001:10.12737/агйс1е_5Ь115а51:са2155.86312327
Траутваин А.И., канд. техн. наук, доц., Ядыкина В.В., д-р техн. наук, проф., ЛебедевМ.С., канд., техн. наук, доц., Акимов А.Е., канд. техн. наук Белгородский государственный технологический университет им. В.Г. Шухова
ПРЕДВАРИТЕЛЬНЫЕ ИССЛЕДОВАНИЯ КОНВЕРСИОННОГО МЕЛА В КАЧЕСТВЕ МИНЕРАЛЬНОГО ПОРОШКА ДЛЯ АСФАЛЬТОБЕТОННЫХ СМЕСЕЙ
Анализ сложившейся ситуации в сфере дорожного строительства, показал, что при строительстве автомобильных дорог, в частности при приготовлении асфальтобетонных смесей необходимо использование большого количества качественного минерального порошка. Решение данной проблемы может лежать в плоскости расширения сырьевых ресурсов за счет использования карбонаткальциевых отходов (конверсионного карбонатного мела). Конверсионный карбонат кальция является побочным продуктом, образующимся при выпуске азотсодержащих удобрений и может стать заменой традиционно используемому известняковому минеральному порошку. Было отмечено, что исследуемый отход по химическому и гранулометрическому составу близок к традиционному минеральному порошку. Однако, поверхность зерна образца конверсионного мела имеет значительно более сложный микрорельеф, с большим количеством углублений и впадин, что обеспечивает зерну большую удельную поверхность по сравнению с таким же зерном традиционного материала. Данная особенность может привести к более высокой структурирующей способности такого минерального порошка по отношению к органическому вяжущему и явлениям избирательной адсорбции компонентов битума на его поверхности. Предварительные исследования исходного сырья показали, что по совокупности свойств конверсионный мел может быть использован в качестве сырьевого материала пригодного для производства минерального порошка для асфальтобетона.
Ключевые слова: минеральный порошок, конверсионный мел, техногенное сырье, асфальтобетон.
Введение. Производство асфальтобетонных смесей на местных сырьевых материалах с высокими эксплуатационными показателями является одной из важных проблем, решение которой позволит уменьшить себестоимость асфальтобетонных покрытий без ухудшения физико-механических показателей и долговечности покрытий.
Разработка асфальтобетона с использованием не традиционных компонентов представляет собой, по существу, процесс решения задачи формирования в материале системы контактов и силовых связей его структурных элементов, пространственного размещения этих контактов и связей в объеме композита по критериям наиболее эффективной, оптимальной их сопротивляемости эксплуатационным воздействиям [1]. Асфальтобетон является сложной многокомпонентной системой, в которой все составляющие выполняют определенную роль. Одной из составляющих асфальтобетона является тонкодисперсный порошок [2].
Методология. Химический состав горных пород, из которых получали наполнители, определен рентгенофлуоресцентным анализом, мине-
ральный состав - рентгенофазовым анализом. Анализ образцов карбонатного сырья для производства минеральных порошков выполнен на спектрометре серии ARL 9900 Workstation со встроенной системой дифракции («Thermo Fisher Scientific»).
Гранулометрический состав материала оценивали по распределению частиц по размерам. Определяли методом лазерной дифракции с помощью лазерного анализатора размеров частиц FRITSCH Analysette 22 NanoTec plus.
Микроструктурные особенности материалов изучались на сканирующем электронном микроскопе TESCAN MIRA 3 LMU.
Основная часть. Минеральный порошок, обладая наибольшей удельной поверхностью среди минеральных материалов в составе асфальтобетонов, является одним из ключевых компонентов асфальтобетонной смеси, который, вступая во взаимодействие с битумом, переводит его в пленочное состояние. Таким образом, от химических и физических характеристик поверхности минерального порошка напрямую зависят такие важные характеристики асфальто-
бетона как теплостойкость, трещиностойкость, усталостная долговечность [3-4].
Традиционные минеральные порошки изготавливаются помолом известняка - сырья, не имеющего достаточного распространения во многих регионах России [5-8]. Поэтому, в целях расширения сырьевой базы, перевода производства на локальное сырье и решение вопросов утилизации отходов промышленности производится исследование нетрадиционных видов сырья для приготовления минеральных порошков, в частности, мел конверсионный (карбонат кальция).
Чтобы найти возможность применения подобных порошков в органоминеральных смесях без ухудшения их свойств, необходимо разобраться во взаимодействиях между минеральным порошком и органическим вяжущим [9]. В основном они происходят на поверхности раздела, фаз поэтому изучение свойств поверхностных слоев необходимо для понимания структуры и механизма образования смеси минерального порошка с органическим вяжущим
[3].
Известно, что ориентация углеводородных цепей органического вяжущего может быть различной: часть цепи, содержащая активные функциональные группы, может быть ориентирована в сторону поверхности минерального порошка (типа кальцита) и от его поверхности (типа кварца) [9-10].
Порошки первого типа, имеющие положительный заряд поверхности, предложили называть активными по отношению к органическому вяжущему, второго типа - с отрицательным зарядом поверхности - инактивными. При этом активные функциональные группы органического вяжущего при взаимодействии с активными порошками расходуют химическую энергию на образование соединений, прочно удерживающих органические молекулы на поверхности порошка, и утрачивают свою первоначальную реакционную способность, т.е. минеральный порошок "блокирует" активные группы вяжуще-
Химический состав конвер
го. Компоненты вяжущего типа масел могут либо отчасти фильтроваться внутрь минеральных частиц (пористые порошки), либо адсорбироваться полностью на их поверхности (плотные порошки) [3].
Конверсионный мел является побочным продуктом, образующимся при выпуске азотсодержащих удобрений. Для предприятий, осуществляющих выпуск такой продукции серьезной проблемой является складирование и хранение конверсионного мела. Его объемы достаточно велики, а потребление другими предприятиями мало, что приводит к необходимости хранения данного материала, в том числе на землях сельскохозяйственных угодьях.
С другой стороны, 1 км асфальтобетонного покрытия на магистральной многополосной автомобильной дороге шириной 21м, толщина слоя покрытия 18 см - потребует до 700т минерального порошка. С учетом темпов строительства в одной только Белгородской области сезонная потребность в минеральном порошке составляет до 35000 т.
Таким образом, анализ возможности применения конверсионного мела и разработка технологии производства минерального порошка на его основе позволит решить сразу две важные задачи: утилизация побочного продукта производства и локализация производства компонентов асфальтобетона в пределах одного региона с минимизацией транспортно-логистических расходов. Что в свою очередь позволит снизить себестоимость производства асфальтобетона без потерь качества материала.
Химический состав горных пород, из которых получали наполнители, определен рентге-нофлуоресцентным анализом, минеральный состав - рентгенофазовым анализом (табл. 1). Анализ образцов карбонатного сырья для производства минеральных порошков выполнен на спектрометре серии ARL 9900 Workstation со встроенной системой дифракции («Thermo Fisher Scientific»).
Таблица 1
энного карбоната кальция
Материал Содержание оксидов, вес.%
CaO MgO CO2 SrO SiO2 AI2O3 Fe2O3 P2O5 Другие
Карбонат кальция для сельского хозяйства Сорт 1 54,60 - 42,81 1,70 0,25 0,03 0,07 0,36 0,18
Мел конверсионный Марка А 54,57 - 42,79 1,73 0,25 0,03 0,07 0,36 0,20
Известняк 48,98 1,31 39,85 0,03 6,84 1,32 0,67 - 1,00
Примечание: CO2 рассчитан только для оксидов кальция и магния
По данным РФА, приведенным в таблице 1, конверсионный мел состоит из минерала кальцита СаСОз. Присутствие в химическом составе оксида стронция ^Ю) может объяснить изоморфным замещением атома кальция на атом стронция в структуре кальцита, поскольку эти два элемента находятся в одной группе Периодической системы, но для стронция характерен немного больший атомный радиус. Необходимо отметить общность химического состава различных сырьевых компонентов: известнякового минерального порошка, карбоната кальция для сельского хозяйства и конверсионного мела. Так же как и в известняке основным компонентом является карбонат кальция - химическое соединение, характеризующееся эффективным взаимодействием с компонентами нефтяного битума.
Известно, что пленки из органического вяжущего более интенсивно притягиваются к поверхности минеральных частиц с большим количеством положительных электрических центров. При этом, чем сильнее выражены положительные заряды поверхности минерала, тем выше адгезия к ним органических вяжущих. К тому же адгезионные силы увеличиваются по сравнению с когезионными с увеличением сма-10
—Карбонат кальция без УЗ
чивания поверхности минеральных частиц органической жидкостью. При объединении минерального порошка с органическим вяжущим на поверхности раздела протекают процессы физической адсорбции и хемсорбционные. Последние обусловливают высокие показатели вязкости и прочности смеси. Наиболее характерным порошком с большим количеством положительных адсорбционных центров и высокой структурирующей ролью является известняковый. При насыщении смеси этого порошка с органическим вяжущим водой некоторая часть пленок вяжущего смещается с тех участков порошка, где имелось лишь избирательное смачивание и протекали процессы физической адсорбции. Однако в этой системе таких участков немного и, в основном, они проявляются на более крупных частицах, особенно при малоактивном вяжущем, имеющем незначительное количество соединений, в состав которых входит группа -С00Н- [9, 11-12].
Гранулометрический состав материала оценивали по распределению частиц по размерам (рис. 1). Определяли методом лазерной дифракции с помощью лазерного анализатора размеров частиц FRITSCH Analysette 22 NanoTec plus.
Диаметр, мкм
Рис. 1. Кривые распределения частиц конверсионного карбоната кальция и минерального
порошка из известняка
Как видно из рис. 1, конверсионный карбонат ства в воде и распада агрегатов под действием кальция крупноват для минерального порошка, ультразвука не обнаружено. преобладающий размер частиц (пик распределе- Таким образом, в отличии от минерального
ния частиц по размерам) в районе 70-80 мкм. При порошка, конверсионный мел по гранулометри-этом существенных явлений растворения веще- ческому составу является менее однородным и
содержащим более крупные частицы. Данная особенность не позволит использовать материал без предварительного размола. С другой стороны, дополнительный размол не только улучшит гранулометрический состав и удельную поверхность, но и позволит провести механическую, а, при необходимости, механо-химическую, активацию. а
По результатам СЭМ видна необычная структура зерна порошка конверсионного мела, нехарактерная для кальцита (рис. 2). Микроструктурные особенности материалов изучались на сканирующем электронном микроскопе TESCAN MIRA 3 LMU.
б
Vrew fiBlü: 100.0 .."' Dat ЕЕ MIR A3 ТЕ View field; 1C0.D (jm DBt: 5E | IYIIRA3 ТЕ!
SEM HV: 5.0 kV Bl: К 00 SM: RESOLUTION 20 (im WD: 9 93 mm БГТУ им. В.Г. LUyxoR SEM HV: 5 0 kV HM 5 ni SM: RESOLUTION 20 (jrn WO: 9.(54 min / .1 В.Г. Шукон;
Рис. 2. Микрофотографии карбонатного минерального порошка (а) и конверсионного мела (б)
Приведенные микрофотографии показывают значительные различия между традиционным карбонатным порошком (рис. 2а) и конверсионным мелом (рис. 2б). Поверхность зерна образца конверсионного мела имеет значительно более сложный микрорельеф, с большим количеством углублений и впадин, что обеспечивает зерну большую удельную поверхность по сравнению с таким же зерном традиционного материала. Данная особенность может привести к более высокой структурирующей способности такого минерального порошка по отношению к органическому вяжущему и явлениям избирательной адсорбции компонентов битума на его поверхности.
Предварительные исследования исходного сырья показали, что по совокупности свойств конверсионный мел может быть использован в качестве пригодного сырьевого материала для производства минерального порошка для асфальтобетона. По химическому составу материал близок к традиционными известняковым минеральным порошкам, а гранулометрический состав и свойства поверхности могут быть исправлены путем дополнительного измельчения.
Применение современных технологий измельчения позволит не только достичь нужных показателей крупности и однородности, но и произвести механическую или механохимическую активацию для достижения необходимых свойств поверхности [13-15].
Выводы. В ходе выполнения работы были проведены предварительные исследования нетрадиционных видов сырья для приготовления минеральных порошков, в частности, мела конверсионного.
Конверсионный карбонат кальция является побочным продуктом, образующимся при выпуске азотсодержащих удобрений и может стать заменой традиционно используемому известняковому минеральному порошку. Было отмечено, что исследуемый отход по химическому и гранулометрическому составу близок к традиционному минеральному порошку. Однако, поверхность зерна образца конверсионного мела имеет значительно более сложный микрорельеф, с большим количеством углублений и впадин, что обеспечивает зерну большую удельную поверхность по сравнению с таким же зерном традиционного материала. Данная особенность может
привести к более высокой структурирующей способности такого минерального порошка по отношению к органическому вяжущему и явлениям избирательной адсорбции компонентов битума на его поверхности.
Источник финансирования. РФФИ и Программа развития опорного университета на базе БГТУ им. В.Г. Шухова.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Чернышов Е.М. Некоторые итоги развития научных исследований в области системно-структурного строительного материаловедения и высоких технологий (к 70-летию открытия специальности инженер-строитель-технолог в Воронежском государственном архитектурно-строительном университете) //Научный вестник Воронежского государственного архитектурно-строительного университета. Серия: Физико-химические проблемы и высокие технологии строительного материаловедения. 2014. № 2. С. 3-17.
2. Буртан С.Т., Мустафин С.К. Принципы управления качеством асфальтобетона на основе оптимизации состава и сочетания компонентов битумоминеральных смесей // Автомобильные дороги. 2013. №. 7. С. 980.
3. Ликомаскина М.А. Исследование влияния минеральных порошков различного химико-минералогического состава на свойства асфальтобетонных смесей // Региональная архитектура и строительство. 2017. №. 2. С. 5363.
4. Афиногенов О.П., Вайдуров С.С. Применение в асфальтобетонных смесях минерального порошка из перлита Хасынского месторождения // Молодой ученый. 2014. №. 2. С.104-107.
5. Хитров К.А. Исследование возможности применения пыли-уноса асфальтосмесительных установок взамен традиционных порошков для строительства лесовозных автодорог: Автореф. дис. канд. техн. наук. Санкт-Петербург, 2010. 18 с.
6. Чериков С.Т., Эрбаева Р.С., Баткибекова М.Б. Использование известковых отходов сахарного производства в качестве минерального порошка при изготовлении асфальтобетонных смесей // Известия Кыргызского государственного технического университета им. И. Раззакова. 2012. Т. 26. С. 226-230.
7. Сергуткина О.Р. Комплекс исследований для научно-обоснованного использования техногенных продуктов в производстве строительных композитов // Научный вестник
Информация об авторах
Воронежского ГАСУ. Сер.: Физико-химические проблемы и высокие технологии строительного материаловедения. 2013. №. 6. С. 105.
8. Чернышов Е.М., Потамошнева Н.Д. Проблемы развития научных основ и прикладных решений в задачах строительно-технологической утилизации техногенных отходов // Строительные материалы, оборудование, технологии XXI века. 2014. №. 6. С. 21-26.
9. Киселёв В.П. Органический компонент асфальтобетонных смесей // Вестник Томского государственного архитектурно-строительного университета. 2012. №. 3. С. 207-218.
10. Подольский В.П., Ерохин А.В. Коррозионная устойчивость асфальтобетонов с использованием минерального порошка из углеродсодержащих материалов // Научный вестник Воронежского государственного архитектурно-строительного университета. Строительство и архитектура. 2008. №. 1. С. 149-152.
11. Кузнецов Д.А., Высоцкая М.А., Барабаш Д.Е. Влияние адгезионных добавок на интенсивность деградационных процессов дорожных битумов // Строительные материалы. 2012. №. 10. С. 24-27.
12. Yadykina V.V., Gridchin A. M., Trautvain A. I., Tobolenko S. S. Influence of the Type of the Fiber Component of the Stabilizing Additive for Stone Mastic Asphalt Concrete on the Structure of an Organic Binder // Applied Mechanics and Materials. 2016. Vol. 835. P. 494-500. DOI: 10.4028/www.scientific.net/AMM.835.494.
13. Yadykina V.V., Gridchin A.M., Trautvain A.I., Khoroshikh A.S. Increasing the Reactivity of the Mineral Powders by Modifying // Applied Mechanics and Materials. 2015. Vol. 749. P. 348-352 D0I:10.4028/www.scientific.net/AMM.749.348.
14. Trautvain A., Yadykina V., Gridchin A., Pashkova Ch. Evaluating the effectiveness of preparing activated mineral powders from technogenic raw materials for asphalt mixtures // Procedia Engineering. 2015. Vol. 117. P. 355-361.
15. Пат. 2450991 РФ, МПК7 C04B26/26. Способ получения минерального порошка для асфальтобетонной смеси / Ядыкина В.В., Гридчин А.М., Траутваин А.И.; Заявитель и патентообладатель: Государственное образовательное учреждение высшего профессионального образования "Белгородский государственный технологический университет им. В.Г. Шухова". №2010132428/03; заявл. 02.08.2010; опубл. 20.05.2012.
Траутваин Анна Ивановна, кандидат технических наук, доцент кафедры автомобильных и железных дорог. E-mail: [email protected].
Белгородский государственный технологический университет им. В.Г. Шухова. Россия, 308012, Белгород, ул. Костюкова, д. 46.
Ядыкина Валентина Васильевна, доктор технических наук, профессор кафедры автомобильных и железных дорог.
E-mail: [email protected].
Белгородский государственный технологический университет им. В.Г. Шухова. Россия, 308012, Белгород, ул. Костюкова, д. 46.
Лебедев Михаил Сергеевич, кандидат технических наук, научный сотрудник ЦВТ БГТУ им. В.Г. Шухова. E-mail: [email protected].
Белгородский государственный технологический университет им. В.Г. Шухова, Россия, 308012, Белгород, ул. Костюкова, д. 46.
Акимов Андрей Евгеньевич, кандидат технических наук, ведущий инженер ЦВТ БГТУ им. В.Г. Шухова. E-mail: [email protected].
Белгородский государственный технологический университет им. В.Г. Шухова. Россия, 308012, Белгород, ул. Костюкова, д. 46.
Поступила в марте 2018 г.
© Траутваин А.И., Ядыкина В.В., Лебедев М.С., Акимов А.Е., 2018
A.I. Trautvain, V.V. Yadykina, M.S. Lebedev, A.E. Akimov PRELIMINARY INVESTIGATIONS OF THE CONVERSION SEAL AS A MINERAL POWDER
FOR ASPHALT-CONCRETE MIXTURES
Analysis of the current situation in the field of road construction showed that while building roads, in particular when preparing asphalt mixtures, it is necessary to use a large amount of high-quality mineral powder. The solution of this problem can lie in the plane of expanding the raw material resources through the use of carbonaceous waste (conversion carbonate chalk). Conversion of calcium carbonate is a byproduct formed during the release of nitrogen fertilizers and can become a substitute for the traditionally used limestone mineral powder. It was noted that the investigated waste in terms of chemical and granulo-metric composition is similar to the traditional mineral powder. However, the surface of the grain of the conversion chalk sample has a much more complex surface relief, with a large number of depressions and depressions, which provides the grain with a larger specific surface compared to the same grain of the traditional material. This feature can lead to a higher structuring ability of such a mineral powder in relation to an organic astringent and phenomena of selective adsorption of bitumen components on its surface. Preliminary studies of the feedstock showed that for a combination ofproperties, conversion chalk can be used as a raw material of a suitable mineral powder for asphalt concrete.
Keywords: mineral powder, conversion chalk, technogenic raw materials, asphaltic concrete.
REFERENCES
1. Chemyshov E.M. Some results of the development of scientific research in the field of structural structural materials science and high technologies (on the occasion of the 70th anniversary of the opening of the specialty of the engineer-constructor-technologist at the Voronezh State University of Architecture and Civil Engineering). Scientific Herald of the Voronezh State University of Architecture and Civil Engineering. Series: Physicochemical problems and high technologies of building materials science. Voronezh, 2014, no. 2, pp. 3-17.
2. Burtan S. T., Mustafin S. Principles of quality control of asphalt concrete on the basis of optimization of composition and combination of components of bituminous mineral mixtures. Automobile roads, 2013, no. 7, pp. 980.
3. Likomaskina M.A. Investigation of the influence of mineral powders of various chemical and mineralogical composition on the properties of asphalt-concrete mixture. Regional architecture and construction, 2017, no. 2, pp. 53-63.
4. Afinogenov O.P., Vaidurov S.S. Application in asphalt mixtures of mineral powder from perlite of the Khasyn deposit. Young scientist, 2014, no. 2, pp.104-107.
5. Khitrov K.A. Investigation of the possibility of using dust asphyxiation of asphalt mixing plants in place of traditional powders for the construction of logging roads: Abstract. dis. Cand. tech. sciences. St. Petersburg, 2010, 18 p.
6. Cherikov S.T., Erbaeva R.S., Batkibekova M.B. Use of calcareous waste of sugar production as a mineral powder in the manufacture of asphalt-concrete mixtures. Izvestiya Kyrgyz State Technical
University named I. Razzakova, 2012, vol. 26, pp. 226-230.
7. Sergutkina O.R. A complex of studies for the scientifically-based use of technogenic products in the production of building composites. Scientific Herald of the Voronezh State Agricultural Academy. Ser.: Physical and chemical problems and high technologies of building materials science, 2013, no. 6, pp. 105.
8. Chernyshov E.M., Potamoshneva N.D. Problems of development of scientific foundations and applied solutions in the tasks of building and technological utilization of man-made waste. Building materials, equipment, technologies of the XXI century, 2014, no. 6, pp. 21-26.
9. Kiselev V.P. Organic component of asphalt-concrete mixtures. Bulletin of Tomsk State Architectural and Construction University, 2012, no. 3, pp.207-218.
10. Podolsky V.P., Erokhin A.V. Corrosion stability of asphalt concrete using mineral powder from carbon-containing materials. Scientific herald of the Voronezh State Architectural and Construction University. Construction and architecture, 2008, no 1, pp. 149-152.
11. Kuznetsov D.A., Vysotskaya M.A., Ba-rabash D.E. Influence of adhesion additives on the intensity of degradation processes of road bitumen. Building Materials, 2012, no. 10, pp. 24-27.
12. Yadykina V.V., Gridchin A.M., Trautvain A.I., Tobolenko S.S. Influence of the Type of the Fiber Component of the Stabilizing Additive for Stone Mastic Asphalt Concrete on the Structure of an Organic Binder. Applied Mechanics and Materials, 2016, vol. 835, pp. 494-500. DOI: 10.4028/www.scientific.net/AMM.835.494.
13. Yadykina V.V., Gridchin A.M., Trautvain A.I., Khoroshikh A.S. Increasing the Reactivity of the Mineral Powders by Modifying. Applied Mechanics and Materials, 2015, vol. 749, pp. 348-352 D0I:10.4028/www.scientific.net/AMM.749.348.
14. Trautvain A., Yadykina V., Gridchin A., Pashkova Ch. Evaluating the effectiveness of preparing activated mineral powders from technogenic raw materials for asphalt mixtures. Procedia Engineering. 2015, vol. 117, pp. 355-361.
15. Yadikina V.V., Gridchin A.M., Trautvain A.I. The method of obtaining a mineral powder for an asphalt-concrete mixture, no. 2450991, 2012.
Information about the author
Anna I. Trautvain, PhD, Assistant professor.
E-mail: [email protected].
Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, Kostyukova st., 46.
Yadykina V. Vasil'yevna, PhD, Professor. E-mail: [email protected].
Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, Kostyukova st., 46.
Mikhail S. Lebedev, PhD., Researcher of the Center for High Technologies. E-mail: [email protected].
Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, Kostyukova st., 46
Andrey E. Akimov, Ph.D., Leading engineer of the Center for High Technologies. E-mail: [email protected].
Belgorod State Technological University named after V.G. Shukhov. Russia, 308012, Belgorod, Kostyukova st., 46.
Received in March 2018