снег. — 2010. — № 3(111). — С. 89-94.

Терез Э.И., Иванов В.В., Терез Г.А. О влиянии солнечной активности на периодические вариации некоторых атмосферных и метеорологических параметров // Изв. Крым. астрофиз. обсерватории. — 2007. — Т. 103. — С. 191-197.

Хен Г.В. Основные закономерности многолетних изменений ледового покрова Охотского и Берингова морей // Комплексные исследования экосистемы Охотского моря. — М. : ВНИРО, 1997. — С. 64-67.

Шейкин И.Б., Трусков П.А., Пищальник В.М. Кумулятивный анализ метеорологических рядов для оценки и прогноза ледовых условий и изменений климата (по данным НДП Моликпак за 1999-2008 годы) // Тр. RAO/GIS Offshore 2009. Proceedings. — СПб. : Химиздат, 2009. — Т. 1. — С. 230-238.

Huang N.E. The Role of the Ocean in the Global Climate Change. PORSEC 2010. Proceeding. NTOU. — Keelung, Taiwan, 2010. — Р. 3.

Wolter K., Timlin M.S. Measuring the strength of ENSO events — how does 1997/98 // Weather. — 1998. — № 53. — P. 315-324.

Wolter K., Timlin M.S. Monitoring ENSO in COADS with a seasonally adjusted principal component index // Proc. of the 17th Climate Diagnostics Workshop. — Oklahoma, 1993. — P. 52-57.

Поступила в редакцию 10.02.11 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.