№ 8 (125)
август, 2024 г.
DOI - 10.32743/UniTech.2024.125.8.18092
PRINCIPAL TECHNOLOGICAL SCHEME OF PRODUCTION OF TSU-1 FOAM EXTINGUISHER
Sardor Toshboev
Teacher
of Bukhara College of Oil and Gas, Republic of Uzbekistan, Bukhara
Akmal Hafizov
Deputy Director of Bukhara College of Oil and Gas Industry for Educational and Educational Affairs, Republic of Uzbekistan, Bukhara
Erali Panoev
Associate Professor Of the Bukhara Engineering and Technological Institute, Republic of Uzbekistan, Bukhara
Bobir Olimov
Associate Professor Of the Bukhara Engineering and Technological Institute, Republic of Uzbekistan, Bukhara E-mail: chemistry292 [email protected]
ПРИНЦИПНАЯ ТЕХНОЛОГИЧЕСКАЯ СХЕМА ПРОИЗВОДСТВА ПЕНОГАСИТЕЛЯ ТСУ-1
Тошбоев Сардор
преподаватель Бухарского колледжа нефти и газа, Республика Узбекистан, г. Бухара
Хафизов Акмал
зам. директора Бухарского колледжа нефти и газа по учебной и воспитательной работе, Республика Узбекистан, г. Бухара
Панов Эрали
доцент,
Бухарский инженерно-технологический институт, Республика Узбекистан, г. Бухара
Олимов Бобир
доцент,
Бухарский инженерно-технологический институт, Республика Узбекистан, г. Бухара
ABSTRACT
This article provides information on the technological scheme of the TSU-1 defoamer with a new composition, synthesized to reduce foaming in absorbers during the amine purification of gases from sour components (H2S and CO2). Also, in the technological scheme, the parameters of the time, temperature and pressure required for the production of the finished product after the raw materials are separated into fractions in the rectification boilers, the synthesis process is carried out in the jacketed reactor, and then the finished product is obtained.
Библиографическое описание: PRINCIPAL TECHNOLOGICAL SCHEME OF PRODUCTION OF TSU-1 FOAM EXTINGUISHER // Universum: технические науки : электрон. научн. журн. Toshboev S. [и др.]. 2024. 8(125). URL: https://7universum.com/ru/tech/archive/item/18092
Л Д UNIVERSUM:
№ 8 (125)_ЛД ТЕХНИЧЕСКИЕ НАУКИ_август. 2024 г.
АННОТАЦИЯ
В статье представлена информация о технологической схеме пеногасителя ТСУ-1 с новым составом, синтезированного для снижения пенообразования в абсорбентах при аминной очистке газов от кислых компонентов (H2S и CO2). Также в технологической схеме указаны параметры времени, температуры и давления, необходимые для получения готового продукта после разделения сырья на фракции в котлах-ректификаторах, процесс синтеза проводится в реакторе с рубашкой, а затем получается готовый продукт.
Key words: jacketed reactor, capacity, TSU-1 defoamer, boric acid, hydrogen peroxide, waste hexane, rectification tank, raw materials.
Ключевые слова: реактор с рубашкой, емкость, пеногаситель ТСУ-1, борная кислота, перекись водорода, отработанный гексан, ректификационная емкость, сырье.
Introduction. Today, one of the main problems in gas processing plants is the loss of amine solution (absorbent) during the absorption process. The main reason for this is that in the process of cleaning gases from sour components with amine solutions, it foams as a result of various effects, and a certain part of the amine solution comes out with the purified gas and passes into the saturated amine solution. Normal foam turns into foam by contaminating surfactants. The most common foam control method is to add antifoam chemicals to the circulating solution stream to suppress foam[1]. Foaming in the absorber device during the amine gas purification process occurs due to various reasons.
Chemical methods of combating foaming are widely used in various fields. This method is very effective and sometimes the only acceptable method. A drop of defoamer is attracted to the bubble and spreads over the separation surface, reducing the film strength. As a result, small bubbles coalesce into larger ones, which are less stable and burst as they rise to the surface [2]. Therefore, the demand for chemicals that reduce or eliminate foaming is very high today. In order to eliminate this problem, foam extinguishers were
synthesized. This article describes the production technology of foam extinguishers.
Experimental parts. Based on the proposed technology (Fig. 1), a mixture of reagents (waste hexane) required for the composition was sucked from the tank (1) using a pump (7). After that, it was sent to the rectification furnace (2) for fractionation. In the rectification boiler (2), the temperature was 130°C-170°C, the pressure was 1.5-2 atm, and the time duration was 30 seconds [3-5]. Fraction II from the rectification boiler (2) was sent to the jacketed reactor (3) at 130°C-170°C to carry out the synthesis process with waste hexane mixture with oxidants in a ratio of 1.1:1 [6-8]. Oxidizing compounds (boric acid and hydrogen peroxide) in a 1:1 ratio were sent to the jacketed reactor (3) through the upper capacity (4). Products were mixed using a mixer (8) in a jacketed reactor (3). In order to provide heat, hot water was introduced from the lower part of the reactor (3) and discharged from the upper part. In the reactor (3), the temperature difference increased to 60°C in the first 30 minutes, and from the next 45 minutes it was kept around 85°C-90°C.
1- pump, 2- rectification boiler, 3- jacket reactor, 5- rectification boiler, 6- finished product capacity, 8- mixer, 9- manometer. Fraction II waste hexane product at a temperature of 130°C-170°C.
Figure 1. The principle technological scheme of obtaining TSU-1 foam extinguisher
№ 8 (125)
август, 2024 г.
From the 55th minute to the 120th minute, it was 95°C-105°C[9-11]. The temperature in the jacketed reactor (3) was maintained in the range of 95°C-105°C, the pressure was 1.3-1.8 atm., and the duration of the process was 120 minutes[12-14]. The resulting product was sucked from the lower part of the jacketed reactor (3) using a pump (7). Then, it was inserted from the middle part of the rectification skull (5) to divide it into fractions. In the rectification chamber (5), the temperature was 94°C-103°C, the pressure was 1-1.7 atm, and the time duration was 30 minutes. The light fraction unreacted
product from the upper part of the rectification boiler (5) was circulated back to the jacketed reactor (3) for processing. The TSU-1 foam quencher obtained at a temperature of 95°C-105°C was sent to the finished product capacity (6). For a certain period of time, the TSU-1 foam extinguisher was stored in the tank (6) for cooling purposes. After cooling, the finished product was removed from the container (6). Table 1 below shows the addition ratios of all reagents used for the synthesis process: boric acid, waste hexane, and hydrogen peroxide.
Table 1.
Raw material consumption ratio
№ Raw materials Ratio of components
1 waste hexane 1,1
2 boric acid 1
3 hydrogen peroxide 1
Conclusion. In this article, it can be concluded that a mixture of fraction II waste hexane at a temperature of 130°C-170°C was used to obtain the TSU-1 foam extinguisher. The pressure in the jacketed reactor used for its production was 1.3-1.8 atm, the temperature was 95°C-105°C, and the time duration was 120 minutes. TSU-1 synthetic foam extinguisher was produced for the purpose of extinguishing the foam generated during the gas cleaning process. Also, the laboratory tests on extinguishing the foam formed in the absorber during
gas cleaning were successfully carried out. The following results were obtained on the basis of various analyzes of the TSU-1 substance synthesized on the basis of this technological production scheme: the economic effect of using a foam suppressor is effective in suppressing the foam formed in the absorber during gas purification;
It was found that it is much cheaper than analogues brought from abroad, and the coefficient of useful work is high.
References:
1. Sardor Toshboev. Vohid Akhmedov. Erali Panoev. Bobir Olimov. Analysis of the anti foaming solution tsu, obtained on the basis of local antifoaming raw materials arising from gas cleaning. UNIVERSUM №4 (118) Aprel 2024.
2. Тошбоев С.У., Ахмедов В.Н., Паноев Э.Р. Исследование Процессов Пенообразования При Аминной Очистке Газов Central Asian Journal of Theoretical and Applied Science (CAJOTAS) ISSN: 2660-5317. Table of Content -Volume 4 No 10 (Oct 2023) https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1313.,163-169.
3. Паноев Эрали Ражаббоевич, Дустов Хамро Бозорович, & Ахмедов Вохид Низомович (2021). ПРОБЛЕМЫ КОРРОЗИИ В КИСЛЫХ КОМПОНЕНТНЫХ СИСТЕМАХ И СПОСОБЫ ЕЕ УМЕНЬШЕНИЯ. Universum: технические науки, (12-5 (93)), 47-50.
4. Toshboev S, Akhmedov V, Panoev E. Synthesis of higher fatty acid compound esters of higher fatty alcohols // Mejdunarodnaya nauchno-texnicheskaya konferensii «РгаЫеты, innovatsionnbie predlojeniya i resheniya v neftegazoximii i texnologii» provedennoy 14-15 dekabrya 2023 goda v Buxarskom injenerno - texnologicheskom institute. 2023.-P. 71-74
5. Toshboev S.U., Axmedov V.N., Panoev E.R. Issledovanie Protsessov Penoobrazovaniya Pri Aminnoy Ochistke Gazov Central Asian Journal of Theoretical and Applied Science (CAJOTAS) ISSN: 2660-5317. Table of Content -Volume 4 No 10 (Oct 2023) https://cajotas.centralasianstudies.org/index.php/CAJOTAS/article/view/1313.,163-169.
6. Toshboev S, Panoev E. Foaming processes in amine gas purification // models and methods for increasing the efficiency of innovative research: a collection scientific works of the international scientific conference (11 october 2023) - berlin:2023. part 27 - 215 p. https://interonconf.org/index.php/ger/article/view/7314/6317.
7. S.O'. Toshboyev, V.N. Axmedov, E.R. Panoyev, S.B. Usmonov «Kimyoning dolzarb muammolari» mavzusidagi Respublika ilmiy-amaliy anjuman materiallari Urganch (2024-yil 21-22-iyun).
8. Хайитова Д.Ф., Жамолов Ж.Ж., Паноев Э.Р., & Мирзаев Э.Э. (2023). Ю^ОРИ ХДРОРАТТА ЧИДАМЛИ КОРРОЗИЯ ИНГИБИТОРИНИ ОЛИШ УСУЛИ. Innovative Development in Educational Activities, 2(1), 9-13.
9. Паноев Э.Р., Мирзаев Э.Э., & Хайитова Д.Ф., Ж.Ж. Жамолов Виды коррозионных процессов, причины их классификации и происхождения, методы защиты от них. In France international scientific-online conference:"Stientific approach to the modern education system" colletions of scientific works. Part (Vol. 3, pp. 74-78).
№ 8 (125)
UNIVERSUM:
, ТЕХНИЧЕСКИЕ НАУКИ
• 7universum.com
август, 2024 г.
10. Toshboyev S.O'., Xafizov A.R., Axmedov V.N., Panoyev E.R. Gazlarni nordon komponentlardan tozalash qurilmalarida ko'piklanish sabablari va uni oldini olish QarDU xabarlari ilmiy-nazariy, uslubiy jurnal. 2024 (2) 2
11. E Panoev, M Murodov, D Xayitova, J Jamolov A Method for Reducing Corrosion During Gas Purification from Sulfur Components- Texas Journal of Engineering and Technology, 2022.
12. Панoeв Э.Р., Дустов Х.Б, Мирзаев М.Э., & Хайигова ДФ, Ж.Ж. Жамолов (2023). Исслeдoваниe эффeктивнoсти примeнeния различныx ингибитoрoв на нeфтeпeрeрабатывающиx завoдаx.
13. Panoev Erali, Murodov Malikjon, Bozorov Gayrat, & Usmonov Safar (2022). A METHOD FOR REDUCING CORROSION DURING GAS PURIFICATION FROM SULFUR COMPONENTS. Universum: технические науки, (10-7 (103)), 9-13.
14. Toshboyev S.O', Do'stov H.B, Axmedov V.N, Panoyev E.R, Ostonov F.I. Gazlarni absorbsion tozalashda ko'piklanish jarayonini tadqiq qilish. "Fan va Texnologiyalar taraqqiyoti" Ilmiy Texnikaviy jurnal. №1/2024 115 ISSN 2181-8193.