Научная статья на тему 'Представление данных цифровых моделей рельефа в экологических геоинформационных системах (на примере геоинформационной системы Шершнёвского водохранилища)'

Представление данных цифровых моделей рельефа в экологических геоинформационных системах (на примере геоинформационной системы Шершнёвского водохранилища) Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
1090
198
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЦИФРОВАЯ МОДЕЛЬ МЕСТНОСТИ / РЕГУЛЯРНАЯ СЕТЬ / ТРИАНГУЛЯЦИОННАЯ НЕРЕГУЛЯРНАЯ СЕТЬ / ГИБРИДНАЯ СЕТЬ / БАТИМЕТРИЯ

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Рассказова Надежда Степановна, Бобылев Александр Владимирович

Рассматриваются основные способы, средства и механизмы отображения данных о рельефе. На примере структуры территории водосбора водохранилища проанализирован выбор адекватной модели обработки данных рельефа.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Представление данных цифровых моделей рельефа в экологических геоинформационных системах (на примере геоинформационной системы Шершнёвского водохранилища)»

Вестник Челябинского государственного университета. 2010. № 8 (189).

Экология. Природопользование. Вып. 4. С. 36-39.

Н. С. Рассказова, А. В. Бобылев

представление данных цифровых моделей рельефа в экологических геоинформационных системах

(на примере геоинформационной системы Шершиёвского водохранилища)

Рассматриваются основные способы, средства и механизмы отображения данных о рельефе. На примере структуры территории водосбора водохранилища проанализирован выбор адекватной модели обработки данных рельефа.

Ключевые слова: цифровая модель местности, регулярная сеть, триангуляционная нерегулярная сеть, гибридная сеть, батиметрия.

В связи со сложностью управления водными ресурсами Челябинской городской агломерации авторами предпринята попытка создания геоинформационной системы Шершнёвского водохранилища — её единственного питьевого источника. Географическая информационная система (ГИС) содержит тематический блок картографической информации в виде карт экологической обстановки в районе. Базовый картографический блок представлен топографическими картами средних и крупных масштабов с целью решения некоторых экологических задач: экологического мониторинга, определения зон разлива, оценки экологического состояния водосбора и др.

Объектом исследования являются Шерш-нёвское водохранилище, его водосборная площадь, а также территория водосбора р. Миасс на участке от Аргазинского (включая само водохранилище) до Шершнёвского водохранилища.

Задачей данной статьи является показ разнообразных возможностей представления рельефа местности в ГИС для целей экологических исследований.

Географические информационные системы представляют широкие возможности обработки пространственных данных. Информационный картографический банк данных может включать в себя различные сведения. Экологическое картографирование является основным методом создания тематических блоков гидрологических ГИС.

Одной из базовых задач создания структуры ГИС является установление соответствия масштабов используемых электронных карт и тематических баз данных. Выбор масштаба карт определяется возможностями использования их информации. Содержание тематических баз данных должно быть адекватно масштабу используемого картографического материала. Особое

место занимает представление данных о рельефе местности. Возможность показа рельефа различной степени подробности (точности) определяется необходимостью соблюдения требований режима секретности.

В то же время рельеф местности в аспекте экологического картографирования представляет собой пространственный базис для процессов обмена веществом и энергией. Основной информационной задачей при этом является чтение геоморфологических характеристик различных объектов, а также физических характеристик местности, например:

— определение наклона территории водосбора (в том числе для целей установления границ прибрежных защитных полос);

— расчёт экспозиции склона;

— отображение морфометрических характеристик водоёмов [1].

Топографическое представление рельефа является в сущности дискретно-континуальным (рельеф представлен в виде отметок высот и горизонталей, а также совокупности его характерных форм). Топографическая интерпретация рельефа далеко не всегда удовлетворяет требованиям экологического картографирования. Кроме того, рельеф местности, разрешённый к открытому показу, фактически соответствует его представлению на топографических картах средних масштабов.

Задачи регионального экологического картографирования могут выполняться на базе топографических карт средних и мелких масштабов. В данном случае рельеф будет удовлетворять требованиям с позиции точности. Однако точность топографического представления рельефа далеко не всегда является основным требованием. Экологическая составляющая тематического картографирования предъявляет особые требования к визуализации рельефа:

— наглядность представления данных;

— возможность объёмного представления ситуации;

— проведение расчётов по картам и моделирование.

ГИС на настоящем этапе развития обладают развитым функционалом представления данных о рельефе местности. Наравне с цифровой картой — моделью местности с объектовым составом, аналогичным топографической карте, в практику пространственного анализа входит понятие цифровой модели рельефа (ЦМР, Digital Terrain Model — DTM, Digital Elevation Model — DEM). Цифровая модель рельефа с нанесённой на неё ситуацией является цифровой моделью местности (ЦММ) [3].

Функционал геоинформационных систем помимо традиционных функций обработки данных двухмерного представления рельефа (построение изолиний по точкам и др.) даёт возможность создания ЦМР и работы с ней. На основании ЦМР реализуется наглядное представление данных о рельефе местности. Используя модель рельефа, можно выполнять следующие операции, реализованные в программных продуктах зарубежных разработчиков и некоторых отечественных ГИС и в специальном программном обеспечении обработки данных о рельефе:

— создание ЦМР по топографическому представлению рельефа;

— создание изолиний по ЦМР;

— построение характерных линий рельефа;

— построение поверхностей стока;

— сравнение и анализ ЦМР (DTM);

— элементы DTM-алгебры (сложение-вычитание рельефа);

— моделирование зон затопления;

— построение зон видимости (возможное использование — экологический туризм);

— обработка данных воздушного лазерного сканирования;

— анализ местности по данным ЦМР и пр.

Созданные ЦМР для удобства их анализа

можно наглядно представить в виде:

— трёхмерной модели рельефа (или ЦММ);

— матрицы (растра) с отмывкой рельефа;

— рельефа в виде теней.

Формирование математической основы ЦМР может быть выполнено различными моделями аппроксимации поверхности, классическими и специально разработанными [4].

Регулярная сеть (GRID) представляет собой решётку, используемую для разбиения земной поверхности на ячейки в регулярно-ячеистом представлении рельефа. Данная модель обработки соответствует модели представления данных в виде матрицы высот.

В случае регулярной сетки структурной единицей хранения данных является одна ячейка, координаты (абсцисса, ордината, аппликата) содержатся в узлах сети.

триангуляционная нерегулярная сеть (TIN — Triangulated Irregular Network) является системой неравносторонних треугольников, построение производится согласно триангуляции Делоне. Моделью представления рельефа, построенного по TIN, является многогранная поверхность. Информация содержится в вершинах треугольников (рис. 1).

Рис. 1. Триангуляционная нерегулярная сетка

TIN-модель создаётся по информации опорных точек, структурных линий и площадей заполнения постоянным значением. Различаются следующие типы структурных линий:

— линии гладкого перегиба (soft break line) — линейные объекты гидрографии;

— линии негладкого перегиба (hard break line) — хребты, водоразделы;

— линии разрыва (fault), вдоль которых происходит смещение поверхности по высоте,— обрывы [1].

TIN-модель даёт возможность использовать переменную плотность исходных точек в зависимости от изменений рельефа, что позволяет создать эффективную и точную модель поверхности. В построении TIN-модели используются также и другие пространственные объекты, уточняющие структуру рельефа — хребты, линии водотока, водные поверхности с постоянной высотой. Пространственные трёхмерные объекты могут иметь также и искусственное происхождение, например автомагистрали.

GRID и TIN являются классическими моделями и широко используются в отечественных и зарубежных ГИС. Помимо классических моделей обработки рельефа существуют гибридные. Так, компания INPHO (Германия) в высокоточной обработке рельефа для создания ЦМР использует гибридную модель в виде регулярной сетки, наложенной на структурные линии рельефа (data lines), сюда относятся линии перегиба (break lines) — тальвеги, водоразделы (и т. д.) — предположительно линии пересечения поверхностей граней рельефа); линии форм рельефа (form lines) — линии рек, промоины.

Разработчики INPHO убеждены, что наибольшую точность построения модели рельефа для экологических целей обеспечит гибридный алгоритм, разработанный на основе передовых методов объединения классического ОКГОа с совокупностью структурных линий (рис. 2).

/

Рис. 2. Гибридная модель обработки:

1 — река, 2 — промоина

При этом данные о значениях отметок будут сформированы не только в узлах регулярной сетки, но и в местах пересечения сетки со структурными линиями. С позиции экологического картографирования данная гибридная модель выглядит весьма привлекательно, поскольку позволяет учитывать структуру рельефа местности и виде линий, главным образом водотоков.

Пробел, связанный с невозможностью использования данных о рельефе, согласно его топографическому представлению на картах крупных масштабов, частично компенсируется наглядным представлением информации в виде производных моделей рельефа:

— матриц высот;

— объёмной модели, построенной по триангуляционной сети;

— карт уклонов;

— профилей местности и др.

Подобный набор возможностей показа реализован в ГИС «Панорама». По мнению авторов, набор средств, применённый в указанной ГИС, является достаточным для представления рельефа на уровне среднемасштабных карт. Подобное представление рельефа отвечает требованиям организации тематических блоков, что связано главным образом с территориальным охватом и масштабами представления топографической информации. Использование возможностей ГИС «Панорама» применительно к среднемасштабным картам способствует удобной организации её внутренних блоков для исследовательских целей, в том числе экологических.

В качестве модели обработки данных о рельефе при создании ГИС Шершнёвского водохранилища авторами использована триангуляционная модель. В отличие от регулярной сети данная модель позволяет учесть информацию о структурных линиях рельефа. Поскольку указанная геоинформационная система обладает гидроэкологической направленностью, особое значение имеет представление в ней гидрографии. Все объекты гидрографии, использованные механизмом создания поверхности по TIN (главным образом водотоки), были проанализированы с использованием космических снимков среднего разрешения. Особый интерес представляет сочетание модели рельефа с батиметрическим представлением его дна. Использование гибридных моделей в ГИС Шершнёвского водохранилища не представляется возможным, так как:

— информация о рельефе при правильной организации процессов получения информации о структурных линиях будет содержать избыточную точность, что не имеет значения для целей создания информационной системы;

— используемое программное обеспечение не даёт возможности построения гибридных моделей;

— источником сведений о структурных линиях являются данные дистанционного зондирования, а фактическое дополнение данными ДЗЗ карт средних масштабов выглядит некорректным в связи с точностью представляемой информации и её представлением в условных знаках, то есть с обязательной процедурой картографической генерализации. [3]

Таким образом, при всём многообразии способов и средств представления данных о рельефе в

Таблица 1

Распределение тематической информации в ГИС шершнёвского водохранилища

Уровень Масштабы базовых карт Отображаемый район Тематические базы данных

1. Гегиональный 1:500 000 Челябинская область Гидрологические и экологические сведения на уровне региона

2. ?айон исследования 1:100 000 (открытого пользования) Участок р. Mrn^ от Арга-зинского водохранилища до Шершнёвского Состояние речной сети, функциональное зонирование территории водосбора

З. Уровень объектов 1:25 000 и 1:50 000 (открытого пользования) Аргазинское водохранилище, Шершнёвское водохранилище Анализ структуры водосбора, объектов на водосборе

Таблица 2

Представление информации о рельефе в ГИС шершнёвского водохранилища

Уровень Отображение информации о рельефе Объекты, на которые созданы ЦМР Задачи, решаемые с помощью ЦМР

1. ?егиональный Топографическое - Визуализация, ведение дежурной статистической информации

2. ?айон исследования Топографическое, ЦМР Весь район работ Анализ состояния речной сети, анализ водосбора и его воздействия на водные объекты

З. Уровень объектов Топографическое, ЦМР, поверхности уклонов Аргазинское и Шершнёвское водохранилища и их водосборы Анализ структуры водосбора, анализ экологических и техногенных рисков

целях формирования тематических блоков ГИС должен быть проведён анализ их соответствия масштабным уровням представления картогра-фическиой информации.

Геоинформационная система Шершнёвского водохранилища имеет трёхмасштабную структуру. Тематические блоки ГИС Шершнёвского водохранилища привязаны к соответственным масштабным уровням (табл. 1).

В данном случае реализован принцип иерархической структуры базы данных.

Информация о рельефе представлена топографическими данными на втором и третьем уровне. При этом структурные линии принимались в обработку в обоих случаях (табл. 2).

Подобная структура пространственной базы данных позволяет решать задачи экологической

направленности, связанные с изучением состояния системы водных объектов.

Список литературы

1. Берлянт, А. М. Геоинформатика : толк. слов. осн. терминов / А. М. Берлянт, Ю. Б. Баранов, Е. Г. Капралов. М. : ГИС-ассоциация, 1999. 480 с.

2. Голубев, Г. Н. Геоэкология : учеб. для вузов / Г. Н. Голубев. 2-е изд., испр. и доп. М. : Аспект Пресс, 2006. 288 с.

3. Беленов, А. В. Стандартные уровни обработки и форматы представления данных ДЗЗ из космоса. Мировой опыт / А. В. Беленов // Геоматика. 2009. № 14. Вып. 5. С. 18-20.

4. Капралов, Е. Г. Геоинформатика : учеб. для вузов / Е. Г. Капралов, А. В. Кошкарёв, В. С. Тику-нов. М. : Академия, 2005. 480 с.

i Надоели баннеры? Вы всегда можете отключить рекламу.