Научная статья на тему 'Причины образования неоптимальных структур при обработке давлением малоуглеродистой стали'

Причины образования неоптимальных структур при обработке давлением малоуглеродистой стали Текст научной статьи по специальности «Нанотехнологии»

CC BY
164
280
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СТРУКТУРА / КОНДИЦИОННАЯ / МАТЕРИАЛ / ПРИЧИНА / МИКРОСКОПИЯ / МИКРОСКОПИЧЕСКИЙ АНАЛИЗ

Аннотация научной статьи по нанотехнологиям, автор научной работы — Валуев Д. В., Данилов В. И.

Проведены электронно-микроскопические исследования структурно-фазового и напряженно деформированного состояния материала из горячекованых заготовок. Обнаружено, что скалярная плотность дислокаций в ферритных зернах и в ферритных прослойках перлита стали из поковки, растрескавшейся после проведения технологических операций, в полтора раза больше чем кондиционном материале. Металл в этом состоянии имеет повышенное содержание сульфидов пластинчатой морфологии. Установлено, что причиной формирования неблагоприятного структурно-фазового состояния является повышенное содержание углерода, что привело к перегреву металла, как при обработке давлением, так и при финишной термической обработке

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по нанотехнологиям , автор научной работы — Валуев Д. В., Данилов В. И.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Причины образования неоптимальных структур при обработке давлением малоуглеродистой стали»

_________________________________________ © Д.В. Валуев, В.И. Данилов,

2010

УДК 539.2:669.01

Д.В. Валуев, В.И. Данилов

ПРИЧИНЫ ОБРАЗОВАНИЯ НЕОПТИМАЛЬНЫХ СТРУКТУР ПРИ ОБРАБОТКЕ ДАВЛЕНИЕМ МАЛОУГЛЕРОДИСТОЙ СТАЛИ

Проведены электронно-микроскопические исследования структурно-фазового и напряженно - деформированного состояния материала из горячекованых заготовок. Обнаружено, что скалярная плотность дислокаций в ферритных зернах и в ферритных прослойках перлита стали из поковки, растрескавшейся после проведения технологических операций, в полтора раза больше чем кондиционном материале. Металл в этом состоянии имеет повышенное содержание сульфидов пластинчатой морфологии. Установлено, что причиной формирования неблагоприятного структурно-фазового состояния является повышенное содержание углерода, что привело к перегреву металла, как при обработке давлением, так и при финишной термической обработке.

Ключевые слова: структура, кондиционная, материал, причина, микроскопия, микроскопический анализ.

ажнейшими физическими факторами, определяющими X-# конструктивную прочность изделий из сталей, являются: тип дефектной субструктуры, морфология основных фазовых составляющих, морфология и кристаллохимическая природа выделений вторичных фаз, величина внутренних дальнодействующих напряжений. Именно они во многом определяют склонность к растрескиванию заготовок и готовой продукции при горячей ковке [1].

В настоящей работе проводились сравнительные электронно-микроскопические исследования тонкой структуры стали St52,3N (германский аналог стали 17Г1С) из кондиционной (состояние I) и растрескавшейся после окончания технологических операций (состояние II), поковок на просвечивающем микроскопе УЭМВ-125К в светлом и темном поле. Определялись тип дислокационной субструктуры в ферритных зернах и ферритных прослойках перлита, строение пер-литных колоний, форма, раз-

меры, расположение и состав частиц вторичных фаз, уровень внутренних дальнодействующих напряжений.

Предварительный анализ механических свойств [2] показал, что, если прочностные показатели обоих состояний стали находятся на одинаковом уровне, то состояние II характеризуется пониженной пластичностью. На изломах, образующихся при испытании на ударную вязкость, в этом состоянии наблюдаются значительные участки хрупкого разрушения. Стандартные металлографические исследования позволили установить [2], что в обоих состояниях сталь является феррито-перлитным агрегатом. Перлит представлен как пластинчатой, так и глобулярной модификациями. В том и другом состояниях размеры, как ферритных зерен, так и перлитных колоний существенно не различаются. В ферритных зернах наблюдаются выделения вторичных фаз, а в перлитных колониях и на межфазных границах - поры размерами до 10 мкм. Состояние II отличается повышенной пористостью, на 5-7 % более высоким содержанием перлита и более грубым строением последнего.

1. Результаты электронно-микроскопических исследований стали St52,3N

Характерные для состояния II электронно-микроскопи-ческие изображения феррита, перлита глобулярной и перлита пластинчатой морфологий приведено на рис. 1, а, б, в, соответственно.

В большинстве случаев колонии перлита располагаются в стыках границ зерен феррита, либо вытянуты вдоль этих границ, разделяя соседние ферритные зерна, например, как колония глобулярного перлита на рис. 1, б. Пластинчатая морфология перлита является преобладающей. Важной особенностью является высокий уровень дефектности пластин цементита, которые сильно искривлены, содержат ферритные перемычки, а их поперечные размеры изменяются по длине пластины (рис. 1, в).

Тип дислокационной субструктуры определялся отдельно в зернах феррита и в ферритных пластинах перлита. Оказалось, что ферритные пластины перлита демонстрируют более высокий уровень дефектности.

Если в зернах феррита регистрируются клубковая и сетчатая субструктуры, а скалярная плотность дислокаций составляет —2,6-1010 см-2 (рис. 1, а), то в ферритных пластинах перлита наблюдается только сетчатая дислокационная субструктура при скалярной плотности 3-1010 см-2 (рис. 1, в).

Рис. 1. Электронно-микроскопи-ческие изображения структуры стали St52,3N в состоянии II: а-в) светлопольные изображения; г) темнопольное изображение, полученное в рефлексе [130] Fe3C; д) микро-электронограмма к (в), стрелкой указан анализируемый рефлекс

Частицы вторичных фаз фиксируются в теле зерен феррита и ферритных пластин перлита, по границам и в тройных стыках. Если частицы расположены в объеме зерен, то они всегда имеют округлую, глобулярную форму (рис. 2, а, б). Средние размеры таких частиц составляют ~13 нм.

Микродифракционный электронно-микроскопический анализ показывает, что данные частицы являются сульфидами железа составов FeS или FeS2. Частицы, расположенные вдоль границ зерен, подразделяются на три морфологические разновидности: частицы с кристаллической огранкой (рис. 2, в), тонкие прослойки (рис. 2, г) и глобулы (рис. 2, д). В стыках границ зерен феррита частицы второй фазы практически везде имеют глобулярную форму. Микродифракционный анализ показывает, что частицы глобулярной морфологии, независимо от места их расположения, представляют собой карбид железа цементитно-го типа. У частиц в виде тонких прослоек более сложный химический состав. Они могут быть как сульфидами железа, так и сульфидами хрома типа MeS. Наконец, частицы ограненной формы всегда являются сульфидами железа FeS.

Важной особенностью электронно-микроскопических изображений структурных составляющих материала в состоянии II является наличие в них изгибных экстинкционных контуров, которые отражают кривизну-кручение кристаллической решетки. Источниками кривизны-кручения являются межфазные границы (рис. 1, а) или цепочки частиц вторичных фаз (рис. 2, г, д). В [3] описан метод определения величины внутренних дальнодействующих напряжений по геометрическим параметрам (ширине) изгибных экстинкцион-ных контуров. Здесь внутренние дальнодействующие напряжения могут достигать 300...350 МПа, что соиз-меримо и даже превышает предел текучести стали [4]. Авторы [5] указывают, что дально-

действующие напряжения, определяемые электронно-микроскопи-ческим методом, отражают состояние материала в микрообъемах, поэтому, как правило, они намного выше среднего уровня. Именно эти напряжения контролируют процессы пластического течения и разрушения на микроуровне.

Сталь в состоянии II имеет относительно высокое содержание перлита. Судя по частоте встреч колоний перлита, в фольгах концентрация углерода в материале должна быть выше 0,3 мас. %. Эта обстоятельство было отмечено и по результатам оптической микроскопии [1].

Электронно-микроскопические исследования стали St52,3N в состоянии I показали, что ее структура при общем качественном подобии заметно отличается от структуры металла в состоянии II. Здесь материал тоже является феррито-перлитным агрегатом (рис. 3), но количество перлита меньше и соответствует марочному содержанию углерода на уровне 0,2 мас. %. Кроме того, преобладающим является зернистый (рис. 3, в), а не пластинчатый перлит (рис. 3, б).

В большинстве случаев колонии перлита располагаются в стыках границ зерен феррита, либо вытянуты вдоль границ зерен феррита, разделяя их. Дислокационная субструктура в объеме зерен феррита сетчатая либо клубковая (рис. 3, а), но скалярная плотность дислокаций несколько ниже, чем в состоянии II, и составляет ~2,3-1010 см-2. В ферритных пластинах перлита наблюдается субструктура дислокационного хаоса, или сетчатая дислокационная субструктура (рис. 3, б). В них скалярная плотность дислокаций ниже - 1,8 -1010 см-2, в то время как в стали из растрескавшейся поковки соотношение дислокационных плотностей в феррите и перлите было противоположным.

Рис. 2. Частицы вторичных фаз в стали (состояние II): а - темнопольное изображение, полученное в рефлексе [200] FeS2, б -микроэлектронограмма к а; в, г, д - светлопольные изображения

В объеме и по границам зерен феррита наблюдаются частицы второй фазы. Частицы, расположенные в объеме зерен, как показал микродифракцион-ный электронно-

микроскопичес-кий анализ, являются в большинстве случаев сульфидами железа. Частицы, расположенные вдоль границ зерен, имеют две морфологические разновидности - глобулы и тонкие прослойки. В стыках границ зерен феррита практически всегда частицы второй фазы имеют глобулярную форму. Частицы глобулярной морфологии, независимо от места их расположения, как и состоянии II, являются цементитом. Более сложный химический состав имеют частицы в виде тонких прослоек. Данные прослойки чаще образованы карбидом железа состава Fe3C, реже -карбидом кремния состава SiC. Следует отметить, что вторая фаза в виде тонких прослоек по границам зерен наблюдается редко и обнаруживается примерно в одном случае на тридцать границ зерен феррита. Вообще для стали в состоянии I расположение выделений второй фазе по границам зерен не характерно.

2. Обсуждение результатов

Электронно-микроскопические исследования стали St52,3N в обоих состояниях позволили установить:

1. Анализируемые образцы стали являются поликристалличе-скими агрегатами, сформированными зернами феррита и колониями перлита. Перлит по морфологическому признаку может быть разделен на пластинчатый и глобулярный.

2. Объемные доли перлита в состояниях I и II существенно различаются. Во втором случае относительная объемная доля перлита в 1,5.2 раза больше, и это означает, что концентрация углерода завышена по отношению к марочному содержанию, она мо-

Рис. 3. Электронно-микроскопические изображения структуры стали St52,3N в состоянии I: а-в) светлопольные изображения; г) темнопольное изображение, полученное в рефлексе [031] FeзC; д - микроэлектроно-грамма к (в), стрелкой указан анализируемый рефлекс

жет составлять ~0,3 мас. %. По морфологическому признаку в состоянии II превалирует пластинчатый перлит.

3. Локальные дальнодействующие напряжения, оцененные электронно-микроскопическим методом, в состоянии II велики и соизмеримы с пределом текучести материала.

4. В обоих состояниях наблюдаются дисперсные карбиды и включения сульфидного типа. В образце стали из растрескавшейся поковки (состояние II) сульфиды располагаются в теле ферритных зерен и по межфазным границам, тогда как в материале из кондиционной поковки (состояние I) - только внутри зерен. Их содержание в состоянии II значительно выше чем в состоянии I.

5. При одинаковых типах дислокационных субструктур (клуб-ково-сетчатая и сетчатая) уровень дефектности в состоянии II заметно выше, чем в состоянии I. Скалярная плотность дислокаций в ферритных зернах и в ферритных прослойках бракованной поковки

составляет 2,6-1010 см-2 и 3-1010 см-2, соответственно, что в 1,1 1,7

раз больше чем в кондиционном металле.

Указанные результаты электронной микроскопии позволяют утверждать, что дефектная субструктура и фазовый состав стали в состоянии II являются неблагоприятными. Высокие локальные дальнодействующие напряжения, повышенная скалярная плотность дислокаций, большое количество сульфидов пластинчатой морфологии в межзеренных и межфазных границах, высокая пористость, преобладание пластинчатого перлита провоцируют образование трещин как при обработке давлением, так и при термической обработке, так и при эксплуатации изделий.

Если обобщить результаты механических испытаний, оптической металлографии [1] и электронной микроскопии, то можно придти к однозначному выводу - причиной формирования неблагоприятного структурно-фазового состояния поковок из стали St52,3N является неполное соответствие химического состава марочным требованиям. В материале оказалось повышенное содержание углерода и, по-видимому, серы. Первый фактор подтвержден как результатами оптической металлографии, так и электронной микроскопии. Второй фактор установлен только в результате дифракционных электронно-микроскопических исследований. Следствием первого фактора явилось снижение температуры критической точки А3, которое может достигать 30_70 °С. Например, согласно [6, 7] при концентрации углерода ~ 0,2 мас. % и в отсут-

ствии других легирующих А3 = 860 °С, а при содержании углерода ~ 0,3 мас. % А3 = 830 °С. В результате при использовании штатной технологии сталь оказывается перегретой при нагреве под окончательную термическую обработку. Кроме того, изменяется устойчивость переохлажденного аустенита. При одинаковой скорости охлаждения в стали с повышенным содержанием углерода всегда образуются более неравновесные структуры, с высоким уровнем дефектности и остаточных дальнодействующих напряжений. Аустенит в такой стали обладает повышенной прочностью, поэтому необходимы более высокие степени обжатия при горячей обработке давлением. В противном случае образуется большое количество пор. Относительно высокие температуры горячей обработки давлением и финишной термической обработки приводят к интенсивному выходу горофильных примесей (в первую очередь серы) на межфазные и межзёренные границы. В результате появляются выделения вторичных фаз в виде тонких прослоек.

Таким образом, установлено, что сталь St52,3N из растрескавшейся заготовки имеет неоптимальное структурно-фазовое состояние, которое приводит к снижению трещиностойкости как при горячей обработке давлением, термической обработке, так и при дальнейшем использовании материала. Формирование таких структур обусловлено комплексом различных причин, ведущей из которых является повышенное содержание углерода и серы.

Причиной формирования крупномасштабных химических и структурных неоднородностей в малоуглеродистой низколегированной стали является содержание углерода и серы на верхних допускаемых по ТУ уровнях. Подобная точка зрения отмечена в работах [8-9]. Она имеет прямое подтверждение в практике ООО «Юргинский машзавод». 72% плавок с указными химическим составом были забракованы частично или полностью.

В таблице приведена выписка из статистических данных по браку на заводе.

430

Статистика брака крупнотоннажных заготовок из стали марки St52,3N

№ п/п Хим. элемент С, % Mn, % А1, % Р, не более % 8, не более % 8І, не более % Сг, не более % Мо, не более % №, не более %

ТУ 0,16-0,22 1,0-1,6 0,02- 0,06 0,035 0,035 0,55 0,4 0,1 0,4

1 №1 01474 101180, скоп деф №5.5; Ы00-210 Рез 1180. 0,21 1,30 - 0,028 0,035 0,35 0,15 - 0,15

2 №4 01494 Ш-720, ЇЖ), 4деф 05-7 и провяж дгфЬ200-240 072 Рез720 0,20 1,15 - 0,030 0,037 0,30 0,20 - 0,10

3 №2 01492 по всей Ь Ь90-220мнок деф 0 5-6,5бспее 100шг деф 01 (А/А) 0,23 1,20 - 0,030 0,035 0,30 0,35 - 0,20

4 №3 01492 по всей Ь скоплен деф более 100шг 07-8 (А/А) 0,21 1,35 - 0,035 0,035 0,35 0,23 - 0,25

Видно, что по химическому составу все плавки соответствовали техническим условиям (исключения составляют 2 и 3, где допущены небольшие превышения по сере и углероду соответственно). В тоже время слитки 3 и 4 после обработки представляли собой полный брак и были отправлены в переплавку. Слитки 1 и 2 были использованы для дальнейших операций после удаления значительной части заготовок 1180 и 720 мм, соответственно. То есть все четыре слитка содержали крупномасштабную зонную ликвацию, только в слитках 1 и 2 она располагалась в близи головной части и была удалена, а в слитках 3 и 4 - в середине слитка.

Заключение

Таким образом, если в стали углерод, сера и фосфор находятся на верхнем пределе, необходимо принимать меры еще в металлургическом производстве. Авторы [9-10] предполагают метод инокуляции расплава, который состоит, в ведении металлических порошков в процессе разливки стали. Этот метод дает хорошие результаты, но недостаточно отработал в заводской практике и требует дефицитных порошков редкоземельных металлов. В условиях ООО «Юргинский машзавод» проще после взятия последней пробы на углерод в жидком металле провести ковшовую обработку синтетическим шлаком эта операция хорошо отработана в металлургическом производстве [11-12] и позволяет снизить содержание обоих элементов.

Если в цех обработки давлением и термической обработки поступил металл с содержанием углерода и серы на верхних допустимых уровнях, то для устранения зонной ликвации серы и углерода, а значит, снижения вероятности растрескивания заготовки следует провести гомогенизирующий отжиг по режиму: нагрев 1100 °С, выдержка 10 часов, для устранения ликваций по углероду и сере. Кроме того, при работе с таким металлом необходимо предельно строго следовать технологической карте горячей ковки и термической обработки. Если это возможно, то ковку следует проводить на нижнем пределе температуры нагрева, а степень и усилие обжатия увеличивать.

------------------------------------ СПИСОК ЛИТЕРАТУРЫ

1. Юрьев А.Б., Громов В.Е., Козлов Э.В. и др. // Формирование и эволюция структурно-фазовых состояний и свойства сталей в современных технологиях обработки давлением. - Новосибирск: Наука. 2003. - 347 с.

2. Апасов А.М., Валуев Д.В., Данилов В.И. // Известия ТПУ. - 2007. Т. 310. - №3. - С.

90-92.

3. Конева НА., Козлов Э.В. // Известия вузов. Физика. - 1982. - № 8. - С. 3-14.

4. СорокинВ.Г., ГервасьевМ.А., ПалеевВ.С. и др. // Стали и сплавы. Марочник. - М.: Интермет Инжиниринг, 2001.-608 с.

5. Структурно-фазовые состояния металлических систем. Под ред. А.И. Потекаева. - Томск: Изд-во НТЛ, 2004. - 356 с.

6. Металловедение и термическая обработка стали. Справочник. Т. II. Основы термической обработки / Под ред. М.Л. Бернштейна, А.Г. Рахштадта. - М.: Металлургия, 1983. -368 с.

7. Металловедение и термическая обработка стали. Справочник. Т. Ш. Термическая обработка металлопродукции / Под ред. М.Л. Бернштейна, А.Г. Рахштадта. - М.: Металлургия, 1983. - 216 с.

8. Разумов С.Д., Родионов В.Е., Заверюха А.А. Систематизация дефектов структуры непрерывнолитой стали и пути их устранения // Сталь, 2002. - №11. -С. 26-29.

9. Жульев С.И., Зюбан Н.А. Производство и проблемы качества кузнечного слитка. Волгоград: ВолгГТУ, 2003. - 168 с.

10. Зюбан Н.А., Жульев С.И., Федянов Е.А. Особенности кристаллизации инокулированных расплавов и упрвление затвердеванием эндогенных инокулято-ров при вакуумной отливке слитков // Изв.ВУЗов. Черная металлургия, 2004. -№7. - С. 70-73.

11. Галиулин Т.Р., Носов Ю.В. и др. Особенности десульфарации стали на выпуске из конвертера. // Сталь, 2007. - №10. - С.23-35.

12. Штремель М.Н. Проблемы металлургического качества стали (не металлические включения) // МиТОМ, 1980. - №8. - С. - 2-6.

— Коротко об авторах -----------------------------------------------------

Валуев Д.В.,

Данилов В.И. - д-р ф.-м.н., проф.,

Юргинский технологический институт (филиал) Томского политехнического университета, E-mail: valuevden@rambler. ru

i Надоели баннеры? Вы всегда можете отключить рекламу.