Научная статья на тему 'PRODUCTION OF MAGNETITE NANOPOWDER BY HYDROGEN REDUCTION FROM α-FEOOH HYDROXIDE COMPOUND UNDER ISOTHERMAL CONDITIONS'

PRODUCTION OF MAGNETITE NANOPOWDER BY HYDROGEN REDUCTION FROM α-FEOOH HYDROXIDE COMPOUND UNDER ISOTHERMAL CONDITIONS Текст научной статьи по специальности «Химические науки»

CC BY
51
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КИНЕТИКА / НАНОПОРОШОК МАГНЕТИТА / ВОДОРОДНОЕ ВОССТАНОВЛЕНИЕ / ИЗОТЕРМИЧЕСКИЕ УСЛОВИЯ / СТЕПЕНЬ ПРЕВРАЩЕНИЯ / КОНСТАНТА СКОРОСТИ / ЭНЕРГИЯ АКТИВАЦИИ / KINETICS / MAGNETITE NANOPOWDER / HYDROGEN REDUCTION / ISOTHERMAL CONDITIONS / REDUCTION DEGREE / RATE CONSTANT / ACTIVATION ENERGY

Аннотация научной статьи по химическим наукам, автор научной работы — Tien Hiep Nguyen, Nguyen Van Minh, Tang Viet Phuong, Tang Xuan Duong, Le Hong Quan

In this work, the process of obtaining magnetite nanopowder Fe3O4 by hydrogen reduction from α-FeOOH hydroxide compound under isothermal conditions was studied. The α-FeOOH nanopowder was prepared in advance by chemical precipitation from aqueous solutions of iron nitrate Fe(NO3)3 (10 wt. %) and alkali NaOH (10 wt. %) at room temperature, pH = 11, under the condition of continuous stirring. The hydrogen reduction process of α-FeOOH powder under isothermal conditions was carried out in a tube furnace in the temperature range from 310 to 375 °С. The study of the crystal structure and phase composition of the powder samples was performed by XRD phase analysis. The specific surface area S of the samples was measured using BET method by low-temperature nitrogen adsorption. The average particle size D of powders was calculated using the data of measuring the specific surface area S. The size and morphology characteristics of the particles were investigated by scanning and transmission electron microscopy method. The calculation of the kinetic parameters of the process of obtaining the Fe3O4 nanopowder under isothermal conditions was carried out using the Gray-Weddington model and the Arrhenius equation. It was found that the reduction process of the α-FeOOH nanopowder begins to accelerate strongly in the temperature range from 340 to 375 °С. The reduction rate constant at 375 °С is about 2 times that of the reduction at 310 °С. The value of the activation energy for the process of obtaining Fe3O4 nanopowder under isothermal conditions was ~ 36 kJ/mol, which indicates a mixed mode of limiting the kinetics of the process. It has been shown that the time-temperature regime of the reduction of the α-FeOOH hydroxide compound with holding at 340 °С for 3 h makes it possible to obtain a nanosized magnetite powder Fe3O4 with high purity at an increased rate of the process. The obtained Fe3O4 nanoparticles have a crystalline structure and generally have a polygonal or irregular shape, the size of which ranges from 30-80 nm with an average value of 65 nm, each of them being connected to several neighboring particles by isthmuses.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PRODUCTION OF MAGNETITE NANOPOWDER BY HYDROGEN REDUCTION FROM α-FEOOH HYDROXIDE COMPOUND UNDER ISOTHERMAL CONDITIONS»

HaHOTexHonomu u HaHOMaTepuanbi

DOI: 10.14529/met210107

PRODUCTION OF MAGNETITE NANOPOWDER BY HYDROGEN REDUCTION FROM a-FeOOH HYDROXIDE COMPOUND UNDER ISOTHERMAL CONDITIONS

Tien Hiep Nguyen1, htnru7@yandex.ru, Nguyen Van Minh2, chinhnhan88@gmail.com, Tang Viet Phuong3, sirtang83@gmail.com, Tang Xuan Duong4, duongvampire@mail.ru, Le Hong Quan4, quanttndvn@gmail.com

1 Le Quy Don Technical University, Hanoi, Vietnam,

2 Institute of Technology, Hanoi, Vietnam,

3 National University of Science and Technology "MISiS", Moscow, Russian Federation

4 Vietnam-Russia Tropical Centre, Hanoi, Vietnam

In this work, the process of obtaining magnetite nanopowder Fe3O4 by hydrogen reduction from a-FeOOH hydroxide compound under isothermal conditions was studied. The a-FeOOH nanopowder was prepared in advance by chemical precipitation from aqueous solutions of iron nitrate Fe(NO3)3 (10 wt. %) and alkali NaOH (10 wt. %) at room temperature, pH = 11, under the condition of continuous stirring. The hydrogen reduction process of a-FeOOH powder under isothermal conditions was carried out in a tube furnace in the temperature range from 310 to 375 °C. The study of the crystal structure and phase composition of the powder samples was performed by XRD phase analysis. The specific surface area S of the samples was measured using BET method by low-temperature nitrogen adsorption. The average particle size D of powders was calculated using the data of measuring the specific surface area S. The size and morphology characteristics of the particles were investigated by scanning and transmission electron microscopy method. The calculation of the kinetic parameters of the process of obtaining the Fe3O4 nanopowder under isothermal conditions was carried out using the Gray-Weddington model and the Arrhenius equation. It was found that the reduction process of the a-FeOOH nanopowder begins to accelerate strongly in the temperature range from 340 to 375 °C. The reduction rate constant at 375 °C is about 2 times that of the reduction at 310 °C. The value of the activation energy for the process of obtaining Fe3O4 nanopowder under isothermal conditions was ~ 36 kJ/mol, which indicates a mixed mode of limiting the kinetics of the process. It has been shown that the time-temperature regime of the reduction of the a-FeOOH hydroxide compound with holding at 340 °C for 3 h makes it possible to obtain a nanosized magnetite powder Fe3O4 with high purity at an increased rate of the process. The obtained Fe3O4 nanopar-ticles have a crystalline structure and generally have a polygonal or irregular shape, the size of which ranges from 30-80 nm with an average value of 65 nm, each of them being connected to several neighboring particles by isthmuses.

Keywords: kinetics, magnetite nanopowder, hydrogen reduction, isothermal conditions, reduction degree, rate constant, activation energy.

Introduction

Currently, magnetite Fe3O4 nanopowders (NP) have found wide application in various fields of science, technology, and medicine [1-4]. Fe3O4 nanoparticles (NPs) functionalized with biomolecules can be used as materials for targeted drug delivery in order to recognize or treat biological systems. Due to their magnetic properties, Fe3O4 NPs are also often used in magnetic hyperthermia to destroy tumor cells, in magnetic reso-

nance imaging (MRI) as contrast agents, to create actively antitoxic adsorbents in the field of nano-toxicology. In addition, dispersion, non-toxicity, and superparamagnetic properties make Fe3O4 NPs interesting for use in other fields, for example, in the manufacture of effective catalysts, biosensors, ferromagnetic liquids, as a feedstock for the synthesis of Fe NP by reduction [2, 3, 5-13].

The production of metals and oxides NP, including Fe3O4 NP, is carried out in various ways,

most of which are characterized by a number of disadvantages, such as high energy consumption, reduced productivity, and environmentally un-cleanness [5, 6, 9, 14]. Chemical-metallurgy method, which includes the stage of hydrogen reduction of oxygen-containing compounds, is a highly efficient method from a technology and economic point of view, because the method is quite simple in equipment, environmentally friendly and makes it possible to use industrial waste as a raw material, to regulate the dimensional characteristics of oxides and metals NPs in the course of their production [6, 15-17].

A big disadvantage of chemical-metallurgy method for producing oxides and metals NP is low productivity due to the low speed of the reduction process under conditions of holding at low temperatures. At that time, an excessive increase in the reduction temperature is not recommended because it leads to intensive processes of aggregation and sintering of NPs, respectively, to the formation of particles with a particle size outside the nanoscale range [13, 18].

Thus, the study of the kinetic characteristics of synthesizing process of Fe3O4 NP in order to find a way to accelerate it while guaranteeing the required properties of the obtained products is an important scientific-practical problem.

In this regard, the aim of this work is to study the kinetics of synthesizing process of Fe3O4 NP by hydrogen reduction from a-FeOOH NPs under isothermal conditions, as well as to analyze the structural and dimensional properties of the obtained magnetite nanoparticles.

Materials and methods

As materials for the preparation of Fe3O4 NP was used iron hydroxide (III) a-FeOOH NP, synthesized by chemical precipitation from aqueous solutions of iron nitrate Fe(NO3)3 (10 wt. %) and alkali NaOH (10 wt. %) at room temperature, pH = 11, and continuous stirring. Getting iron hydroxide proceeds by the reaction:

Fe(NO3)3 + 3 NaOH =

= FeOOHj + 3 NaNO3 + H2O. (1)

The pH was monitored with an "Expert-001" pH meter; the measurement error was ±0.03. Using a Buchner funnel, the obtained a-FeOOH precipitate was washed until the ions of the dissolved salt were completely washed off, which was controlled by the pH of the solution over the precipitate. Then the precipitate was dried at 40 °C for 48 h, the thickness of the filling of the hydroxide paste in the plates was no more

than 10 mm. The time-temperature regime of drying was determined experimentally for the complete removal of the precipitate of adsorbed water molecules from the sample while ensuring a high dispersion of a-FeOOH particles. Thereafter, the dried a-FeOOH was milled using a laboratory mill "Fritsch Pulverisette 2". The obtained a-FeOOH powder was analyzed for structural and dispersed properties and was used for further research.

The study of the kinetics of the process of obtaining Fe3O4 NP was carried out in a tubular furnace "SNOL 0.2/1250" in a hydrogen atmosphere at various temperatures. During the process, the following reaction took place:

6 FeOOH + H2 = 2 Fe3O4 + 4 H2O. (2)

The hydrogen generator "CAM-1" was used as a source of hydrogen; the relative humidity of the obtained hydrogen did not exceed 1%. To prevent the ignition of the resulting powders in air, after reduction, their surface was passivated in a stream of nitrogen taken from the dewar of liquid nitrogen.

The calculation of the degree of conversion (a) (u.fr.) (the ratio of the amount of the reagent that entered the reaction to its initial amount) was carried out according to the formula:

a =

m0 - m 6Ma-FeOOH

m

(3MH2O

+M о)

= 7.6 •-

(3)

mn

where m0 is the initial weight of the sample, kg; mt is the mass of the sample over time t, kg; MH O is the molar mass of water; MO is the molar mass of atomic oxygen.

The kinetics of synthesizing process of Fe3O4 NP by hydrogen reduction was studied using the model of Gray-Weddington [19]. The use of this model makes it possible to determine the values of the rate constant by the formula:

k • t = 1 - (1 -a)

1/3

(4)

where k is the rate constant, s- ; t is the reaction time, s.

The calculation of the activation energy (Ea) (J/mol) was carried out according to the experimental data obtained under isothermal conditions using the integral form of the Arrhenius equation:

F 1

ln k =--a •- + ln A,

R Т

(5)

where A is a constant (pre-exponential factor); T is temperature, K; R is gas constant, J/(mol K).

HaHOTexHOflomu u HaHOMaiepua^b

The phase composition of powder samples was determined by XRD phase analysis on a dif-fractometer "Difrey-401" (Russia) (Cr-Ka radiation) at room temperature. The size and shape of the obtained nanoparticles were investigated on scanning and transmission electron microscopes "TESCAN VEGA 3B" (SEM) (Czech Republic) and "LEO 912 AB OMEGA" (TEM) (Germany).

The specific surface area (5) (m2/kg) of the samples was measured by the BET method based on low-temperature nitrogen adsorption on a "NOVA 1200e" analyzer (USA). The average particle size of the powders was calculated from the measurement data of the S value using the formula:

D . (6)

p • S

where p is the pycnometric density of the material, kg/m3; D is average particle size, m.

Results and discussion

The XRD and SEM results for the NP sample of the initial a-FeOOH are shown in Fig. 1.

The result of XRD (Fig. 1a) showed that the initial sample is single-phase, containing only the hydroxide a-FeOOH phase. Analysis of the SEM image (Fig. 1b) revealed that a-FeOOH NPs mainly have an acicular shape with a length of up to 200 nm. The specific surface area S of a-FeOOH NP is 39.5 m2/g, respectively, the average size D of a-FeOOH NP is 44 nm.

In order to study the kinetic characteristics of synthesizing process of Fe3O4 NP under isothermal conditions, the dependences of the degree of conversion a on time t were obtained at different temperatures: 310, 325, 340, 355, 375 °C. These temperatures are in the range of intensive course of the reduction process, which was shown by the TG data in the work [18]. In Fig. 2 shows the curves of the dependence a(t) at different temperatures.

Fig. 1. XRD pattern (a) and SEM image (b) of the a-FeOOH NP sample

Fig. 2. Dependence a(t) at different temperatures

It can be seen that the reduction process of a-FeOOH NP begins to accelerate strongly in the temperature range from 340 to 375 °С. At temperature Т = 375 °С for 50 min of reduction, the value of a was 83%, which is approximately more than 1.5 times compared to the case at 310 °С (for the same time).

The rate constant k of synthesizing process of Fe3O4 NP was calculated using the Gray-Weddington equation (4). The result of calculating the values of k(T) is presented in Table 1.

According to the data in the table, it can be seen that the rate constant of reduction at 375 °С is about 2 times higher than the value obtained in the case of reduction at 310 °С.

To determine the activation energy Ea of synthesizing process of Fe3O4 NP by hydrogen reduction from a-FeOOH under isothermal conditions, the graphs of the dependence of the logarithm of the rate constant on the reciprocal temperature were plotted (Fig. 3) according to the Arrhenius equation (5).

The calculated Ea value was ~ 36 kJ/mol. Comparison of the obtained Ea value with the limiting values in the literature [20], it can be concluded that the synthesizing process of Fe3O4 NP by hydrogen reduction from a-FeOOH proceeds in a mixed mode of kinetics limiting. In this case, the rate of the general process of obtaining Fe3O4 NP is determined both by the rate of its own chemical reaction and by the rate of diffusion of reagents and reduction products through the powder layers; accordingly, an expedient way to accelerate the process can be both an increase in temperature and the elimination of diffusion layers by intensive mixing.

The next part of the work presents the results of study on the structural-dispersed characteristics of the reduction product of a-FeOOH NP at 340 °C, the holding time was 3 h (Fig. 4). On the one hand, this temperature is in the range of intensive acceleration of the process, and on the other hand, it is not too high, which, without

Table 1

The result of calculation of the rate constant k at different temperatures

Т 1 reduction ^ 310 325 340 355 375

a, u.fr.

t, min 15 0.08 0.11 0.11 0.12 0.13

25 0.26 0.29 0.36 0.38 0.43

35 0.37 0.42 0.60 0.61 0.70

50 0.55 0.56 0.72 0.75 0.83

k 104, s-1 0.6947 0.7669 1.1121 1.1745 1.4143

Fig. 3. Calculation of the activation energy in coordinates of the Arrhenius equation

HaHQTexHQ^omu u HaHOMaTepua^bi

Fig. 4. XRD pattern (a) and TEM image (b) of the Fe3O4 NPs obtained by hydrogen reduction from a-FeOOH NP at 340 °C, holding for 3 h

leading to intensive processes of aggregation and sintering of the obtained magnetite NPs, makes it possible to obtain a reduction product with an increased quality. Nevertheless, in practice, depending on the task, in order to accelerate the reduction process while ensuring the required properties of the obtained products, it is desirable to vary the reduction temperature in the considered range from 340 to 375 °C.

The XRD result (Fig. 4a) revealed that the composition of the sample under study is single-phase, consisting only of the Fe3O4 phase with a cubic crystal lattice. The pronounced peaks on the XRD diffraction pattern of the sample show the high crystalline nature of the obtained magnetite particles. Analysis of the TEM image (Fig. 4b) of the sample showed that Fe3O4 NPs mainly have a polygonal or irregular shape, the size of which ranges from 30-80 nm, each of them is connected to several neighboring particles by isthmuses. The measurement result S of Fe3O4 NPs is in good agreement with the result of microscopic analysis, the S value is 18.3 m2/g, which corresponds to the average size of Fe3O4 NPs D = 65 nm. Thus, the selected time-temperature regime for the reduction of the hydroxide compound a-FeOOH makes it possible to obtain nanosized crystalline magnetite powder with high purity at an increased rate of the process.

Conclusion

The kinetics of synthesizing process of Fe3O4 NP by hydrogen reduction from a-FeOOH under isothermal conditions at temperatures from 310 to 375 °C were studied. It was found that the reduction process of a-FeOOH NP begins to accelerate strongly in the temperature range from 340 to 375 °C. The reduction rate constant at 375 °C is about 2 times that of the reduction at 310 °C.

The value of the activation energy of synthesizing process of Fe3O4 NP was ~ 36 kJ/mol, which indicates a mixed mode of limiting the kinetics of the process. In this case, the rate of the general process is limited both by the rate of its own chemical reaction and by the rate of diffusion of reagents and reduction products through the layers of powders, respectively, an expedient way to accelerate the process is to increase the temperature or eliminate diffusion layers in the bulk of the powder sample by intensive mixing.

It has been established that the time-temperature regime of reduction of a-FeOOH with exposure at 340 °C for 3 h makes it possible to obtain a nanosized crystalline magnetite powder with high purity at an increased rate of the process. The obtained Fe3O4 NPs generally have a polygonal or irregular shape, the size of which ranges from 30-80 nm with an average value of 65 nm, and each of them is connected to several neighboring particles by isthmuses.

References

1. Bhushan B. (Ed.). Springer Handbook of Nanotechnology. 4th ed. Berlin, Springer-Verlag Heidelberg, 2017. 1500 p.

2. Ortega G., Reguera E. Biomedical applications of magnetite nanoparticles. Chapter 13. In book: Materials for Biomedical Engineering. Nanomaterials-Based Drug Delivery. Elsevier, 2019, pp. 397-434. DOI: 10.1016/b978-0-12-816913-1.00013-1

3. Rudakovskaya P.G., Beloglazkina E.K., Mazhuga A.G., Klyachko N.L., Kabanov A.V., Zyk N.V. Synthesis of magnetite-gold nanoparticles with core-shell structure. Moscow University Chemistry Bulletin, 2015, vol. 56, no. 3, pp. 181-189. (in Russ.) DOI: 10.3103/S0027131415030104

4. Dahman Y. Nanotechnology and Functional Materials for Engineers. Elsevier, Health Sciences Division, 2017. 282 p.

5. Morel M., Martínez F., Mosquer E. Synthesis and characterization of magnetite nanoparticles from mineral magnetite. Journal of Magnetism and Magnetic Materials, 2013, vol. 343, pp. 76-81. DOI: 10.1016/j.jmmm.2013.04.075

6. Pei W., Kumada H., Natusme T., Saito H., Ishio S. Study on magnetite nanoparticles synthesized by chemical method. Journal of Magnetism and Magnetic Materials, 2007, vol. 310, iss. 2, pp. 2375-2377. DOI: 10.1016/j.jmmm.2006.10.837

7. Klekotka U., Satula D., Nordblad P., Kalska-Szostko B. Layered magnetite nanoparticles modification - synthesis, structure, and magnetic characterization. Arabian Journal of Chemistry, 2020, vol. 13, iss. 1, pp. 1323-1334. DOI: 10.1016/j.arabjc.2017.11.002

8. Wei Y., Han B., Hu X., Lin Y., Wang X., Deng X. Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties. Procedia Engineering, 2012, vol. 27, pp. 632-637. DOI: 10.1016/j.proeng.2011.12.498

9. Wen X., Yang J., He B., Gu Z. Preparation of monodisperse magnetite nanoparticles under mild conditions. Current Applied Physics, 2008, vol. 8, iss. 5, pp. 535-541. DOI: 10.1016/j.cap.2007.09.003

10. Martínez-Mera I., Espinosa-Pesqueira M.E., Pérez-Hernández R., Arenas-Alatorre J. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature. Materials Letters, 2007, vol. 61, iss. 23-24, pp. 4447-4451. DOI: 10.1016/j.matlet.2007.02.018

11. Rashdan S., Selva Roselin L., Selvin R., Lemine O.M., Bououdina M. Nanoparticles for biomedical applications: Current status, trends and future challenges. In book: Biomaterials and Medical Tribology. Elsevier, Woodhead Publishing, 2013, pp. 1-132. DOI: 10.1533/9780857092205.1

12. Wallyn J., Anton N., Vandamme T.F. Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications-A Review. Pharmaceutics, 2019, vol. 11 (11), 601. DOI: 10.3390/pharmaceutics11110601

13. Ryzhonkov D.I., Konyukhov Y.V., Nguyen V.M. Kinetic regularities and mechanisms of hydrogen reduction of nanosized oxide materials in thin layers. Nanotechnologies in Russia, 2017, vol. 12, no. 11-12, pp. 620-626. (in Russ.) DOI: 10.1134/s1995078017060076

14. Kargin D.B., Mukhambetov D.G., Konyukhov Y.V., Altynov E.A., Aznabakiev K.R. Magnetic properties of iron and iron oxide nanopowders produced from rolling mill scale. XXIIInternational conference about permanent magnets, 2019, p. 107.

15. Filatov S.V., Zagainov S.A., Gileva L.Yu., Pykhteeva K.B. Development of the analysis of iron oxide reduction processes. Izvestiya. Ferrous Metallurgy, 2015, vol. 58, no. 9, pp. 658-661. (in Russ.) DOI: 10.17073/0368-0797-2015-9-658-661

16. Berdnikov V.I., Gudim Yu.A. Chemical reactions at reduction of iron from oxides by natural gas. Izvestiya. Ferrous Metallurgy, 2020, vol. 63, no. 1, pp. 84-86. (in Russ.) DOI: 10.17073/0368-0797-2020-1-84-86

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

17. Roshchin V.E., Roshchin A.V. General electron theory of reduction and oxidation of metals. Izvestiya. Ferrous Metallurgy, 2020, vol. 63, no. 3-4, pp. 271-285. (in Russ.) DOI: 10.17073/0368-0797-2020-3-4-271-285

18. Konyukhov Yu.V. [Development of scientific and technology foundations for synthesizing nanopowders from industrial raw materials and materials modification using energy-mechanical treatment. Dissertation of Dr. Sci. (Tech.)]. Moscow, NUST "MISiS", 2018. 303 p. (in Russ.)

19. Kolpakova N.A., Romanenko S.V., Kolpakov V.A. [Collection of problems in chemical kinetics]. Tomsk, TPU Publ., 2008. 280 p. (in Russ.)

20. Schmalzried H. Chemical kinetics of solids. Weinheim, VCH, 1995. 433 p.

Received 2 November 2020

УДК 621.762.24:544.4 DOI: 10.14529/met210107

ПОЛУЧЕНИЕ НАНОПОРОШКА МАГНЕТИТА ВОДОРОДНЫМ ВОССТАНОВЛЕНИЕМ ГИДРОКСИДНОГО СОЕДИНЕНИЯ а^еООН В ИЗОТЕРМИЧЕСКИХ УСЛОВИЯХ

12 3

Тиен Хиеп Нгуен', Нгуен Ван Минь2, Танг Вьет Фыонг3, Танг Суан Зыонг4, Ле Хонг Куан4

1 Государственный технический университет им. Ле Куй Дона, г. Ханой, Вьетнам,

2 Технологический институт, г. Ханой, Вьетнам,

3 Национальный исследовательский технологический университет «МИСиС», г. Москва, Россия

4 Российско-Вьетнамский тропический центр, г. Ханой, Вьетнам

В данной работе проведено изучение процесса получения нанопорошка магнетита Fe3O4 водородным восстановлением гидроксидного соединения а-РеООН в изотермических условиях. Нанопорошок а-РеООН заранее получали методом химического осаждения из водных растворов нитрата железа Ре^О3)3 (10 мас. %) и щелочи №ОН (10 мас. %) при комнатной температуре, рН = 11, при условии непрерывного перемешивания. Процесс водородного восстановления порошка а-РеООН в изотермических условиях проводили в трубчатой печи в интервале температур от 310 до 375 °С. Исследование кристаллической структуры и фазового состава образцов порошков выполняли методом рентгенофазового анализа. Удельную поверхность образцов измеряли методом БЭТ по низкотемпературной адсорбции азота. Средний размер частиц D рассчитали по данным измерения величины удельной поверхности. Размерные характеристики и морфологию частиц порошков изучали методом сканирующей и просвечивающей электронной микроскопии. Расчет кинетических параметров процесса получения нанопорошка Ре3О4 в изотермических условиях проводили с помощью модели Грея - Веддингтона и уравнения Аррениуса. Установлено, что процесс восстановления нанопорошка а-РеООН начинает сильно ускоряться в интервале температур от 340 до 375 °С. Константа скорости восстановления при 375 °С примерно в 2 раза больше, чем в случае восстановления при 310 °С. Величина энергии активации процесса получения нанопорошка Ре3О4 в изотермических условиях составила ~ 36 кДж/моль, что говорит о смешанном режиме лимитирования кинетики процесса. Показано, что временно-температурный режим восстановления гидроксидного соединения а-РеООН с выдержкой при 340 °С в течение 3 ч позволяет получить наноразмерный порошок магнетита Ре3О4 с высокой чистотой при повышенной скорости процесса. Полученные наночастицы Ре3О4 обладают кристаллической структурой и в основном имеют многоугольную или неправильную форму, их размер составляет 30-80 нм со средним значением 65 нм, при этом каждая из них соединена с несколькими соседними частицами перешейками.

Ключевые слова: кинетика, нанопорошок магнетита, водородное восстановление, изотермические условия, степень превращения, константа скорости, энергия активации.

Литература

1. Springer Handbook of Nanotechnology / Bhushan B. (Ed.). - 4th ed. - Berlin: Springer-Verlag Heidelberg, 2017. - 1500 p.

2. Ortega, G. Biomedical applications of magnetite nanoparticles. Chapter 13 / G. Ortega, E. Reguera // In book: Materials for Biomedical Engineering. Nanomaterials-Based Drug Delivery. - Elsevier, 2019. - P. 397-434.

3. Синтез наночастиц магнетит - золото, имеющих структуру типа ядро - оболочка / П.Г. Рудаковская, Е.К. Белоглазкина, А.Г. Мажуга и др. // Вестник Московского университета. Серия 2: Химия. - М.: Издат. дом МГУ. - Т. 56, № 3. - 2015. - С. 181-189. DOI: 10.3103/S0027131415030104

4. Dahman Y. Nanotechnology and Functional Materials for Engineers / Y. Dahman. - Elsevier, Health Sciences Division, 2017. - 282 p.

5. Morel, M. Synthesis and characterization of magnetite nanoparticles from mineral magnetite / M. Morel, F. Martínez, E. Mosquer // Journal of Magnetism and Magnetic Materials. - 2013. -Vol. 343. - P. 76-81. DOI: 10.1016/j.jmmm.2013.04.075

6. Study on magnetite nanoparticles synthesized by chemical method / W. Pei, H. Kumada, T. Natusme et al. // Journal of Magnetism and Magnetic Materials. - 2007. - Vol. 310, iss. 2. - P. 23752377. DOI: 10.1016/j.jmmm.2006.10.837

7. Layered magnetite nanoparticles modification - synthesis, structure, and magnetic characterization / U. Klekotka, D. Satula, P. Nordblad, B. Kalska-Szostko // Arabian Journal of Chemistry. - 2020. -Vol. 13, iss. 1. - P. 1323-1334. DOI: 10.1016/j.arabjc.2017.11.002

8. Synthesis of Fe3O4 Nanoparticles and their Magnetic Properties / Y. Wei, B. Han, X. Hu et al. // Procedia Engineering. - 2012. - Vol. 27. - P. 632-637. DOI: 10.1016/j.proeng.2011.12.498

9. Preparation of monodisperse magnetite nanoparticles under mild conditions / X. Wen, J. Yang, B. He, Z. Gu // Current Applied Physics. - 2008. - Vol. 8, iss. 5. - P. 535-541. DOI: 10.1016/j. cap.2007.09.003

10. Synthesis of magnetite (Fe3O4) nanoparticles without surfactants at room temperature / I. Martínez-Mera, M.E. Espinosa-Pesqueira, R. Pérez-Hernández, J. Arenas-Alatorre // Materials Letters. - 2007. - Vol. 61, iss. 23-24. - P. 4447-4451. DOI: 10.1016/j.matlet.2007.02.018

11. Nanoparticles for biomedical applications: Current status, trends and future challenges / S. Rashdan, L. Selva Roselin, R. Selvin et al. // In book: Biomaterials and Medical Tribology. - Elsevier, Woodhead Publishing, 2013. - P. 1-132. DOI: 10.1533/9780857092205.1

12. Wallyn, J. Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications-A Review / J. Wallyn, N. Anton, T.F. Vandamme // Pharmaceutics. - 2019. - Vol. 11 (11), 601. DOI: 10.3390/pharmaceutics11110601

13. Кинетические закономерности и механизмы восстановления водородом наноразмерных оксидных материалов в тонких слоях / Д.И. Рыжонков, Ю.В. Конюхов, В.М. Нгуен //Нанотехно-логии в России. - 2017. - Т. 12, вып. 11-12. - С. 620-626. DOI: 10.1134/s1995078017060076

14. Магнитные свойства нанопорошков железа и оксидов железа, полученных из окалины прокатных станов / Д.Б. Каргин, Д.Г. Мухамбетов, Ю.В. Конюхов и др. //XXIIМеждународная конференция по постоянным магнитам. - 2019. - С. 107.

15. Разработка методики анализа процессов восстановления оксидов железа / С.В. Филатов, С.А. Загайнов, Л.Ю. Гилева, К.Б. Пыхтеева // Известия высших учебных заведений. Черная металлургия. - 2015. - Т. 58, № 9. - С. 658-661. DOI: 10.17073/0368-0797-2015-9-658-661

16. Бердников, В.И. Химические реакции при восстановлении железа природным газом из оксидов / В.И. Бердников, Ю.А. Гудим //Известия высших учебных заведений. Черная металлургия. -2020. - Т. 63, № 1. - С. 84-86. DOI: 10.17073/0368-0797-2020-1-84-86

17. Рощин, В.Е. Общая электронная теория восстановления (окисления) металлов / В.Е. Ро-щин, А.В. Рощин // Известия высших учебных заведений. Черная металлургия. - 2020. - Т. 63, № 3-4. - С. 271-285. DOI: 10.17073/0368-0797-2020-3-4-271-285

18. Конюхов, Ю.В. Разработка научных и технологических основ синтеза нанопорошков из промышленного сырья и модификации материалов с использованием энергомеханической обработки: дис. д-ра техн. наук /Ю.В. Конюхов. - М. : НИТУ «МИСиС», 2018. - 303 с.

19. Колпакова, Н.А. Сборник задач химической кинетики / Н.А. Колпакова, С.В. Романенко, В.А. Колпаков. - Томск: Изд-во ТПУ, 2008. - 280 с.

20. Schmalzried, H. Chemical kinetics of solids /H. Schmalzried. - Weinheim, VCH, 1995. - 433 p.

Тиен Хиеп Нгуен, лектор, Государственный технический университет им. Ле Куй Дона, г. Ханой, Вьетнам; htnru7@yandex.ru.

Нгуен Ван Минь, канд. техн. наук, Технологический институт, г. Ханой, Вьетнам; chinhnhan 88@gmail .com.

Танг Вьет Фыонг, аспирант, Национальный исследовательский технологический университет «МИСиС», г. Москва; sirtang83@gmail.com.

Танг Суан Зыонг, исследователь, Российско-Вьетнамский тропический центр, г. Ханой, Вьетнам; duongvampire@mail.ru.

Ле Хонг Куан, исследователь, Российско-Вьетнамский тропический центр, г. Ханой, Вьетнам; quanttndvn@gmail.com.

Поступила в редакцию 2 ноября 2020 г.

ОБРАЗЕЦ ЦИТИРОВАНИЯ

FOR CITATION

Production of Magnetite Nanopowder by Hydrogen Reduction from a-FeOOH Hydroxide Compound under Isothermal Conditions / Tien Hiep Nguyen, Nguyen Van Minh, Tang Viet Phuong et al. // Вестник ЮУрГУ. Серия «Металлургия». - 2021. - Т. 21, № 1. - С. 66-74. DOI: 10.14529/met210107

Tien Hiep Nguyen, Nguyen Van Minh, Tang Viet Phuong, Tang Xuan Duong, Le Hong Quan. Production of Magnetite Nanopowder by Hydrogen Reduction from a-FeOOH Hydroxide Compound under Isothermal Conditions. Bulletin of the South Ural State University. Ser. Metallurgy, 2021, vol. 21, no. 1, pp. 66-74. DOI: 10.14529/met210107

i Надоели баннеры? Вы всегда можете отключить рекламу.