For citation: Zhang Bai-wei, Mei Shun-qi. Preparation of polyacrylonitrile-polymethyl methacrylate fiber membrane by centrifugal spinning // URL: http://rectors.altstu.ru/ru/periodical/archiv/2020/1/articles/4_10.pdf DOI: 10.25712/ASTU.2410-485X.2020.01.018
UDK 677.494
Preparation of polyacrylonitrile-polymethyl
methacrylate fiber membrane by centrifugal spinning
12 12 Zhang Bai-wei' , Mei Shun-qi* '
1 Wuhan Textile University, Wuhan 430200, China; 2 Hubei Digital Textile Equipment Key Laboratory, Wuhan 430073, China E-mail: [email protected] ; [email protected]
0
^mmmim m, a^rmmra^, mmxm, i^m mrnim m [2]. ^wmmmtmm, u
«^M, [3-4].
xmrnmrnrnm^mmmmtm, rn&timmmmm, # mmm, ^tt^mmRm^mw^im
1M'fr^M^S
ser^^^m m t^M^m
mrnrn 1. mrnrnrnxm^mw^, ^rnm&rnR,
[6-7].
*
Сетевое издание Совета ректоров вузов Большого Алтая
\гт
№
т
Figure 1. Schematic of a centrifugal spinning device
2
ШИШШ (PAN) &ТШШЛ,
ят, штжтт^жтт, я-^я^щтЕШШШЛ^^ ©шй^^шмг^ш [8]. т^жтжтп (pmma) йтй
ШПШШ (PAN, Mw=150000), ^Р^ЖЙИСТШ (PMMA) тетиш Т. N,N-^¥^¥1® (DMF) rn^S^. ^МШТОШЙЬЮ PAN/PMMA ШТ DMF Ф, 80°С ШШ PAN/PMMA Ш^ШЖ.
4 Ж^ШШШЬ^ШШШ, ^Mfe 1.17wt% PAN/PMMA ^ 75:25; 2.17wt% PAN/PMMA ^ 50:50; 3.18wt% PAN/PMMA ^ 80:20; 4.20wt% PAN/PMMA ^ 70:30. 32g 4000-4500rmp/min ТШШШ.
Yanilmaz [9] ЩЛШ&'ШШЖЩШТ 17wt% ift PAN/PMMA
rnrnrn.
3 здшя
Ш—ШШШ 17wt% PAN/PMMA 75:25 ЙтШШМШ^ШШ^,
^ШйПШ 4000rmp/min тш^тжвдте^тшш,
mm 2. ЙТШШ^, штшш, ш
тштштш.
Наука и образование Большого Алтая»
m^ïâmà^ 17wt% PAN/PMMA 50:50, ^M^M
|f| 4500rmp/min Hm^ta^Pf«^^, M^MW,
I^i^t^^TIHfi, PAN 18wt%
PAN/PMMA ^ 80:20 ÉWt^mm,
m 3. ff^MTO^, Ä^n^TOf^
T,
ffl 2 17wt% PAN/PMMA 75:25 ^^^ m 3 18wt% PAN/PMMA 80:20 ^^
Figure 2. 17wt% PAN/PMMA 75:25 fiber Figure 3. 18wt% PAN / PMMA 80:20 fiber
rnrnämmmm^mmfi, 20wt% pan/pmma ^
70:30 ^^^mm. Ä^M^M 4000rmp/min T, Ä^lft
ffl 4 20wt% PAN/PMMA 70:30 ^^ Figure 4. 20wt% PAN/PMMA 70:30 fiber
ш
Сетевое издание Совета ректоров вузов Большого Алтая
B0 5 20wt% PAN/PMMA 70:30 Figure 5. 20wt% PAN/PMMA 70:30 fiber laminate
4
ttÂ^m^M^^mm^ PAN/PMMA mm, m^m,
20wt% ift 70:30 ift PAN/PMMA
mm%. ^«m, ^M»?, fs^x 20wt%,
-^mm&mmmi, fêMfâ^fèMft. Ä pan mmmm„ m, mmmrn-rnm.
^mmmmmmmmummmmm
[1] wfew., m. 2017, 25(6):8i-86.
[2] Kenry Lim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci, 2017, 70: 1-17.
[3] Wu HL, Zhang CH, Feng L, et al. Progress in preparation of nano-porous oxide by electrospinning. Mater Rev 2016, 30(2): 44-47.
[4] Wang SX, Yap CC, He J, et al. Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol Rev 2016, 5(1): 51-73.
[5] Fang Y, Dulaney AR, Gadley J, et al. A comparative parameter study: controlling fiber diameter and diameter distribution in centrifugal spinning of photocurable monomers. Polymer 2016, 88: 102-111.
[6] ZhiMing Zhang, YaoShuai Duan, et al. A review on nanofiber fabrication with the effect of high-speed centrifugal force field. Journal of Engineered Fibers and Fabrics.2019, 14:1-11.
[7] Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliver Rev 2007, 59(14): 1413-1433.
Наука и образование Большого Алтая»
[8] nnmmm^^m^n^m^Rià^^H^w. [J]. 2018,
6:755-764.
[9] Meltem Yanilmaz, Xiangwu Zhang. Polymethylmethacrylate / Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries.Polymers. 2015, 7:629-643.
References
[1] Dong Yaj ie, Mei Shunqi, et al. Study on Fabrication Technology of Nanofiber through Centrifugal Rotor [J]. Advanced Textile Technology. 2017, 25(6):81-86.
[2] Kenry Lim CT. Nanofiber technology: current status and emerging developments [J]. Prog Polym Sci, 2017, 70:1-17.
[3] Wu HL, Zhang CH, Feng L, et al. Progress in preparation of nano-porous oxide by electrospinning [J]. Mater Rev, 2016, 30(2):44-47.
[4] Wang SX, Yap CC, He J, et al. Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications [J]. Nanotechnol Rev, 2016, 5(1):51-73.
[5] Fang Y, Dulaney AR, Gadley J, et al. A comparative parameter study: controlling fiber diameter and diameter distribution in centrifugal spinning of photocurable monomers [J]. Polymer, 2016, 88:102-111.
[6] ZhiMing Zhang, YaoShuai Duan, et al. A review on nanofiber fabrication with the effect of high-speed centrifugal force field [J]. Journal of Engineered Fibers and Fabrics. 2019, 14:1-11.
[7] Barnes CP, Sell SA, Boland ED, et al. Nanofiber technology: designing the next generation of tissue engineering scaffolds[J]. Adv Drug Deliver Rev, 2007, 59(14):1413-1433.
[8] Wang Zhenan, LI Nan, et al. Efficient Preparation and Crystal Orientation Properties of Polyacrylonitrile Nanofibers [J]. ACTA POLYMERICA SINICA. 2018, 6:755-764.
[9] Meltem Yanilmaz, Xiangwu Zhang. Polymethylmethacrylate / Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries [J]. Polymers. 2015, 7:629-643.
Issue
1'2020
■----