Научная статья на тему 'Примеси кремния в ОЦК-железе: ab-initio моделирование свойств и энергетических параметров'

Примеси кремния в ОЦК-железе: ab-initio моделирование свойств и энергетических параметров Текст научной статьи по специальности «Физика»

CC BY
185
31
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПЕРВОПРИНЦИПНОЕ МОДЕЛИРОВАНИЕ / ОЦК-ЖЕЛЕЗО / ПРИМЕСИ КРЕМНИЯ / WIEN2K / FIRST PRINCIPLE SIMULATION / BCC IRON / SILICON IMPURITY

Аннотация научной статьи по физике, автор научной работы — Ридный Ярослав Максимович, Мирзоев Александр Аминулаевич, Мирзаев Джалал Аминулович

В программном пакете WIEN2k проведено первопринципное моделирование равновесной структуры и свойств атомов кремния, растворенных в ОЦК-железе. Для расчетов использовался полнопотенциальный метод линейных присоединенных плоских волн LAPW, с учетом обобщенного градиентного приближения PBE-GGA, в суперячейке из 54 атомов железа с периодическими граничными условиями. Это наиболее точный метод, используемый в рамках теории функционала плотности. В работе определены оптимальные значения основных параметров моделирования, позволяющие рассчитывать энергетические характеристики системы с точностью не менее 0,01 эВ. Энергия растворения кремния в ферромагнитное ОЦК-железе составила -1,19 эВ. Атомы кремния испытывают сильное взаимное отталкивание в первых двух координационных сферах, которое далее является спадающим. После третей координационной сферы отталкивание атомов становится близким к нулю. При растворении кремний не изменяет параметр ОЦК-решетки и не влияет на решетку железа. Магнитный момент атомов железа в первом окружении с 2,23 µB, уменьшается до 2,045 µB. Растворение 1,85 ат. % кремния приводит к уменьшению среднего магнитного момента на атом железа на 0,02 μB и снижению объемного модуля сжатия.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Ридный Ярослав Максимович, Мирзоев Александр Аминулаевич, Мирзаев Джалал Аминулович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

A SILICON IMPURITY IN BCC IRON: AB INITIO SIMULATION OF PROPERTIES AND ENERGY PARAMETERS

The ab initial modeling of the equilibrium structure and properties of silicon atoms in BCC iron is performed in WIEN2k software package. We have investigated iron employing the full potential linear augmented plane-wave LAPW method within the generalized gradient approximation PBE-GGA, in the supercell of 54 iron atoms with periodic boundary conditions. This is the most powerful technique in the framework of Density Functional Theory. The optimal values of the basic simulation parameters of silicon impurities in the BCC iron are determined. They allow calculating the energy performance of the system with an accuracy of not less than 0.01 eV. The calculation of energy of dissolution of silicon atoms in the ferromagnetic phase of BCC iron is conducted using the obtained simulation parameters. It amounts to -1.19 eV. Silicon atoms experience a strong mutual repulsion in the first two coordination spheres, which is further decreasing. After the third coordination sphere, the repulsion of the atoms becomes close to zero. During dissolution, silicon does not change the BCC lattice parameter and does not affect the iron lattice. The magnetic moment of iron atoms in the first environment decreases from 2.23 μB to 2.045 μB. Dissolution of 1.85 at. % of silicon leads to a decrease in the average magnetic moment per iron atom by 0.02 μB and a decrease in the bulk modulus of compression.

Текст научной работы на тему «Примеси кремния в ОЦК-железе: ab-initio моделирование свойств и энергетических параметров»

УДК 669.112.227.1:538.915

DOI: 10.14529/met170306

ПРИМЕСИ КРЕМНИЯ В ОЦК-ЖЕЛЕЗЕ: AB-INITIO МОДЕЛИРОВАНИЕ СВОЙСТВ И ЭНЕРГЕТИЧЕСКИХ ПАРАМЕТРОВ

Я.М. Ридный, А.А. Мирзоев, Д.А. Мирзаев

Южно-Уральский государственный университет, г. Челябинск, Россия

В программном пакете WIEN2k проведено первопринципное моделирование равновесной структуры и свойств атомов кремния, растворенных в ОЦК-железе. Для расчетов использовался полнопотенциальный метод линейных присоединенных плоских волн LAPW, с учетом обобщенного градиентного приближения PBE-GGA, в суперячейке из 54 атомов железа с периодическими граничными условиями. Это наиболее точный метод, используемый в рамках теории функционала плотности.

В работе определены оптимальные значения основных параметров моделирования, позволяющие рассчитывать энергетические характеристики системы с точностью не менее 0,01 эВ. Энергия растворения кремния в ферромагнитное ОЦК-железе составила -1,19 эВ. Атомы кремния испытывают сильное взаимное отталкивание в первых двух координационных сферах, которое далее является спадающим. После третей координационной сферы отталкивание атомов становится близким к нулю.

При растворении кремний не изменяет параметр ОЦК-решетки и не влияет на решетку железа. Магнитный момент атомов железа в первом окружении с 2,23 цв, уменьшается до 2,045 цв. Растворение 1,85 ат. % кремния приводит к уменьшению среднего магнитного момента на атом железа на 0,02 дв и снижению объемного модуля сжатия.

Ключевые слова: первопринципное моделирование; ОЦК-железо; примеси кремния; WIEN2k.

Введение

Сплавы на основе железа, несмотря на развитие производства других металлов, пластмасс, керамики, композитов, остаются основными конструкционными материалами. Исключительным достоинством черных металлов является, прежде всего, их дешевизна, а также универсальность - при помощи небольших добавок можно резко изменить свойства их сплавов. Бинарные сплавы железа Fe-C [1-3] и Fe-Si [4-6] методами компьютерного моделирования уже изучены довольно подробно. На данный момент представляют интерес расчеты тройных сплавов, например Fe-Si-C, используемые как конструкционные и как магнитомягкие материалы. Методами компьютерного моделирования для системы Fe-C [1-2] все оптимальные параметры уже установлены, необходимо провести оптимизацию параметров моделирования в системе Fe-Si.

Методика

В данной работе расчеты проводись пер-вопринципным полнопотенциальным методом LAPW [7], с учетом обобщенного градиентного приближения PBE-GGA в программном пакете WIEN2k [8]. ОЦК-железо моделирова-

лось в суперячейке, состоящей из 54 атомов железа. Для расчетов использовался вычислительный комплекс ЮУрГУ-Торнадо [9]. Основные параметры моделирования были установлены в работе [1]: RmKmax = 10, радиусы МТ-сфер - ^^е) = 2,00 а.е., Ecut = -7 Рб, Gmax = 20 Рб ' . Для интегрирования в обратном пространстве и вычисления электронной плотности использовалась схема Монхорста -Пака [10] с сеткой 4x4x4 £-точек в зоне Брил-люэна. Данные параметры моделирования обеспечили точность расчета энергии системы в 0,01 эВ.

Оптимизация параметров

моделирования

Анализ работ других авторов, где моделировались эффекты добавления кремния в программном пакете WIEN2k [4,11-14], показал, что наблюдается определенный разброс значения Rmí(Si), поэтому было выбрано несколько первоначальных радиусов Rmí(Si) = 1,8; 1,9; 2,0; 2,1 а.е. Оптимизация параметра решетки с данными параметрами МТ-сфер Si позволила получить оптимальный параметр решетки (рис. 1) a = 2,835 А, что совпадает с параметром решетки чистого ОЦК-железа. При изменении Rmí(Si) происходило

Параметр решётки, Рис. 1. Зависимость полной энергии системы от параметра решетки

Рис. 2. Зависимость полной энергии системы от

незначительное увеличение параметра решетки в третьем знаке после запятой, что при округлении не повлияло на результат.

После получения оптимального параметра решетки была проведена оптимизация Ят^1). Как видно из графика на рис. 2, в данном случае также не наблюдается минимум полной энергии, а лишь перегиб в районе 2,0 а.е. Так как по данным многих работ известно, что радиусы железа и кремния примерно равны, решено было выбрать = = Ят^е) = 2,00 а.е.

Моделирование растворения кремния

При растворении кремний изменяет магнитные моменты атомов железа в своем окружении (рис. 3). Магнитный момент атомов железа в первом окружении с 2,23 цв, уменьшается до 2,045 цв. Растворение кремния не приводит к изменению параметра решетки системы и возникновению тетрагональности (рис. 4). Это неудивительно, поскольку кремний является примесью замещения, а не вне-

дрения, и к тому же атомный радиус кремния близок к атомному радиусу железа.

Магнитный момент кремния составил = -0,09 цв (знак минус означает, что магнитный момент атома кремния развернут противоположно магнитному моменту атомов железа). Сравнение рассчитанных нами полных и парциальных электронных плотностей на атомах железа первой и второй координационной сферы вблизи растворенного атома кремния с данными для чистого железа приведены в табл. 1 и на рис. 5.

Из анализа рис. 5 и табл. 1 видно, что серьезного изменения электронной плотности не произошло, потому что электроотрицательности кремния и железа близки. Однако наблюдается небольшая гибридизация ^-орби-талей кремния с ^-орбиталями ^-типа атомов железа в первой координационной сфере.

Энтальпия растворения кремния в ОЦК-железе оценивалась по формуле

ДЩБО = £(Ре53$1) - (53/54)Е(Те54) -- (1/8)Е^8),

где Е^е54) энергия отрелаксированной су-перячейки, состоящей из 54 атомов железа; E(Fe53Si) - энергия отрелаксированной су-перячейки, состоящей из 53 атомов железа и одного атома кремния; Е^8) - энергия супер-ячейки из 8 атомов кремния. Кремний моделировался в решетке алмаза с параметром решетки, взятым из работы Окада [15] а = 5,43 А.

Энтальпия растворения составила -1,19 эВ, что находится в хорошем согласии со значением -1,12 эВ, полученным в работе Винсента [5] и -1,2 эВ, полученным в работе Петрика [6].

Энергия взаимодействия между атомами кремния оценивалась по формуле

ДЕ = E(Fe52Si2) - 2•E(Fe53Si) + Е(Бе54),

Рис. 3. Зависимость магнитного момента на атоме железа от расстояния до атома кремния

Рис. 4. Зависимость полной энергии системы от тетрагональности с/а

Таблица 1

Значения валентной (для уровней выше 2S) электронной плотности для я, р, d, d-eg и d-t2g подуровней в атомах железа, находящихся в первой и второй координационных сферах от атома кремния

Первое окружение Второе окружение

Спин электронов Вверх Вниз Вверх Вниз

Суперячейка Fe54 Fe53Si Fe54 Fe53Si Fe54 Fe53Si Fe54 Fe53Si

s 1,12 1,11 1,11 1,12 1,12 1,12 1,11 1,12

P 3,08 3,08 3,09 3,09 3,08 3,08 3,09 3,09

d 3,97 3,89 1,72 1,83 3,97 3,97 1,72 1,72

d-eg 1,68 1,68 0,46 0,5 1,68 1,7 0,46 0,43

d-t2g 2,29 2,21 1,24 1,33 2,29 2,27 1,24 1,29

Е-ЕЪ эВ

Рис. 5. Графики электронной плотности ^-состояний атомов железа в первом окружении. Сверху электронная плотность й-вЕ состояний, снизу

где E(Fe52Si2) - энергия отрелаксированной суперячейки, состоящей из 52 атомов железа и двух атомов кремния (рис. 6). Энергии взаимодействия между атомами кремния представлены в табл. 2.

Рис. 6. Черные круги - атомы железа, белые круги - атомы кремния. Цифрами обозначены координационные сферы атома кремния. Отсчет идет от атома номер ноль

Как видно из табл. 2, атомы кремния сильно отталкиваются в первых двух координационных сферах. После третьей координационной сферы отталкивание становится близким к нулю. Наши данные близки к дан-

Таблица 2

Энергии взаимодействия между атомами кремния, растворенными в ОЦК-железе, эВ

Номер координационной сферы Данная работа Винсент [5]

1 0,39 0,29

2 0,2 0,2

3 0,01 -

4 0,03 -

Рис. 7. Зависимость среднего магнитного момента на атоме железа от концентрации кремния в ат. %

Рис. 8. Зависимость объемного модуля B от концентрации кремния в ат. %

ным работы [5]; разница наблюдается для первой координационной сферы. Отличие энергий составляет 0,1 эВ. Причина этого -использование в работе [5] псевдопотенциальных методов, которые являются менее точными, чем полнопотенциальные. Благодаря отталкиванию расстояние между атомами кремния, когда они находятся в первой координационной сфере, увеличилось на 0,21 А, во второй координационной сфере оно увеличилось на 0,14 А. В последующих координационных сферах не было изменения геометрической структуры.

При растворении кремния магнитный момент на атом железа в суперячейке уменьшается (рис. 7). Растворение 1,85 ат. % кремния (один атом кремния на суперячейку из

54 атомов железа) приводит к уменьшению среднего магнитного момента на атом железа на 0,02 цв.

Одновременно с понижением средних магнитных моментов атомов железа было обнаружено уменьшение объемного модуля сплава. Полученные нами результаты приведены на рис. 8. При легировании кремнием в железе ослабевают силы межатомного отталкивания, что и приводит к снижению объемного модуля.

Заключение

Определены оптимальные значения основных параметров моделирования примесей кремния в ОЦК-железе, позволяющие рассчитывать энергетические характеристики систе-

мы с точностью не менее 0,01 эВ в программном пакете WIEN2k. Показано, что:

1) оптимальный радиус МТ-сферы кремния равен Rmt(Si) = 2,00 а.е.;

2) при растворении в пределах изученных концентраций кремний не изменяет параметр решетки и не влияет на решетку железа. Магнитный момент атомов железа в первом окружении с 2,23 уменьшается до 2,045 Растворение 1,85 ат. % кремния приводит к уменьшению среднего магнитного момента на атом железа на 0,02 и объемного модуля сжатия. Происходит небольшая гибридизация р-орбиталей кремния с d-орбиталями t2g-ram атомов железа в первой координационной сфере;

3) с использованием найденных значений параметров моделирования проведено вычисление энергии растворения атома кремния в ферромагнитной фазе ОЦК-железа, которая составила -1,19 эВ, что находится в хорошем согласии с результатами эксперимента и других первопринципных расчетов;

4) атомы кремния испытывают сильное отталкивание в первых двух координационных сферах, которое является спадающим. После третьей координационной сферы отталкивание атомов становится близким к нулю.

Исследование выполнено за счет гранта Российского научного фонда № 16-19-10252.

Литература

1. Ридный, Я.М. Определение оптимальных параметров моделирования для максимально точных расчетов энергий в ОЦК-железе / Я.М. Ридный, А.А. Мирзоев, Д.А. Мирзаев // Вестник ЮУрГУ. Серия «Математика. Механика. Физика». - 2016. - Т. 8, № 4. - С. 63-69.

2. Ридный, Я.М. Ab-initio моделирование влияния ближнего окружения примесей углерода на энергию их растворения в ГЦК-желе-зе /Я.М. Ридный, А.А. Мирзоев, Д.А. Мирзаев // Вестник ЮУрГУ. Серия «Математика. Механика. Физика». - 2013. - Т. 5, № 2. - С. 108-116.

3. Чирков, П.В. Межчастичный потенциал в системе железо-углерод и проблема мартенситного перехода / П.В. Чирков, А.А. Мирзоев // Вестник ЮУрГУ. Серия «Математика. Механика. Физика». - 2013. - Т. 5, № 1. - С. 114-118.

4. Pan, Z.J. First-principles study of electronic and geometrical structures of semicon-

ducting B-FeSi2 with doping. / Z.J. Pan, L.T. Zhang, J.S. Wu // Materials Science and Engineering B. - 2006. - Vol. 131. - P. 121-126. DOI: 10.1016/j.mseb. 2006.04.002

5. Vincent, E. Ab initio calculations of vacancy interections with solute atoms in bcc Fe / E. Vincent, C.S. Becquart, C. Domain // Nuclear Instruments and Methods in Physics Research B. - 2005. - Vol. 228. - P. 137-141. DOI: 10.1016/j. nimb.2004.10.035

6. Петрик, М.В. Влияние магнетизма на энергию растворения 3p(Al, Si) и 4p(Ga, Ge) элементов в железе. /М.В. Петрик, О.И. Горбатов, Ю.Н. Горностырев // Физика металлов и металловедение. - 2013. - Vol. 114. -P. 963-970. DOI: 10.1134/S0031918X13110094

7. Cottenier, S. Density Functional Theory and the family of (L)APW-methods: a step-by-step introduction / S. Cottenier. - 2004. - http:// www.wien2k.at/reg_user/textbooks/DFT_and_ LAP W-2_cottenier.pdf.

8. Schwarz, К. Electronic structure calculations of solids using the WIEN2k package for material science / K. Schwarz, P. Blaha, G.K.H. Madsen // Computer Physics Communications. - 2002. - Vol. 147. - P. 71-76. DOI: 10.1016/S0010-4655(02)00206-0

9. Kostenetskiy, P.S. SUSU Supercomputer Resources / P.S. Kostenetskiy, A.Y. Safonov // Proceedings of the 10th Annual International Scientific Conference on Parallel Computing Technologies (PCT 2016). Arkhangelsk, Russia, March 29-31, 2016. CEUR Workshop Proceedings. - 2016. - Vol. 1576. - P. 561-573.

10. Monkhorst, H.J. Special points for Brillouin-zone integrations / H.J. Monkhorst, J.D. Pack // Physical Review B. - 1976. -Vol. 13, no. 12. - P. 5188-5192. DOI: 10.1103/PhysRevB. 13.5188

11. Kervan, N. Half-metallic properties of Ti2FeSi full-Heusler compound / N. Kervan, S. Kervan // Journal of Physics and Chemistry of Solids. - 2011. - Vol. 72. - P. 1358-1361. DOI: 10.1016/j.jpcs.2011.08.017

12. High-pressure experimental and computational XANES studies of (Mg,Fe)(Si,Al)O3 perovskite and (Mg,Fe)O ferropericlase as in the Earth's lower mantle / O. Narygina, M. Mattesini, I. Kantor et. al. // Physical Review B. - 2009. - Vol. 79. - P. 174115. DOI: 10.1103/PhysRevB. 79.174115

13. Fujii, S. Electronic and Magnetic Properties of Thin (111) Films of Fe2CrSi. / S. Fujii, S. Ishida, S. Asano // Journal of the Physical So-

ciety of Japan. - 2012. - Vol. 81. - P. 094702. DOI: 10.1143/JPSJ.81.094 702

14. Tokunaga, T. Thermodynamic evaluation of the phase equilibria and glass-forming ability of the Fe-Si-B system / T. Tokunaga, H. Ohtani, M. Hasebe // Computer Coupling of Phase Diagrams and Thermochemistry. - 2004. - Vol. 28. -

P. 354-362. D0I:10.1016/j.calphad.2004.11.004 15. Okada, Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500. / Y. Okada, Y. Tokumaru // Journal of Applied Physics. -1984. - Vol. 56, no. 2. - P. 314-320. DOI: 10.1063/1.333965

Ридный Ярослав Максимович, аспирант кафедры компьютерного моделирования и нано-технологий, Южно-Уральский государственный университет; [email protected].

Мирзоев Александр Аминулаевич, д-р физ.-мат. наук, профессор, кафедра компьютерного моделирования и нанотехнологий, Южно-Уральский государственный университет; т^оеуаа@ susu.ru.

Мирзаев Джалал Аминулович, д-р физ.-мат. наук, профессор, кафедра компьютерного моделирования и нанотехнологий, Южно-Уральский государственный университет; mirzaevda@ susu.ru.

Поступила в редакцию 16 июня 2017 г.

DOI: 10.14529/met170306

A SILICON IMPURITY IN BCC IRON: AB INITIO SIMULATION OF PROPERTIES AND ENERGY PARAMETERS

Ya.M. Ridnyi, [email protected], A.A. Mirzoev, [email protected], D.A. Mirzaev, [email protected]

South Ural State University, Chelyabinsk, Russian Federation

The ab initial modeling of the equilibrium structure and properties of silicon atoms in BCC iron is performed in WIEN2k software package. We have investigated iron employing the full potential linear augmented plane-wave LAPW method within the generalized gradient approximation PBE-GGA, in the supercell of 54 iron atoms with periodic boundary conditions. This is the most powerful technique in the framework of Density Functional Theory.

The optimal values of the basic simulation parameters of silicon impurities in the BCC iron are determined. They allow calculating the energy performance of the system with an accuracy of not less than 0.01 eV. The calculation of energy of dissolution of silicon atoms in the ferromagnetic phase of BCC iron is conducted using the obtained simulation parameters. It amounts to -1.19 eV. Silicon atoms experience a strong mutual repulsion in the first two coordination spheres, which is further decreasing. After the third coordination sphere, the repulsion of the atoms becomes close to zero.

During dissolution, silicon does not change the BCC lattice parameter and does not affect the iron lattice. The magnetic moment of iron atoms in the first environment decreases from 2.23 |xB to 2.045 (xB. Dissolution of 1.85 at. % of silicon leads to a decrease in the average magnetic moment per iron atom by 0.02 (xB and a decrease in the bulk modulus of compression.

Keywords: first principle simulation; BCC iron; silicon impurity; WIEN2k.

References

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Ridnyi Ya.M., Mirzoev A.A., Mirzaev D.A. [Determining the Optimal Modeling Parameters for Maximum Precise Calculations of Energy in BCC-Iron]. Bulletin of South Ural State University. Ser. Mathematics. Mechanics. Physics, 2016, vol. 8, no. 4, pp. 63-69. (in Russ.)

2. Ridnyi Ya.M., Mirzoev A.A., Mirzaev D.A. [Ab-initio Simulation of Dissolution Energy of Carbon Atom in the Paramagnetic State of FCC-Iron]. Bulletin of South Ural State University. Ser. Mathematics. Mechanics. Physics, 2013, vol. 6, no. 3, pp. 86-91. (in Russ.)

3. Chirkov P.V., Mirzoev A.A. , Mirzaev D.A. [Interatomic Potential for Iron-Carbon System and Martencitic Phase Transition Problem]. Bulletin of the South Ural State University. Ser. Mathematics. Mechanics. Physics, 2013, vol. 5, no. 1, pp. 114-118. (in Russ.)

4. Pan Z.J., Zhang L.T., Wu J.S. First-Principles Study of Electronic and Geometrical Structures of Semiconducting B-FeSi2 with Doping. Materials Science and Engineering B, 2006, vol. 131, pp. 121-126. DOI: 10.1016/j.mseb.2006.04.002

5. Vincent E., Becquart C.S., Domain C. Ab initio Calculations of Vacancy Interactions with Solute Atoms in bcc Fe. Nuclear Instruments and Methods in Physics Research B, 2005, vol. 228, pp. 137-141. DOI: 10.1016/j.nimb.2004.10.035

6. Petrik M.V., Gorbatov O.I., Gornostyrev Yu.N. Effect of Magnetism on the Solution Energy of 3p (Al, Si) and 4p (Ga, Ge) Elements in Iron. The Physics of Metals and Metallography, 2013, vol. 114, no. 11, pp. 885-892. DOI: 10.1134/S0031918X13110094

7. Cottenier S. Density Functional Theory and the Family of (L)APW-Methods: A Step-by-Step Introduction. 2004. Available at: http:// www.wien2k.at/reg_user/textbooks/DFT_and_LAPW-2_cottenier.pdf.

8. Schwarz K., Blaha P., Madsen G.K.H. Electronic Structure Calculations of Solids Using the WIEN2k Package for Material Science. Computer Physics Communications, 2002, vol. 147, pp. 71-76. DOI: 10.1016/S0010-4655(02)00206-0

9. Kostenetskiy P.S., Safonov A.Y. SUSU Supercomputer Resources. CEUR Workshop Proceedings, 2016, vol. 1576, pp. 561-573.

10. Monkhorst H.J., Pack J.D. Special Points for Brillouin-Zone Integrations. Physical Review B, 1976, vol. 13, no. 12, pp. 5188-5192. DOI: 10.1103/PhysRevB.13.5188

11. Kervan N., Kervan S. Half-Metallic Properties of Ti2FeSi Full-Heusler Compound. Journal of Physics and Chemistry of Solids, 2011, vol. 72, pp. 1358-1361. DOI: 10.1016/j.jpcs.2011.08.017

12. Narygina O., Mattesini M., Kantor I., Pascarelli S., Wu X., Aquilanti G., McCammon C., Dubrovinsky L. High-Pressure Experimental and Computational XANES Studies of (Mg, Fe) (Si, Al)O3 Perovskite and (Mg, Fe)O Ferropericlase as in the Earth's Lower Mantle. Physical Review B, 2009, vol. 79, p. 174115. DOI: 10.1103/PhysRevB.79.174115

13. Fujii S., Ishida S., Asano S. Electronic and Magnetic Properties of Thin (111) Films of Fe2CrSi. Journal of the Physical Society of Japan, 2012, vol. 81, p. 094702. DOI: 10.1143/JPSJ.81.094702

14. Tokunaga T., Ohtani H., Hasebe M. Thermodynamic Evaluation of the Phase Equilibria and Glass-Forming Ability of the Fe-Si-B System. Computer Coupling of Phase Diagrams and Thermochemistry, 2004, vol. 28, pp. 354-362. DOI: 10.1016/j.calphad.2004.11.004

15. Okada Y., Tokumaru Y. Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon Between 300 and 1500 K. Journal of Applied Physics, 1984, vol. 56, no. 2, pp. 314-320. DOI: 10.1063/1.333965

Received 16 June 2017

ОБРАЗЕЦ ЦИТИРОВАНИЯ

FOR CITATION

Ридный, Я.М. Примеси кремния в ОЦК-железе: ab-initio моделирование свойств и энергетических параметров / Я.М. Ридный, А.А. Мирзоев, Д.А. Мирзаев // Вестник ЮУрГУ. Серия «Металлургия». - 2017. -Т. 17, № 3. - С. 46-53. DOI: 10.14529/met170306

Ridnyi Ya.M., Mirzoev A.A., Mirzaev D.A. A Silicon Impurity in BCC Iron: Ab Initio Simulation of Properties and Energy Parameters. Bulletin of the South Ural State University. Ser. Metallurgy, 2017, vol. 17, no. 3, pp. 46-53. (in Russ.) DOI: 10.14529/met170306

i Надоели баннеры? Вы всегда можете отключить рекламу.