Секция «Сварка летательньш аппаратов и родственнее технологии»
УДК 621.791.763
В. И. Кириллов Научный руководитель - С. Н. Козловский Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Красноярск
ПОВЫШЕНИЕ УСТОЙЧИВОСТИ ПРОЦЕССА ТОЧЕЧНОЙ СВАРКИ ПРОТИВ ОБРАЗОВАНИЯ ВЫПЛЕСКОВ И НЕПРОВАРОВ ПРИ НАЛИЧИИ ВОЗМУЩАЮЩИХ ФАКТОРОВ
Проведенные исследования позволили дополнить технологию точечной сварки мероприятиями, уменьшающими вероятность образования выплесков и непроваров. В их основе лежит контроль процесса сварки и регулирование его параметров.
На основании анализа материалов опубликованных исследований по вопросам образования выплесков при КТС и проведенных ранее исследований [1] их можно классифицировать как показано на рисунке.
ы плески при контактной точечной сварке
Начальный
Конечный
Активный
Пассивный
Виды выплесков при контактной точечной сварке
Как и в известной классификации выплесков они разделяются на выплески начальные и конечные.
Начальные выплески в свою очередь разделяются на наружные начальные выплески (рис. а) и внутренние начальные выплески (рис. в).
Конечные выплески так же, как и начальные выплески, разделяют на наружные конечные выплески (рис. б), и внутренние конечные выплески (рис. г, д).
Отличием данной классификации от известных является то, внутренний конечный выплеск предлагается разделить на два вида, в связи с тем, что, как установлено проведенными исследованиями, причинами его образование может быть следствием воздействия совершенно различных факторов.
Поэтому один из видов внутреннего конечного выплеска, при образовании которого давление в ядре в основном определяется термодеформационными процессами, протекающими в зоне формирования соединения, предлагается называть «активный конечный выплеск» (рис. г), а второй - при образовании которого увеличение давления расплавленного металла в ядре в основном определяется вдавливанием электродов в его объем, предлагается называть «пассивный конечный выплеск» (рис. д).
Начальные выплески, образуются в основном из-за причин технологических. В частности, из-за плохой подготовки поверхностей деталей или загрязнения рабочих поверхностей электродов, а также перекоса электродов или деталей. Устранение описанных при-
чин, как правило, предотвращает образование выплесков этого вида.
Конечные выплески даже в современной технологии точечной сварки - это наиболее часто встречающиеся и наиболее трудно устранимые виды выплесков.
Конечные наружные выплески образуются только при чрезмерно большом проплавлении деталей и диаметре ядра, в основном, деталей из титановых сплавов.
Конечные внутренние выплески (рис., б), в подавляющем большинстве случаев внутренние активные конечные выплески (рис., г), до сих пор являются основной проблемой при разработке технологии КТС.
Снижение процесса сварки к выплескам, в основном, может быть достигнуто технологическими мероприятиями, которые позволяют уменьшить давление расплавленного металла в ядре, либо применением способов сварки с программированным изменением усилия сжатия электродов, либо применением более мягких режимов сварки.
На основании проведенных исследований можно рекомендовать следующие технологические мероприятия для уменьшения склонности процесса к образованию конечных выплесков и непроваров:
1) обеспечивать высокое качество подготовки поверхностей деталей перед сваркой;
2) диаметр ядра dЯ не должен чрезмерно превышать минимально допускаемый dяmln;
3) усилие сжатия электродов в любой момент процесса КТС должно обеспечивать выполнение условий отсутствия начального и конечного выплесков;
4) применять технологические мероприятия, понижающие давление расплавленного металла в ядре, в частности, путем уменьшения сопротивления пластической деформации металла в уплотняющем пояске и его ширины:
- уменьшением жесткости режима сварки;
- использованием предварительного подогрева деталей отдельным или модулированным импульсом тока;
- программированием усилия сжатия электродов во время импульса сварочного тока;
5) при сварке на машинах переменного тока уменьшать тепловые пульсации в зоне формирования соединения, для чего применять режимы, близкие к полнофазному включению тока;
6) осуществлять оперативный контроль устойчивости процесса КТС против образования активных конечных выплесков;
б
а
д
Актуальные проблемы авиации и космонавтики. Технические науки
7) искусственно перераспределять напряжения в площади свариваемого контакта между центральной частью зоны сварки и ее периферией применением специальных способов сварки с обжатием периферийной зоны соединений.
Таким образом, очевидно, что наибольшую устойчивость против образования непроваров и выплеском могут обеспечить способы КТС, которые позволяют в процессе формирования сварного соединения целенаправленно изменять параметры термодеформационных процессов, протекающих в зоне сварки, т. е. способы КТС с программированным изменением параметров их режимов.
Библиографическая ссылка
1. Кириллов В. И., Козловский С. Н. Влияние искривления деталей в месте точечной сварки на устойчивость процесса формирования соединений против образования выплесков и непроваров // Актуальные проблемы авиации и космонавтики : материалы Всерос. науч.-практ. конф. ; Сиб. гос. аэрокосмич. ун-т. Красноярск, 2010. С. 174-175.
© Кириллов В. И., Козловский С. Н., 2011
УДК 621.791.763
Д. С. Ковалев Научный руководитель - С. Н. Козловский Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Красноярск
ИССЛЕДОВАНИЕ ПРИЧИН ОБРАЗОВАНИЯ НЕСПЛОШНОСТЕЙ В ТОЧЕЧНЫХ СВАРНЫХ СОЕДИНЕНИЯХ
Проведенные исследования позволили уточнить причины образования несплошностей в зоне сварки. Установлено, что на образование несплошностей влияет не только величина ковочного усилия и момент его приложения, но и скорость его нарастания.
После окончания импульса сварочного тока при охлаждении сварных соединений в них возможно образование ряда дефектов, общим признаком которых является образование несплошностей: пор, раковин, наружных и внутренних трещин.
Вследствие того, что при охлаждении металла зоны сварки его сопротивление пластической деформации увеличивается, увеличиваются и растягивающие напряжения. Увеличение растягивающих напряжений в металле зоны сварки при ее охлаждении может замедляться или прекращаться вовсе только в том случае, если уменьшение объема металла зоны сварки компенсируется его пластической деформацией. Там, где компенсирующее действие пластической деформации исчерпывается, возникают дефекты усадочного характера. Если это происходит до окончания кристаллизации металла в ядре, возникают поры и раковины (рис. 1), а если после - то напряжения достигают значений предела прочности металла и происходит его разрушение, т. е. образование трещин.
Предупреждение этих дефектов при КТС в основном осуществляются технологическими приемами, которые увеличивают объемную пластическую деформацию металла в зоне сварки, например, подогревом соединения при проковке дополнительным импульсом тока, который уменьшает сопротивление пластической деформации металла. Однако, в практике КТС основным приемом, как наиболее простым в осуществлении, увеличения пластической деформации металла в зоне сварки является увеличение усилия сжатия электродов при его охлаждении (приложение ковочного усилия ^К). При этом его величину (РК ~ 2...2,5.РСВ [1]) и момент приложения обычно подбирают экспериментально.
На машинах переменного и постоянного тока усилие сжатия электродов обычно начинают увеличивать
(прикладывать ковочное усилие) в момент окончания импульса тока. Что же касается скорости (времени) увеличения усилия сжатия электродов от сварочной до ковочной величины, то какие-либо обобщенные рекомендации по этому вопросу отсутствуют. Вместе с тем, проведенные исследования показали, что этот фактор существенно влияет на конечный результат точечной сварки.
Рис. 1. Поры и раковины в сварных соединениях после точечной сварки по циклу без приложения ковочного усилия: сплав АМг6, толщиной 2 + 2 мм; 1СВ = 43,7 кА; ЕЭ = 8,5 кН;
Гсв = 0,1
Изменение скорости увеличения ковочного усилия сжатия электродов при одном и том же моменте его приложения изменяет время, за которое оно достигает конечного значения. При этом существенно различается и конечный результат проковки соединения (рис. 2).