Научная статья на тему 'PROBLEMS OF SOLVING GEOMETRIC EQUATIONS USING MATHEMATICAL EQUATIONS'

PROBLEMS OF SOLVING GEOMETRIC EQUATIONS USING MATHEMATICAL EQUATIONS Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
18
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
triangle / catheter / hypothetical / diagonal / parallelopiped / theorem / proof / natural / presence / uniqueness

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Комилжон Асқарович Ражапов

This article describes how to solve a rectangular triangle with only one hypotenuse, or to solve all of its second catheters and hypotenuse, and to solve all three-dimensional equations when given the diagonal length of a rectangular parallel.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PROBLEMS OF SOLVING GEOMETRIC EQUATIONS USING MATHEMATICAL EQUATIONS»

PROBLEMS OF SOLVING GEOMETRIC EQUATIONS USING MATHEMATICAL EQUATIONS

Комилжон Аскарович Ражапов

Фаргона политехника институти п.ф.н доцент

ABSTRACT

This article describes how to solve a rectangular triangle with only one hypotenuse, or to solve all of its second catheters and hypotenuse, and to solve all three-dimensional equations when given the diagonal length of a rectangular parallel.

Keywords: triangle, catheter, hypothetical, diagonal, parallelopiped, theorem, proof, natural, presence, uniqueness

The article explores the algorithm for solving geometric problems in a simple algebraic way.

Issue 1: The hypotenuse of a right-angled triangle is equal to с. Determine the length of its a, b catheters in integers.

Here are three cases.

10. If x2 + = f , (f = c2, f > 2, f 6 N) equation (1) has a uniform natural solution, the a, b catheters of Xj — a, x — b,(a, b 6 N) right-angled triangle are determined by X = a, x = b, (a, b 6 N) one value.

Example: The hypotenuse of a right-angled triangle is с = 17 cm. Find all the values of its a, b cathode lengths.

Solution: Let's find the natural solutions of x2 + x2 = 289 the equation.

289 = 172 + O, n = 17, k = O, N(x; x ) 6 0 289 = 162 + 33 = 162 + 52 + 8, n = 16, k2 = 5, щ > k2, r22 = 8,N(x;x2) 6 0. 289 = 152 + 64 = 152 + 82,щ = 15,k3 = 8,щ > k3,r23 = 0,N(x;x) = (15;8)

289 = 132 + 120 = 132 + 102 + 20, щ = 13, k4 = 10, щ > k4, r24 = 20 ^ O, N(хг; x ) 6 0. equation (15; 8) has a natural solution of one binary pair.

Thus, the triangles of a triangle that satisfy the condition of the matter are the integers of a single length a = 15 sm, b = 8 sm.

20. If equation (1) has several natural solutions, catheters a, b of a right-angled triangle are not uniformly defined.

Example: The hypotenuse of a right-angled triangle is с = Тб5 sm in length. Find the entire length of its a, b catheter.

Solution: Let's find the natural solutions of x2 + = 65 the equation

65 = 82 +1 = 82 +12, n = 8, K = 1, n > K, r2 i = 0,N(x; x2) = (8;1)

65 = 72 +16 = 72 + 42, n = 7, K = 4, n > K, r2.2 = 0,N(x; x2 ) = (7; 4)

65 = 62 + 29 = 62 + 52 + 4, n = 6, K = 5, n > K, r2.3 = 4 ^ 0, N(x; x2 ) e 0 equa^on

(8;1>, (7;4> has a natural solution of two binary pairs

Hence, the triangles of triangles satisfying the condition of the problem are integers ax = 8 sm, b = 1 sm and a2 = 7 sm, b2 = 4 sm .

30 If equation (1) does not have a natural solution, the whole values of catheters a, b of a right-angled triangle will not exist.

Example: The hypotenuse of a right-angled triangle is C=7cm in length. Find the lengths of its A, B catheters for all values.

Solution: Let's find the natural solutions of x2 + = 49 the equation

49 = 72 + 0, n = 7, K = 0, n > K, r2.i = 0, N(x; x2) e 0

49 = 62 +13 = 62 + 32 + 4, n = 6, K = 3, n > K, r2.2 = 4 ^ 0, N(x; x2 ) e 0 49 = 52 + 24 = 52 + 42 + 8, n = 5, K = 4, n > K, r2.3 = 6 ^ 0, N(x; X ) e 0 49 = 42 + 33 = 42 + 42 + 17, n4 = 4, K4 = 4, n4 = K, r2.4 = 17 ^ 0,N(x; X ) e0 the equation does not have a natural solution.

50 the triangle that satisfies the condition of the problem does not have the values of the integer lengths.

Issue 2. Given the length of one catheter of a rectangular triangle b, the length of the hypotenuse c and its second catheter a.

Theorem 1. If one catheter of a right-angled triangle is b = p > 2 prime number, its second catheter a and hypotenuse c are defined by the integers. Proof. We use the following theorem to prove the above theorem. Theorem 2. If p > 2 is a prime number, then n is the only natural number that

satisfies equality (2n + 1)2 = (2n)2 + p2 (2)

Proof. Availability. (2) If we open and compact both sides of the equation, it p 2 -1

became 4n = p2 -1, n = (3).

The expression image to the right of equation is divisible by 4 because

p 2 -1-,

n =

4

is the even number p2-1 = (p-1)-(p +1). p-1,p +1 in the equation image.

p2 -1 p2 -1

It can be showed that n is unique by assuming ^ = n and = n. If we

say 2n+1 = c, 2n = a theorem 1 proves.

Example. One catheter of a rectangular triangle is b = p = 31 cm in length. Determine the second catheter A and the length of the hypotenuse C in integers.

Since b = p = 31 according to the theorem 2 is n =

p2 -1 _312 -1

= 240

4 4

according to the theorem 1 is c = 2n+1 = 2 ■ 240+1 = 48lsm, a = 2n = 2 ■ 240 = 480 sm

Example. ABC The height of the rectangular triangle at the right angle of the triangle to the hypotenuse is BD = h = 5 cm. The catheter and its hypotenuse projection are known to be integers of CD lengths. Find the lengths of the sides of the triangle.( Photo 1)

B

C

(1-photo) .

Since h = p = 5 according to the theorem 2 is n =

p2 -1 _ 52 -1

= 6 according to

4 4

the theorem 1 is BC = 2n+1 = 2 ■ 6+1 = l3sm, CD = 2n = 2 ■ 6 = 12 sm We determined that.

According to the metric relationship in a right-angled triangle, AD 12 = 52

equals. Using AD = —, we find that AB = — AC =169. M 12 12 12

The diagonal length of a rectangular parallellopiped is D, determine all three

dimensions in integers:

Here are three instances below.

10. If equation xj2 + x2 + x32 = g, (g = d2,g > 3,g e N) (3) has only one natural solution, the measurements A,B,C of a right-angled parallelalipipede x1 = a,x2 = b,x3 = c(a,b,c e N) are determined by a single value.

Example: The diagonal length of a rectangular parallellopiped is d = 7cm, find all the values of its three dimensions.

Solution: Let us find the natural solutions of equation xf + xl + x32 = 49. equation (2;3;6) has the only natural solution in triplicate pairs.

Therefore, the criteria for satisfying the condition are a = 2 sm, b = 3 sm, c = 6 sm dimensional parallellopiped dimensions.

20. If equation (3) has several natural solutions, the a, b, c measurements of a right-angled parallelalipiped are not uniformly defined.

Example: The diagonal length of a rectangular parallellopiped is A = 12 cm, find all the values of its three dimensions

Solution: Let us find the natural solutions of Equation x2 + x2 + x2 =441. Equation (20;5;4);(19;8;4);(18;9;6);(16;13;4);(16;11;8);(14;14;7)has natural solutions of six to three pairs.

So there are six parallellopeds, all three dimensions, satisfying the condition of the problem.

30. If equation (3) does not have natural solutions, the a, b, c measurements of the right-angled parallellopiped will not be integers.

Example: The diagonal length of a rectangular parallellopiped is d = >/10 cm find all the values of its three dimensions.

Solution: Let natural solutions of the equation x2 + x2 + x2 = 10. 10 = 32 +1 = 32 +12 + 0 m = 3,n = 1,k = 0,(0 й N) ,N(x; x; x3 ) e 0 . 10 = 22 + 6 = 22 + 22 + 2 = 22 + 22 +12 +1, m = 2,n2 = 2,k2 = 1,m2 = Щ > К, гз.г * 0,

N(x1; x2; x3 ) e0 .the equation does not have a natural solution.

Therefore, there are no parallellopipedes of all the three dimensions that satisfy the condition of the matter.

REFERENCES

1. Otabekov H.O., Khomidov I.O. "About a way of finding natural solutions of multivariate, high-order algebraic equations" Materials of the Ferghana Conference VII. Tashkent 2015

2. Раджабов А. К. Формирование продуктивности винограда: агротехнические, сортовые и экологические особенности. - 2000.

3. РАЖАПОВ К. А. МУАММОЛИ ГЕОМЕТРИК МАСАЛАЛАРНИ АЛГЕБРАИК ТЕНГЛАМАЛАРДАН ФОЙДАЛАНИБ ЕЧИШ //ЭКОНОМИКА. - С. 315-320.

4. Tojiyev R. et al. DESTRUCTION OF SOIL CRUST BY IMPULSE IMPACT OF SHOCK WAVE AND GAS-DYNAMIC FLOW OF DETONATION PRODUCTS //Innovative Technologica: Methodical Research Journal. - 2021. - Т. 2. - №. 11. - С. 106-115.

5. Tojiyev, R., Rajabova, N., Ortiqaliyev, B., & Abduolimova, M. (2021). DESTRUCTION OF SOIL CRUST BY IMPULSE IMPACT OF SHOCK WAVE AND GAS-DYNAMIC FLOW OF DETONATION PRODUCTS. Innovative Technologica: Methodical Research Journal, 2(11), 106-115.

6. Akbarov D. E. et al. Research on General Mathematical Characteristics of Boolean Functions' Models and their Logical Operations and Table Replacement in Cryptographic Transformations //CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES. - 2021. - Т. 2. - №. 11. - С. 36-43.

7. Akbarov, D. E., Kushmatov, O. E., Umarov, S. A., Bozarov, B. I., & Abduolimova, M. Q. (2021). Research on General Mathematical Characteristics of Boolean Functions' Models and their Logical Operations and Table Replacement in Cryptographic Transformations. CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES, 2(11), 36-43.

8. Abduolimova M. Q. J. Q. IKKITA BUZILISH CHIZIG'IGA EGA BO'LGAN GIPERBOLIK TIPDAGI TENGLAMALAR UCHUN CHEGARAVIY MASALA //Oriental renaissance: Innovative, educational, natural and social sciences. - 2021. - Т. 1. - №. 10. - С. 392-399.

9. Хаетов А. Р., Хайриев У. Н., Махкамова Д. Оптимальная квадратурная формула для приближенного вычисления интегралов с экспоненциальным весом и ее применение //Matematika Instituti Byulleteni Bulletin of the Institute of Mathematics Бюллетень Института. - 2021. - Т. 4. - №. 2. - С. 99-108.

10. Rashidjon R., Sattorov A. Optimal Quadrature Formulas with Derivatives in the Space //Middle European Scientific Bulletin. - 2021. - Т. 18. - С. 233-241.

11. Акбаров Д. Е. и др. Исследования Вопросов Необходимых Условий Крипто Стойкости Алгоритмов Блочного Шифрования С Симметричным Ключом //CENTRAL ASIAN JOURNAL OF MATHEMATICAL THEORY AND COMPUTER SCIENCES. - 2021. - Т. 2. - №. 11. - С. 71-79.

12. Шаев А. К., Нишонов Ф. М. Сингулярные интегральные уравнения со сдвигом Карлемана с рациональными коэффициентами //Молодой ученый. - 2018. - №. 39.

- С. 7-12.

13. Кравченко В. Г., Шаев А. К. Теория разрешимости сингулярных интегральных уравнений с дробно-линейным сдвигом Карлемана //Доклады Академии наук. -Российская академия наук, 1991. - Т. 316. - №. 2. - С. 288-292.

14. Nishonov F. M., Shaev A. K., Kurpayanidi K. I. SOME QUESTIONS OF THE ORGANIZATION OF INDIVIDUAL WORKS OF STUDENTS IN MATHEMATICS IN THE CONDITIONS OF CREDIT TRAINING //Theoretical & Applied Science. -2021. - №. 4. - С. 1-7.

15. Kosimov K., Mamayusupov J. Transitions melline integral of fractional integrodifferential operators //Scientific Bulletin of Namangan State University. - 2019.

- Т. 1. - №. 1. - С. 12-15.

16. Abdurazakov A., Mirzamahmudova N., Maxmudova N. "IQTISOD" YO'NALISHI MUTAXASSISLARINI TAYYORLASHDA MATEMATIKA FANINI O'QITISH USLUBIYOTI //Scientific progress. - 2021. - Т. 2. - №. 7. - С. 728-736.

17. Qo'Ziyev S. S., Mamayusupov J. S. UMUMIY O 'RTA TA'LIM MAKTABLARI UCHUN ELEKTRON DARSLIK YARATISHNING PEDAGOGIK SHARTLARI //Oriental renaissance: Innovative, educational, natural and social sciences. - 2021. - Т. 1. - №. 10. - С. 447-453.

18. Fayzullayev J. I., Sattorov A. M. AXBOROT VA PEDAGOGIK TEXNOLOGIYALAR INTEGRATSIYASI ASOSIDA TEXNIKA OLIY TA'LIM MUASSASALARI TALABALARINING KASBIY KOMPETENTLIGINI RIVOJLANTIRISH //Scientific progress. - 2021. - T. 2. - №. 7. - C. 330-336.

19. Sattorov A. M., Qo'Ziyev S. S. MATEMATIKA FANI O'QITUVCHILARINI TAYYORLASHDA FANLARARO INTEGRATSIYANING ASOSLARI //Scientific progress. - 2021. - T. 2. - №. 7. - C. 322-329.

20. Sattorov A. M., Xujaxonov Z. Z. Approach calculation of certain specific integrals by interpolating polynomials //Scientific Bulletin of Namangan State University. -2019. - T. 1. - №. 3. - C. 10-12.

i Надоели баннеры? Вы всегда можете отключить рекламу.