Научная статья на тему 'PRINCIPAL TECHNOLOGICAL SCHEME OF OBTAINING COMPOSITION MATERIALS FROM MODIFICATION OF POLYISOBUTYLE WITH POLYAR MONOMERS WITH THE PARTICIPATION OF FRIDEL-CRAFTS CATALYSTS'

PRINCIPAL TECHNOLOGICAL SCHEME OF OBTAINING COMPOSITION MATERIALS FROM MODIFICATION OF POLYISOBUTYLE WITH POLYAR MONOMERS WITH THE PARTICIPATION OF FRIDEL-CRAFTS CATALYSTS Текст научной статьи по специальности «Химические технологии»

CC BY
32
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
LEWIS ACID / POLYOLEFIN / CATION / ACRYLONITRILE / VINILACETATE / ALUMINAHALOGENIDE / ALKYLHALOGENIDE / HEXANE

Аннотация научной статьи по химическим технологиям, автор научной работы — Hajiahmedzade X.Sh., Bagirova E.T., Ahmedova I.V.

The reactor used to destroy and modify polyisobutylene in the laboratory has been made of pyrex glass. For the first time, Friedel-Crafts catalysts were found to be the initiators of a radical chain-chain mechanism for the destruction of polyisobutylene. Based on this mechanism, it has been modified with polar monomers (acrylonitrile and vinilacetate). This creates conditions for the production of new types of copolymers. At the same time, the destruction of polyisobutylene with the participation of Fridel-Krafts catalysts has been fully proven to be the initiator of the radical-chain mechanism. Polyisobutylen polyacrylonitrile (PIB-PAN) and polyisobutylene polyvinyl acetate (PIB-PAV) copolymers obtained are suitable raw materials for the production of various types of composite products. One of the main issues of chemical technology in the article is the transition of processes from a laboratory experimental plant to an industrial production facility. The problem set have been solved, mathematical calculations of the studied processes have been carried out, the basic technological scheme of modification of polyisobuty-lene with polar monomers acrylonitrile and vinilacetate and production of compositions based on them have been reflected

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PRINCIPAL TECHNOLOGICAL SCHEME OF OBTAINING COMPOSITION MATERIALS FROM MODIFICATION OF POLYISOBUTYLE WITH POLYAR MONOMERS WITH THE PARTICIPATION OF FRIDEL-CRAFTS CATALYSTS»

AZERBAIJAN CHEMICAL JOURNAL № 4 2022 ISSN 2522-1841 (Online)

ISSN 0005-2531 (Print)

UDC 66.011.001: 66.073.7: 66.073.38

PRINCIPAL TECHNOLOGICAL SCHEME OF OBTAINING COMPOSITION MATERIALS FROM MODIFICATION OF POLYISOBUTYLE WITH POLYAR MONOMERS WITH THE PARTICIPATION OF FRIDEL-CRAFTS CATALYSTS

X.Sh.Hajiahmedzade, E.T.Bagirova, I.V.Ahmedova

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan

heyat_mm@mail.ru

Received 13.07.2022 Accepted 03.08.2022

The reactor used to destroy and modify polyisobutylene in the laboratory has been made of pyrex glass. For the first time, Friedel-Crafts catalysts were found to be the initiators of a radical chain-chain mechanism for the destruction of polyisobutylene. Based on this mechanism, it has been modified with polar monomers (acrylonitrile and vinilacetate). This creates conditions for the production of new types of copolymers. At the same time, the destruction of polyisobutylene with the participation of Fridel-Krafts catalysts has been fully proven to be the initiator of the radical-chain mechanism. Polyisobutylen poly-acrylonitrile (PIB-PAN) and polyisobutylene polyvinyl acetate (PIB-PAV) copolymers obtained are suitable raw materials for the production of various types of composite products. One of the main issues of chemical technology in the article is the transition of processes from a laboratory experimental plant to an industrial production facility. The problem set have been solved, mathematical calculations of the studied processes have been carried out, the basic technological scheme of modification of polyisobuty-lene with polar monomers acrylonitrile and vinilacetate and production of compositions based on them have been reflected.

Keywords: Lewis acid, polyolefin, cation, acrylonitrile, vinilacetate, aluminahalogenide, alkylhaloge-nide, hexane.

doi.org/10.32737/0005-2531-2022-4-48-52 Introduction

3 types of devices are used in science and technology: experimental (laboratory); pilot (se-

Experimental device (laboratory)

At present, the main goal in the creation of a new technological process (facilities) is the rapid transition from a laboratory to an industrial facility. In this case, passive and active practice methods are used. Passive practice is a traditional method [1]. The course of the technological process is monitored for a long time (its technological parameters). In this case, the technological process should operate in normal mode, the development of experimental evidence and the construction of a mathematical model is carried out on the basis of classical regression and correlation analysis methods. In the active practice method, experiments are car-

mi-industrial); industrial installation. The figure shows the stages (devices) of creating a new technological process.

Industry device

ried out on the basis of a pre-prepared plan (practice planning). In this case, all the parameters that affect the process are changed at the same time [2]. As a result, in a short period of time, the interactions of the parameters are quickly determined. Thus, it is possible to reduce the number of experiments in the active practice method. The plan of experiments is selected on the basis of basic information about the object. At each stage, the optimal strategy is determined. The issue of planning experiments was proposed by the English scientist R. Fischer in 1930. In addition, the method of extreme experimental planning used by American scien-

Pilot device

(semi-industrial)

tists Boxing and Wilson is widely used. However, despite the shortcomings of the passive experiment method, based on classical regression analysis, this method is used in industrial setting [3].

Although the method of planning experiments is widely used in modern times in laboratory and pilot (semi-industrial) facilities, it is used occasionally in industrial facilities.

Clearly, the study of complex technological processes requires a lot of effort. Increasing the efficiency of scientific research, development, application, research and operation of new technological processes make it necessary to optimize these processes. In this case, the calculation, analysis, optimization and forecasting of chemical and technological processes the main means of installation are computers. Computers are based on a mathematical model operate [4].

As can be seen, a synthesis of existing regularities is applied to construct mathematical models of chemical technology processes. The existing regularities are determined by chemical kinetics, hydrodynamics, theory of mass transfer, thermodynamics and heat transfer, taking into account the changes in basic parameters over time [5].

It should be noted that the mathematical model must accurately express the properties of the modeled object. That is, the model must be adequate to the object under study. When the conformity of the created model is checked, the experimental values are compared with the calculated values. Ideal mixing reactors are known to be widely used in chemical technology [6].

Ideal mixing reactors are more widely used in the form of cascades. Their extensive description is explained by the fact that the preparation of ideal mixing reactors is simple, the temperature is easy to regulate, the joints of the apparatus are convenient, this allows to quickly clean their inner surfaces [7]. For example, during polymerization and reactions, the formation of aggregates by the dissolution of a solid causes the formation of a resin. For these reasons, mixing reactors are commonly used in continuous polymerization processes. At the same time, such reactors using organic synthe-

sis, plastics, explosives, synthetic rubber, etc. are widely used in industries [8].

Computers are widely used in modern petrochemical refining industries. Also, the need to increase the quantity and quality of products is growing day by day [9]. These requirements lead to the complication of production itself, the technology of the production process. As a result, production management becomes difficult. In order to overcome these difficulties, the optimal mode of operation of the technological process must be found and the technological process must be managed in an optimal mode. All of the mentioned above are solved with the help of control computing machines (computers) [10].

Explanation of the technological scheme

The following basic technological scheme is proposed for the implementation of the process of destruction and modification of PIB on an industrial scale [11].

In order to carry out the process of destruction and modification, the PIB is first cleaned of mechanical impurities [12].To do this, the required amount of PIB is added to the mixer (1) and mixed with a gradual addition of hexane until a solution of a certain viscosity is formed. The resulting solution is taken by the pump (2) and injected into a pressure filter. The sheet filter consists of sheets with a filter partition drawn on the frames. The filter first operates in the recirculation mode, i.e. the circulating mode is continued until the required purity is obtained by returning the filtered solution to the pump inlet. [18].When the required level of purity is reached, the filter is switched to normal operation and after the filter the solution is transferred to the settler (4) [13]. Here the solution is precipitated in an alcoholic medium and then enters the dryer (5). The dryer is connected to a vacuum system and drying is carried out under vacuum. The purified PIB enters the mixer (6) to prepare the pure PIB solution and the solution is prepared to the required concentration using hexane [14]. The prepared solution is fed to the flow and mass ratio regulator (9),

where it is fed to the reactor (10) after certain adjustments. To ensure the continuity of the process, the reactors are taken in pairs and controlled using a time diagram [15]. The reactors are connected to a vacuum system and the process is carried out under vacuum. At the catalyst preparation junction (8), a solution of the catalyst at the required concentration in hexane is prepared and a flow of mass ratio regulator is installed and is fed to the reactor (10). Destruction

takes place in the reactor for 8-10 hours under certain conditions [16].

After the destruction process, the AN monomer prepared at the AN and VA monomer preparation junction (7) is fed to the reactor (10) by regulating the flow and mass ratios [17]. The modification process takes place in the reactor within 1.5 hours and the product is transferred to the finished product capacity (11).

Principle technological process of PIB destruction and modification process schemes: 1. Mixer for the preparation of PIB; 2. Pump; 3.Sheet filter; 4.Sedimentary; 5.Drying apparatus; 6.Mixer for preparation of pure PIB solution; 7. Preparation junction of AN and VA monomers; 8. Catalyst preparation junction; 9.Consumer and mass ratio regulator; 10. Reactor; 11. Finished product capacity; 12. Capacitor.

The finished product capacity (11) is equipped with a condenser (12) and the vapors are condensed and removed from the system by means of a condenser [18]. The product is sent to use. The reactor is connected to the helium (He) line. During the process with VA, the He environment is created in the reactor, and then VA is fed to the reactor (10) [19].

Conclusion

For the first time, the existence of a chain radical mechanism during the destruction of polyisobutylene (PIB) in the presence of the Friedel-Krafts catalyst and their modification with polar monomers acrylonitrile and vinyl acetate fully proves this mechanism. This creates conditions for the production of new types of copolymers. Obtained polyisobutylene-polyacrylic nitrile copolymer and polyisobu-tylene polyvinyl acetate (PIB-PAN, PIB-PVA) copolymers are the raw materials suitable for the production of various types of composite products in the production.

References

1. Yusubov F.V. Kimya texnologiyasi proseslarinin riyazi modella§dirilmasi va optimalla§dmlmasi. Baki: 2015. S. 58- 63.

2. Kalbaliyev Q.i., Novruzova F.A., Haciahmadzada X.§. Radikal sistemlarin i§tiraki ila poliolfenlarin modifikasiyasi. Azerb.chem. j. 2015. № 3. P. 112115.

3. Naibova T.M. Yuksak molekullu birla§malarin kim-yasi, texnologiyasi. Baki: Qagioglu, 2014. 366 s.

4. Bilalov Y.M., Huseynov F.i., Abbasova L.M. Mo-difikasiya edilmi§ polimer kompozisiyalari. Baki: 2002. S. 8-14.

5. ibrahimov Q.§., Novruzova F.A., Haciahmadzada X.§. Fridel-Krafts katalizatorlarinin tasiri ila hall-edicida poliizobutilenin destruksiyasi va onun polyar monomerlarla qar§iliqli tasir proseslarinin kinetik modeli. Azarb. neft. tasar. jurnali 2010. № 8. S. 55-57.

6. Haciahmadzada X.§. Poliizobutilenin katalitik de-struksiyasi, modifikasiyasi proseslarinin tadqiqi, riyazi modella§dirilmasi va parametrlarinin hesab-lanmasi. Dissertasiya. Baki, 2017. S. 91-97.

7. Ozizov A.O., Alosmanov R.M., Okbarov O.H. Polimer kompozisiya materiallari. Baki, 2004. 171 s.

8. Смирнов Н.Н., Волжинский А.И. Химические реакторы в примерах и задачах. Л.: Химия, 1994. 259 с.

9. Mirzai Dzh.I., Ibragimov Ch.Sh., Gashimov F.A., Yusubov F.V. Planirovanie eksperimenta processa kataliticheskogo prevrashcheniya etilena na vyskokremnezemnom ceolite. Voprosy himii i himicheskoj tekhnlogii. 2008. № 3. C. 37- 39.

10. Ajnshtejn V.G. Obshchij kurs processov i apparatov himicheskoj tekhnologii. M.: Vyssh. shk., 2002. 872 s.

11. Kakhramanov N.T., Kasumova G.Sh., Osipchik V.S., Gadzhieva R.Sh. Iznosostoikie polimernye materialy. Struktura i svoistva. Plasticheskie massy. 2017. № 11-12. C. 8-15.

12. Braun D., Cherdron H., Rehahn M., Ritter H., Voit

B. Polimerlarin sintezi: Nazariyya va tacrüba: Osaslar, Metodlar, Tacrübalar. Springer Elm va Biznes Media. 2012. S. 75.

13. Ibragimov Ch.Sh., Novruzova F.A., Gadzhiah-medzade H.Sh., Halafov F.R. Kinetika reakcii modifikacii poliizobutilena akrilonitrilom i vinil-acetatom. Z. prikl. himii. 2006. T. 79. Vyp. 8. S. 1393-1394.

14. Haciahmadzada X.§. Poliizobutilenin katalitik de-struksiyasi va modifikasiyasinin kinetik modeli. Azerb. chem.j. 2010. №1. S. 201-204.

15. Pugacheva I.N. Modifikaciya sinteticheskih kauchu-kov mnogofunkcional'nymi dobavkami na osnove vtorichnyh polimernyh materialov. Himiya v in-teresah ustojchivogo razvitiya. 2016. № 5. S. 49-54.

16. Mamedli U.M. Sshitye i napolnennye kompozity na osnove poliolefinov. Izv. VUZov. Himiya i him. tekhnologiya. 2018. T. 61. Vyp. 6. S. 4-16.

17. Simonov-Yemelyanov I.D. Lattice parameters and structures of dispersed-filled polymer composition materials with an adjustable set of properties. Structures from composition materials. 2019. № 3.

C. 37-46.

18. Furmer I.E., Zajcev V.N. Obshchaya himi-cheskaya tekhnologiya. Uchebnoe posobie dlya prof. tekhn. uchilishch. M.: Al'yans, 2015. 178 s.

19. Kafarov, V.V. Sistemnyj analiz processov himicheskoj tekhnologii: osnovy strategii: monogra-fiya. M.: Izdatel'stvo Yurajt, 2019. 499 s.

20. Ignatenkov V.I. Obshchaya himicheskaya tekhnologiya: teorii, primery, zadachi. M.: Izdatel'stvo Yurajt, 2019. 195 s.

FRiDEL-KRAFTS KATALiZATORLARININ i§TiRAKI iLO POLiiZOBUTiLENiN POLYAR MONOMERLORLO MODiFiKASIYASINDAN KOMPOZiSYON MATERiALLARIN ALINMASININ

PRiNSiPiAL TEXNOLOJi SXEMi

X.§.Haci3hmadzad3, E.T.Bagirova, LV.Ohmadova

Laboratoriya §araitinda poliizobutilenin destruksiyasi va modifikasiyasini aparmaq ügün istifada edilan reaktor pireks ¡jü§asindan hazirlanmi§dir. ilk dafa olaraq Fridel-Krafts katalizatorlarinin poliizobutilenin destruksiyasinin radikal -zancirvari mexanizminin inisiatoru oldugu a§kar edilmi§dir. Bu mexanizma asaslanaraq onun polyar monomerlarla (akrilonitril va vinilasetat) modifikasiyasi aparilmishdir. Bu ise yeni tipli sopolimerlarin alinmasi ugün sarait yaratmi§ olur. Bununla da Fridel-Krafts katalizatorlannin i§tiraki ila poliizobutilenin destruksiyasi radikal-zancirvari mexanizminin inisiatoru oldugu tam sübüta yetirilmi§dir. Alinmi§ poliizobutilenin poliakrilnitril (PiB-PAN) va poliizobutilenin polivinilasetet (PiB-PAV) sopolimerlari istehsalatda müxtalif növ kompasiziyali mahsullann alinmasi ügün alveri§li xammaldir. Maqalada Kimya texnologiyasinin asas masalalarindan biri, proseslarin laboratoriya tacrüba qurgusundan sanaye istehsalat qurgusuna kegidi hayata kegirilmiijdir. Qar§iya qoyulan masalalar öz hallini tapmi§, tadqiq olunan proseslarin riyazi hesablamalan apanlmi§, poliizobutilenin polyar monomerlar olan akrilonitril va vinilasetatla modifikasiyalannin va onlarin asasinda kompozisyalann alinmasinin prinsipal texnoloji sxemi öz aksini tapmi§dir.

Acar sözlzr: Lyuis tur§usu, poliolefin, kation, akrilonitril, vinilasetat, alüminiumhalogenid, alkilhalogenid, heksan.

ОСНОВНАЯ ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ ИЗ ПОЛИИЗОБУТИЛЕНА, МОДИФИЦИРОВАННОГО ПОЛЯРНЫМИ МОНОМЕРАМИ С УЧАСТИЕМ

КАТАЛИЗАТОРОВ ФРИДЕЛЯ-КРАФТСA

Х.Ш.Гаджиахмедзаде, Э.Т.Багирова, И.В.Ахмедова

Реактор, используемый для деструкции и модификации полиизобутилена в лаборатории, изготовлен из стекла пирекс. Впервые установлено, что катализаторы Фриделя-Крафтса являются инициаторами радикально-цепного механизма деструкции полиизобутилена. На основе этого механизма полиизобутилен (ПИБ) был модифицирован полярными мономерами (акрилонитрилом и винилацетатом). Это создает условия для получения новых типов сополимеров. В то же время полностью доказано, что деструкция полиизобутилена с участием катализаторов Фриделя-Крафтса является инициатором радикально-цепного механизма. Полученные сополимеры полиизобутилен-полиакрилонитрила (ПИБ-ПАН) и полиизобутилен-поливинилацетата (ПИБ-ПАВ) являются пригодным сырьем для производства различных видов композиционных продуктов. Одним из основных вопросов химической технологии в статье является переход процессов от лабораторно-экспериментальной установки к промышленному производству. Решены поставленные задачи, проведены математические расчеты исследуемых процессов, отражена принципиальная технологическая схема модификации полиизобутилена полярными мономерами акрилонитрила и винилацетата и получения композиций на их основе.

Ключевые слова: кислота Льюиса, полиолефин, катион, акрилонитрил, винилацетат, алюмогалогенид, алкилгалогенид, гексан.

i Надоели баннеры? Вы всегда можете отключить рекламу.