Научная статья на тему 'PRODUCTION OF PRODUCTS FROM RESINS OF UNDERGROUND COAL GASIFICATION'

PRODUCTION OF PRODUCTS FROM RESINS OF UNDERGROUND COAL GASIFICATION Текст научной статьи по специальности «Энергетика и рациональное природопользование»

CC BY
1
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
coal / metallurgy / gasification / coking / molar concentration. / уголь / металлургия / газификация / коксование / молярная концентрация.

Аннотация научной статьи по энергетике и рациональному природопользованию, автор научной работы — F. Qodirova

This article discusses the methods of using coal in metallurgy and the research methods obtained in gasification. This shows the importance of coal in the metallurgical industry.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ПРОИЗВОДСТВО ПРОДУКТОВ ИЗ СМОЛ ПОДЗЕМНОЙ ГАЗИФИКАЦИИ УГЛЯ

В данной статье рассматриваются способы использования угля в металлургии и полученные методы исследования при газификации. Это показывает важность угля в металлургической промышленности.

Текст научной работы на тему «PRODUCTION OF PRODUCTS FROM RESINS OF UNDERGROUND COAL GASIFICATION»

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 6 UIF-2022: 8.2 | ISSN: 2181-3337

PRODUCTION OF PRODUCTS FROM RESINS OF UNDERGROUND COAL

GASIFICATION Qodirova Feruza

Senior teacher of Namangan Engineering-Construction Institute https://doi.org/10.5281/zenodo.7105893

Abstract. This article discusses the methods of using coal in metallurgy and the research methods obtained in gasification. This shows the importance of coal in the metallurgical industry.

Keywords: coal, metallurgy, gasification, coking, molar concentration.

ПРОИЗВОДСТВО ПРОДУКТОВ ИЗ СМОЛ ПОДЗЕМНОЙ ГАЗИФИКАЦИИ УГЛЯ

Аннотация. В данной статье рассматриваются способы использования угля в металлургии и полученные методы исследования при газификации. Это показывает важность угля в металлургической промышленности.

Ключевые слова: уголь, металлургия, газификация, коксование, молярная концентрация.

INTRODUCTION

In connection with the depletion of natural hydrocarbon - raw material reserves in the Republic of Uzbekistan, work is underway to obtain hydrocarbon products from the processing of Angren brown coal. During the development of coal chemistry, the process was sufficiently developed, but at present, pyrocondensate and tar from underground coal gasification are used unskilledly, the latter gasification is a supplier of only energy gas.

MATERIALS AND METHODS

This is explained, firstly, by the fact that coal chemistry as a branch of industry has no independent significance and is constantly dependent on the situation in the ferrous metallurgy, and, secondly, by the low quality of its products obtained by existing methods. The latter leads to the fact that they do not find application in the organic synthesis industry, which prefers to use mass and high-quality refined products. Because the competitive ability of oil products is mainly due to the large scale of production and the low cost of raw materials. The development of coal chemistry will cease to depend on the conjuncture in ferrous metallurgy if new processes are developed based on flexible and selective principles for the separation and subsequent processing of the separated fractions by advanced physical and chemical methods.

RESULTS

A significant qualitative leap in the development of coal chemistry is possible with the creation of a single production based on chemical products of coking, semi-coking and underground gasification of coal. Cooperation on the basis of raw materials requires a thorough study of all the main factors affecting the efficiency of the process. As our studies have shown, hydrogenation under low pressure can completely process the resin - the main product formed during the pyrolysis of coal. Many regularities are common for resins of high-temperature and medium-temperature pyrolysis. The success of the hydrofinishing process is determined by the use of effective catalysts, the creation of optimal molar concentrations of hydrogen when the

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 6 UIF-2022: 8.2 | ISSN: 2181-3337

pressure is reduced to 5 atm, and the presence of low-boiling diluents [1]. The experiments were carried out on a flow unit with a reactor volume of 0.5 l. Pyrolysis resin of Angren brown coal was used as raw material.

An experimental sample of a catalyst system based on aluminium-nickel and molybdenum contributes to the formation of valuable chemical products during tar hydrocracking under underground coal gasification (CGC). To this end, we studied the process of hydrocracking of CCG tar from Angren coals in a microlaboratory setup at 550-650°C and a hydrogen pressure of 5.30 and 50 at. The molar concentration of hydrogen was constant in all experiments and was provided with hydrogen circulation of 1000 l/kg of raw material. Characteristics of the resin used as a raw material is given in table. 1. Hydrocracking was carried out with a mixture of raw materials and low-boiling diluent in a ratio of 1:1. The degree of conversion of raw materials and the yield of fractions were determined during the process.

Table 1 - Composition Properties of Narrow Fractions of CCGT Resin Sample

Boiling limits, 0C Exit %, Macc. Dense awn at 200C Relative molecul ar weight Index refraction at 200C Iodi ne num ber Qty. sulphat ed% Macc. Content on raw materials

Unsaturat ed hydrocar bons Aromat ic carbs prenata l

Before 100 2,75 0,928 2 135 1,5203 48,4 3 84,6 0,71 1,61

100-170 0,71 0,942 9 141 1,5210 46,8 8 90,0 0,18 0,45

170-200 4,75 0,961 0 138 1,5321 47,9 8 93,3 1,23 3,20

200-230 17,85 0,970 6 141 1,5471 51,5 7 93,3 5,12 11,50

250-270 5,85 0,983 3 159 1,5702 ,7 oo" o 4 96,7 1,78 3,87

270-300 12,74 1,002 8 177 1,5823 48,9 5 89,2 4,35 7,05

300-320 7,95 1,039 9 214 - - - - -

320-360 19,70 1,078 5 216 - - - - -

Rest above 360 20,60 - 478 - - - - -

Total 100,0 15,43* 30,00*

DISCUSSION

The catalytic system under study strongly retains hydrogen in pores. This basically prevents the flow of side processes at medium and low pressures. An increase in pressure partially suppresses coke formation.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 6 UIF-2022: 8.2 | ISSN: 2181-3337

The data of three series of experiments (at 550, 600 and 650°C) show that at 550°C the increase in pressure does not affect the formation of coke. This indicates that the rates of saturation of fragments of molecules with hydrogen are rather high compared to compaction reactions. At 600°C, the coke yield decreases from 1.2 to 0.3%, and at 650°C, from 1.3 to 0.5%. The decrease in coke formation can also be explained by the fact that more hydrogen is consumed with increasing pressure.

CONCLUSIONS

Experimental studies show an increase in the amount of formed aromatic hydrocarbons depending on the temperature increase as a result of the conversion of the remainder of the raw material, boiling above 320°C. A decrease in pressure can be compensated by an increase in temperature or a decrease in space velocity. From a technological point of view, it makes more sense to increase the temperature.

Comparing the results, we see that when the pressure is reduced from 50 to 5 atm and the temperature is increased from 550 to 600°C, in the first case, and from 600 to 650°C, in the second case, the depth of raw material conversion does not decrease, but increases. When the pressure is reduced to 5 atm, the degree of conversion of unsaturated hydrocarbons at temperatures of 550-600°C does not exceed 7.8%. This phenomenon can be explained by the fact that when the pressure is reduced, the residence time of an unsaturated hydrocarbon molecule in the chemisorbed state on the catalyst surface decreases so much that saturation of unsaturated compounds with hydrogen does not occur. With an increase in temperature from 600 to 650°C, the degree of conversion of unsaturated hydrocarbons increases, but apparently does not reach a maximum.

REFERENCES

1. Kodirova, F. U. (2019). Modern Approaches to Preparing Disabled Children for Social Life in Uzbekistan.

2. Qodirova, F. CURRENT ISSUES AND STRATEGIES OF PREPARING THE CHILDREN WITH LIMITED ABILITIES FOR SOCIAL LIFE IN UZBEKISTAN.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3. Кодиров, Д. Т., & Кодирова, Ф. М. (2021). Алгоритмы совместного оценивания вектора состояния и параметров динамических систем. Universum: технические науки, (7-1 (88)), 66-68.

4. Кодиров, Д. Т., Кодирова, Ф. М., & Юлдашбаев, А. А. (2022). АНАЛИЗ АЛГОРИТМОВ УПРАВЛЕНИЯ ПРОЦЕССОМ НИЗКОТЕМПЕРАТУРНОЙ СЕПАРАЦИИ. Главный редактор: Ахметов Сайранбек Махсутович, д-р техн. наук; Заместитель главного редактора: Ахмеднабиев Расул Магомедович, канд. техн. наук; Члены редакционной коллегии, 39.

5. Кодиров, Д. Т., & Кодирова, Ф. М. (2020). ПЕРСПЕКТИВНЫЕ ЭНЕРГОНОСИТЕЛИ БУДУЩЕГО. Вестник Науки и Творчества, (5 (53)), 50-53.

6. Кодирова, Ф. М. (2017). ПОЛУЧЕНИЕ КОНДИЦИОННЫХ УГЛЕВОДОРОДОВ ПЕРЕРАБОТКОЙ ПИРОКОНДЕНСАТА И ПОДЗЕМНОЙ ГАЗИФИКАЦИЕЙ УГЛЯ КОМПАУНДИРОВАНИЕМ. Вестник Науки и Творчества, (7 (19)), 15-18.

7. Кодирова, Ф. М. (2017). АЛЬТЕРНАТИВНОЕ КОМПАУНД-СЫРЬЁ ДЛЯ ПОЛУЧЕНИЯ ЗЕЛЁНЫХ УГЛЕВОДОРОДОВ. Вестник Науки и Творчества, (7 (19)), 11-14.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 6 UIF-2022: 8.2 | ISSN: 2181-3337

8. Хакимов, С. (2022). АКТИВ ВА ПАССИВ СЕЙСМИК УСУЛЛАРИ ^АМДА УЛАРНИНГ АСОСИЙ ВАЗИФАЛАРИ. Journal of Integrated Education and Research, 7(2), 30-36.

9. Abdunazarov, A., & Soliev, N. (2020). STUDY OF THE PERFORMANCE OF FRAMELESS CONSTRUCTION STRUCTURES UNDER THE INFLUENCE OF VERTICAL STRESSES OF ULTRA-SUBMERGED THE LYOSS SOILS. Студенческий вестник, 28(126 часть 3), 39.

10. Yuldashev, S., & Xakimov, S. (2022). ТЕМИР ЙУЛ ТРАНСПОРТИДАН КЕЛИБ ЧЩАДИГАН ТЕБРАНИШЛАР ХАСИДА. Science and innovation, 7(A5), 376-379.

11. Шаропов, Б. Х., Хакимов, С. Р., & Рахимова, С. (2021). Оптимизация режимов гелиотеплохимической обработки золоцементных композиций. Матрица научного познания, (12-1), 115-123.

12. Yuvmitov, A., & Hakimov, S. R. (2021). Influence of seismic isolation on the stress-strain state of buildings. Acta of Turin Polytechnic University in Tashkent, 77(1), 71-79.

13. Хакимов, С., Шаропов, Б., & Абдуназаров, А. (2022). БИНО ВА ИНШООТЛАРНИНГ СЕЙСМИК МУСТАХКАМЛИГИ БУЙИЧА ХОРИЖИЙ ДАВЛАТЛАР (РОССИЯ, ЯПОНИЯ, ХИТОЙ, А^Ш) МЕЪЁРИЙ ХУЖЖАТЛАРИ ТАХЛИЛИ. BARQARORLIK VA YETAKCHITADQIQOTLAR ONLAYNILMIY JURNALI, 806-809.

14. Ювмитов, А. С., & Хакимов, С. Р. (2020). ИССЛЕДОВАНИЕ ВЛИЯНИЯ СЕЙСМОИЗОЛЯЦИИ НА ДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЗДАНИЯ. Acta of Turin Polytechnic University in Tashkent, 70(2), 14.

i Надоели баннеры? Вы всегда можете отключить рекламу.