Научная статья на тему 'ПОВЫШЕНИЕ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ МИНЕРАЛЬНО-СЫРЬЕВОГО КОМПЛЕКСА ГИБРИДНЫМИ ФИЛЬТРОКОМПЕНСИРУЮЩИМИ УСТРОЙСТВАМИ'

ПОВЫШЕНИЕ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ МИНЕРАЛЬНО-СЫРЬЕВОГО КОМПЛЕКСА ГИБРИДНЫМИ ФИЛЬТРОКОМПЕНСИРУЮЩИМИ УСТРОЙСТВАМИ Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
266
49
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ГИБРИДНЫЕ СТРУКТУРЫ / ВЫСШИЕ ГАРМОНИКИ / ПРОВАЛЫ НАПРЯЖЕНИЯ / КАЧЕСТВО ЭЛЕКТРОЭНЕРГИИ / НЕЛИНЕЙНАЯ НАГРУЗКА / ФИЛЬТРОКОМПЕНСИРУЮЩИЕ УСТРОЙСТВА / ЭЛЕКТРОМАГНИТНАЯ СОВМЕСТИМОСТЬ / ГАРМОНИЧЕСКИЕ ИСКАЖЕНИЯ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Сычев Ю. А., Зимин Р. Ю.

Показана актуальность и необходимость выбора и обоснования структур гибридных фильтрокомпенсирующих устройств на основе последовательных и параллельных активных фильтров для повышения качества электроэнергии в системах электроснабжения предприятий минерально-сырьевого комплекса. Разработаны математические модели гибридных фильтрокомпенсирующих устройств на основе параллельного и последовательного активных фильтров. На основе данных математических моделей разработаны компьютерные имитационные модели указанных гибридных структур. Результаты имитационного моделирования показали эффективность коррекции показателей качества электроэнергии в части снижения уровня высших гармоник тока и напряжения, а также отклонений напряжения. Выявлены степени влияния фильтрокомпенсирующих устройств на показатели качества электроэнергии, определяющие непрерывность и устойчивость технологического процесса на предприятиях минерально-сырьевого комплекса. Установлено, что гибридное фильтрокомпенсирующее устройство на базе параллельного активного фильтра позволяет снизить уровень высших гармоник тока и напряжения более чем на 90 и 70 % соответственно, а на основе последовательного активного фильтра - снизить уровень высших гармоник напряжения более чем на 80 %. По результатам моделирования выявлена возможность компенсации реактивной мощности гибридной структуры на основе параллельного активного и пассивных фильтров. Обоснована возможность интеграции гибридных фильтрокомпенсирующих устройств в более сложные многофункциональные электротехнические комплексы автоматизированного повышения качества электроэнергии, а также целесообразность и перспективность их использования в системах комбинированного электроснабжения на основе параллельной работы централизованных и автономных источников распределенной генерации.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Сычев Ю. А., Зимин Р. Ю.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

IMPROVING THE QUALITY OF ELECTRICITY IN THE POWER SUPPLY SYSTEMS OF THE MINERAL RESOURCE COMPLEX WITH HYBRID FILTER-COMPENSATING DEVICES

The urgency and necessity of choosing and justifying the structures of hybrid filter-compensating devices based on series and parallel active filters to improve the quality of electricity in the power supply systems of enterprises of the mineral resource complex is shown. Mathematical models of hybrid filter compensating devices based on parallel and series active filters have been developed. Based on these mathematical models, computer simulation models of the indicated hybrid structures have been developed. The results of simulation showed the effectiveness of the correction of power quality indicators in terms of reducing the level of higher harmonics of current and voltage, as well as voltage deviations. The degree of influence of filter-compensating devices on the power quality indicators, which determine the continuity and stability of the technological process at the enterprises of the mineral resource complex, have been revealed. It has been established that a hybrid filter-compensating device based on a parallel active filter can reduce the level of higher harmonics of current and voltage by more than 90 and 70 %, respectively, and based on a series active filter, it can reduce the level of higher harmonics of voltage by more than 80 %. Based on the simulation results, the possibility of compensating for the reactive power of a hybrid structure based on parallel active and passive filters has been revealed. The possibility of integrating hybrid filter-compensating devices into more complex multifunctional electrical systems for the automated improvement of the quality of electricity is substantiated, as well as the expediency and prospects of their use in combined power supply systems based on the parallel operation of centralized and autonomous sources of distributed generation.

Текст научной работы на тему «ПОВЫШЕНИЕ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ В СИСТЕМАХ ЭЛЕКТРОСНАБЖЕНИЯ МИНЕРАЛЬНО-СЫРЬЕВОГО КОМПЛЕКСА ГИБРИДНЫМИ ФИЛЬТРОКОМПЕНСИРУЮЩИМИ УСТРОЙСТВАМИ»

УДК 621.311

001:10.31897/РМ1.2021.1.14

Повышение качества электроэнергии в системах электроснабжения минерально-сырьевого комплекса гибридными фильтрокомпенсирующими устройствами

Ю.А.СЫЧЕВ, Р.Ю.ЗИМИН Н

Санкт-Петербургский горный университет, Санкт-Петербург, Россия

Как цитировать эту статью: Сычев Ю.А. Повышение качества электроэнергии в системах электроснабжения минерально-сырьевого комплекса гибридными фильтрокомпенсирующими устройствами / Ю.А.Сычев, Р.Ю.Зимин // Записки Горного института. 2021. Т. 247. С. 132-140. DOI: 10.31897/PMI.2021.1.14

Аннотация. Показана актуальность и необходимость выбора и обоснования структур гибридных фильтроком-пенсирующих устройств на основе последовательных и параллельных активных фильтров для повышения качества электроэнергии в системах электроснабжения предприятий минерально-сырьевого комплекса. Разработаны математические модели гибридных фильтрокомпенсирующих устройств на основе параллельного и последовательного активных фильтров. На основе данных математических моделей разработаны компьютерные имитационные модели указанных гибридных структур. Результаты имитационного моделирования показали эффективность коррекции показателей качества электроэнергии в части снижения уровня высших гармоник тока и напряжения, а также отклонений напряжения. Выявлены степени влияния фильтрокомпенсирующих устройств на показатели качества электроэнергии, определяющие непрерывность и устойчивость технологического процесса на предприятиях минерально-сырьевого комплекса. Установлено, что гибридное фильтро-компенсирующее устройство на базе параллельного активного фильтра позволяет снизить уровень высших гармоник тока и напряжения более чем на 90 и 70 % соответственно, а на основе последовательного активного фильтра - снизить уровень высших гармоник напряжения более чем на 80 %. По результатам моделирования выявлена возможность компенсации реактивной мощности гибридной структуры на основе параллельного активного и пассивных фильтров. Обоснована возможность интеграции гибридных фильтрокомпенсирующих устройств в более сложные многофункциональные электротехнические комплексы автоматизированного повышения качества электроэнергии, а также целесообразность и перспективность их использования в системах комбинированного электроснабжения на основе параллельной работы централизованных и автономных источников распределенной генерации.

Ключевые слова: гибридные структуры; высшие гармоники; провалы напряжения; качество электроэнергии; нелинейная нагрузка; фильтрокомпенсирующие устройства; электромагнитная совместимость; гармонические искажения

Введение. Современные электротехнические комплексы промышленных предприятий минерально-сырьевого комплекса характеризуются интенсивным распространением нелинейной нагрузки в виде систем частотно-регулируемого электропривода технологических установок. Это негативно влияет на уровень качества электроэнергии в части несинусоидальности напряжения и тока [3]. Величины показателей качества электроэнергии определяют уровень эффективности и надежности работы сетей и систем электроснабжения предприятий минерально-сырьевого комплекса (МСК), а также отдельных видов электрооборудования.

Постановка проблемы. Проблема обеспечения качества электроэнергии и электромагнитной совместимости электрооборудования является актуальной для предприятий МСК. Уровень качества электроэнергии оказывает непосредственное влияние на срок службы основного электрооборудования, устойчивость функционирования электроустановок, величину дополнительных потерь энергии в элементах систем электроснабжения, вибрации в электродвигателях. В частности, по результатам исследований [5, 7] установлено, что величина дополнительных потерь энергии в электрических машинах, обусловленных наличием высших гармоник тока и напряжения, могут достигать 25 % от уровня суммарных потерь. Также выявлено [8, 12], что при наличии гармонических искажений в сети, превышающих нормы ГОСТ 32144 -2013, срок службы асинхронных двигателей может снизиться в 1,5-2 раза, конденсаторных установок компенсации реактивной мощности - в пять и более раз. Для погружных асинхронных электродвигателей технологических установок нефтедобычи при уровне снижения напряжения более чем на 70 % от номинальной величины критическая длительность провала напряжения по условию устойчивости составляет 0,15 с [4, 14].

йй!: 10.31897/РМ1.2021.1.14

Существующие технические решения. Для компенсации высших гармоник тока и напряжения используется ряд технических средств и решений, которые можно разделить на три класса: пассивные, активные и гибридные [1].

Пассивный класс устройств влияет на сопротивления участков сети или соотношение сопротивлений в какой-либо точке сети. Основными недостатками таких устройств являются ограниченность по спектру компенсируемых гармоник и невозможность адаптивной подстройки к изменениям гармонического спектра сети [11].

Активные устройства обладают свойством адаптивности, позволяют компенсировать полный спектр высших гармоник от 2 до 40 порядка и возможностью интеграции в системы автоматизированного повышения качества электроэнергии [15]. Однако существенным недостатком таких средств является дороговизна и невозможность их применения в сетях с конденсаторными установками коррекции коэффициента мощности из-за наличия резонансных явлений [2, 10].

Гибридные средства образуются из комбинации активных и пассивных устройств. Применение активных фильтров совместно с пассивными позволяет регулировать параметры последних. Также совместное применение с пассивными фильтрами в рамках гибридных систем позволяет снизить номинальные параметры активных фильтров [18, 26, 27]. Гибридные устройства классифицируются по следующим признакам: виду соединения активной и пассивной части между собой, а также способу подключения к компенсируемой сети. Также необходимо отметить, что гибридные фильтрокомпенсирующие устройства (ФКУ) повышают качество электроэнергии по нескольким показателям одновременно, т.е. обладают свойством многофункциональности. При этом подобные устройства способны компенсировать провалы и отклонения напряжения [16, 22].

Математические модели гибридных фильтрокомпенсирующихустройств. Основными топологиями гибридных ФКУ являются различные комбинации активных и пассивных фильтров. Наличие пассивной части позволяет снизить массо-габаритные показатели активной части за счет снижения номинальной мощности силовых элементов, которые являются наиболее дорогостоящими в составе ФКУ.

Исходя из показателей качества электроэнергии, за которыми нужен непрерывный контроль в условиях систем электроснабжения МСК, целесообразно рассматривать две основные структуры

• гибридная на основе параллельного активного и пассивного фильтров для обеспечения компенсации высших гармонических составляющих (ВГС) по току со стороны нелинейной нагрузки и отклонений напряжения со стороны питающей сети (гибридное ФКУ №2 1);

• гибридная на основе последовательного активного и пассивного фильтров для обеспечения компенсации ВГС и провалов по напряжению со стороны источника и высших гармоник тока со стороны нелинейной нагрузки (гибридное ФКУ № 2).

При математическом и компьютерном имитационном моделировании указанных ФКУ были приняты следующие основные допущения и ограничения:

• силовые элементы активных фильтров приняты идеальными ключами (нулевое сопротивление в открытом состоянии, бесконечно большое сопротивление в закрытом состоянии);

• состояние каждого силового ключа описывается функцией Л"инв, принимающей значение 0, если ключ закрыт, и значение 1, если ключ открыт;

• на протяжении одного шага интегрирования все нелинейности рассматриваются как линейные зависимости [23].

Структура гибридного ФКУ № 1 представлена на рис.1, а.

Математическая модель гибридного ФКУ № 1 основана на следующих выражениях [9, 14, 25]:

[9, 17, 25, 28]:

щ (0=Дмс(0 + мпфа(0 = Дмс(0 + uПф (0 = Дмс(0 + мнн (0;

мпфа(0 = ЩфО) = ^н^ *о(0 = *паф(0 + Ч(0 + г'нн(0; "паф(0 = ^ф(0 + ^нв^Х

(1)

^инв(0

ф '

^нв^) = ^инв^^Х

йй!: 10.31897/РМ!.2021.1.14

Нелинейная нагрузка

С/о 7

... А,с

Ьф

^пф

Активный фильтр

иш

ЧнГ

Ш

Цин

Пассивный фильтр

Нелинейная нагрузка

Цс

С -

+

с/„„

Пассивный фильтр

Активный фильтр

Рис. 1. Структуры гибридных ФКУ № 1 (а) и № 2 (б)

б

а

где мс(0 - мгновенное напряжение в сети; Дмс(£) - мгновенное падение напряжения линии от источника до места подключения гибридного ФКУ № 1 и Дмс(£) = ¡с(^с; итаф(0 - мгновенное значение напряжения на параллельном активном ФКУ; Мпф(0 - мгновенное значение напряжения на пассивном ФКУ; ит() - мгновенное значение напряжения на нелинейной нагрузке; ¡с^) - мгновенное значение тока в сети; ¡паф(^) - мгновенное значение тока активного ФКУ; ¡пф(0 - мгновенное значение тока пассивного ФКУ; ¡нн(0 - мгновенное значение тока нелинейной нагрузки; Минв(0 -мгновенное значение напряжения на выходе инвертора активного фильтра; иьф(() - мгновенное значение падения напряжения на индуктивности активного фильтра; Ьф - индуктивность на выходе активного ФКУ; ¡инв(0 - мгновенное значение тока инвертора активного ФКУ; Кинв^) - модулирующая функция, характеризующая степень включения и отключения ЮБТ-транзисторов; и^^) - напряжение на обкладках конденсатора активного ФКУ [10, 11].

Структура гибридного ФКУ № 2 представлена на рис.1, б.

Математическая модель гибридного ФКУ № 2 основана на следующих выражениях [8, 10, 11]: Мс(0 = ДЫс(г) + Мк(0 + Мпф(0 = ДЫс(г) + Мк(0 + инн^);

Мс(0 = ¡с(^2с + ик(0 + инн(0; ¡с(() = ¡пф(0 + ¡нн(0;

ик(г) = Кр исф(0;

исф(0 = иьф(0 + иинв(0;

иьф(0 = Ьф^^^^;

(2)

Uиив(t) = Кинв(0 и^(0,

где Uк(t) - мгновенное значение компенсационного высшего напряжения на трансформаторе; Кр - коэффициент трансформации; Uсф(t) - мгновенное значение напряжения на обкладках конденсатора [21, 23].

Система управления активной частью (параллельный активный фильтр) гибридного ФКУ № 1 реализуется на основе фазовых преобразований и фазовой синхронизации опорных величин.

Система управления измеряет фазные напряжения сети (иа, иъ, иС) и преобразует их в двухфазную систему аР следующим образом:

иа _ иа

иь + ис

(3)

А- \

ир = —(иъ - ис).

2

Записки Горного института. 2021. Т. 247. С. 132-140 DOI: 10.31897/PMI.2021.1.14

Щр ЮЛ.Сычев, Р.Ю.Зимин

Фазовые преобразования позволяют определить угол ф между изображающим вектором искаженного напряжения сети и его проекцией на ось а. Характер изменения и величина угла ф содержит информацию об уровне искажения, присутствующих высших гармониках, фазовом сдвиге напряжения и тока компенсируемой сети. Исходные направляющие:

COSф = Па ¡и5т,

8Шф = ир ¡ит (4)

и$т ^ ^а + ^р.

Блок фазовой синхронизации корректирует угол ф до величины ф', соответствующей синусоидальной форме кривой напряжения сети. Далее определяются опорные токи в системе координат ав:

/за = /з0О8ф'; (5)

/зр = ^1Пф',

где /з - сигнал задания по току. По аналогии с (3) осуществляется обратное фазовое преобразование:

/за = /за;

• V3 ¿зр - ¿за

/зь = —р—; (6)

• _ - V3 ¿зр - ¿за /зс = 2 .

После этого из опорных синусоидальных токов, определенных по выражению (6), вычитаются токи нелинейной нагрузки (/„а, /„ь, /„с):

/оа /за /па;

/оь = /зь = /„ь; (7)

ioc iзc inc.

На основании полученных токов (ioa, iob, ioc) формируются импульсы управления силовыми ключами инвертора активного фильтра. Токи ioa, iob, ioc дают информацию о наличии высших гармоник тока, которые должен компенсировать параллельный активный фильтр в составе гибридного ФКУ № 1.

Имитационное моделирование структур гибридных фильтрокомпенсирующих устройств. С учетом выражений (1), (2) и на основе приведенных структур на рис.1, а и б разработаны компьютерные имитационные модели гибридных ФКУ № 1 и № 2 в программном пакете Simulink MATLAB с учетом параметров и характеристик существующих систем электроснабжения предприятий МСК. В данных виртуальных моделях реализованы системы управления активными частями ФКУ №2 1 и №2 2. Имитационная модель на примере ФКУ №2 1 приведена на рис.2.

В качестве исходных данных при имитационном моделировании приняты параметры нефтепромысловой распределительной сети [20]. В качестве источника электроснабжения принята промысловая воздушная линия 6 кВ длиной 3 км с мощностью трехфазного короткого замыкания на уровне 250 МВА и скважинный трансформатор 6/0,4 кВ мощностью 100 кВА. Нелинейная нагрузка моделировалась посредством трехфазного мостового неуправляемого выпрямителя (схема Ларионова) с активно-индуктивной нагрузкой мощностью 80 кВА. При моделировании активный фильтр настраивался на подавление высших гармоник тока со 2 по 40 номер включительно, так как согласно требованиям ГОСТ 32144-2013 при определении уровня искажений напряжения учитывается именно данный диапазон высших гармоник [13, 24]. Большинство серийных активных фильтров настраиваются на определенный диапазон высших гармоник, более дорогие модификации с более сложными алгоритмами работы можно настроить на подавление

Записки Горного института. 2021. Т. 247. С. 132-140 001:10.31897/РМ1.2021.1.14

Щр ЮЛ.Сычев, Р.Ю.Зимин

Рис.2. Имитационная модель системы электроснабжения МСК с гибридным ФКУ № 1

отдельных гармоник [31]. На рис.2 показан блок определения коэффициента искажения на примере напряжения источника «УаЬс_сети». Для остальных параметров используются аналогичные блоки, встроенные в блок «Интерфейс», где задаются основные параметры и режимы моделирования.

При разработке имитационной модели параметры питающей сети и подключенной нагрузки задавались в относительных единицах, где за базис принимались усредненные величины мощностей и сопротивлений элементов. При этом за базисные принимались величины мощности нагрузки в часы максимума. Моделирование осуществлялось на примере технологических установок нефтедобычи, где мощности погружных технологических электроустановок могут превышать несколько сотен кВт [6]. Также при моделировании уровень искажения тока нагрузки задавался в диапазоне от 9 до 30 %, а уровень искажения напряжения сети - от 2 до 15 %, что соответствует результатам экспериментальных исследований в сетях нефтедобычи [7].

По результатам моделирования были получены степени снижения коэффициентов, характеризующие наличие высших гармонических составляющих в сети до и после применения ФКУ: ДТИВ/- 91, ДТИВц - 72, ДК/5 - 96, ДКи5 - 75, ДКП - 97, ДКи? - 68 % (ТИВ/, ТИВи - суммарные коэффициенты гармонических составляющих по току и напряжению соответственно; К/5, Кп, Ки5, Ки7 - коэффициенты 5-й и 7-й гармонических составляющих по току и напряжению соответственно). Степень снижения на примере ТИВи и ТИВ/ определяется следующим образом:

ДТИАи = ТНВи1 - ТНВи2 • 100 %;

ТНПШ ' (8)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Д = швл - твп %, 1 ТНВП

где ТИВщ, ТИВп - коэффициенты до применения ФКУ; ТИВщ., ТИВ/2 - коэффициенты после применения ФКУ.

Степени снижения для коэффициентов К/5, Кц5, К/7, Кщ определяются аналогичным образом:

ДКц5 = Ки5 - Ки5-100 %;

Ки5 , ч

. . (9)

ДКЦ7 = Ки - Ки ^100 %;

Кгп

Записки Горного института. 2021. Т. 247. С. 132-140 001:10.31897/РМ1.2021.1.14

Щр ЮЛ.Сычев, Р.Ю.Зимин

А

I 1 П| |Н В

с

Рис.3. Имитационная модель системы электроснабжения МСК с гибридным ФКУ № 2

ДКЛ = К5ЧКЧ00 %;

К15 (9)

АКп = К^КЧ00 %,

кП

где Кц5, К5 - коэффициенты до применения ФКУ; К/5, К5 - коэффициенты после применения ФКУ.

Гибридное ФКУ №1 с активной частью параллельного типа позволяет осуществлять компенсацию ВГС тока в сети и компенсацию реактивной мощности для обеспечения коэффициента мощности км близкого к единице в условиях предприятий МСК. Энергетические показатели работ без ФКУ № 1 (с ФКУ № 1): Р = 0,292 (0,293) о.е., Q = 0,067 (0,001) о.е., км = 0,974 (0,999).

Имитационная модель гибридного ФКУ №2 2 представлена на рис.3.

Система управления последовательного активного фильтра в составе гибридного ФКУ № 2 реализована на основе преобразований трехфазной системы питающих напряжений в составляющие прямой, обратной и нулевой последовательности (преобразования Фортескью) [30, 34]. Выделенные составляющие прямой последовательности напряжения сети являются опорными величинами при компенсации провалов, отклонений и искажения напряжения последовательным активным фильтром в составе гибридного ФКУ № 2.

В ходе имитационного моделирования регистрировались осциллограммы формы кривой напряжения в системе электроснабжения до и после подключения ФКУ №2 2. Также по результатам моделирования были получены степени снижения уровня гармонических искажений по напряжению: ДТИВи- 85, ДКи5 - 96, ДКот - 96 %. Соответствующие степени снижения определялись аналогично ФКУ № 1 по выражениям (8) и (9).

Анализ результатов моделирования. По результатам моделирования выявлена способность гибридного ФКУ на базе параллельного активного фильтра осуществлять компенсацию высших

йй!: 10.31897/РМ!.2021.1.14

гармоник тока и напряжения одновременно с коррекцией коэффициента мощности сети. В частности, с применением гибридного ФКУ № 1 значение суммарного коэффициента гармонических составляющих снизилось на 93,16 % по току и на 72,14 % по напряжению, а также повысился коэффициент мощности на 12,35 %. Данная особенность позволяет рассматривать гибридные ФКУ № 1 как многофункциональные устройства и на их базе создавать более сложные электротехнические комплексы и системы для автоматизированного повышения качества электроэнергии [29, 35]. При этом установлено, что применение гибридного ФКУ №2 1 повышает величину потребляемой активной мощности на 0,4 %, что связано с активными потерями в силовых ключах активной части ФКУ при компенсации высших гармоник.

По результатам моделирования установлено, что гибридное ФКУ № 2 с последовательной активной частью способно создавать добавку напряжения для нормализации уровня сетевого напряжения в случае его отклонения из-за подключения нагрузки в условиях протяженных линий электропередачи. При моделировании действующее значение напряжения в момент подключения нагрузки составляет 0,84 о.е. (за базис принято номинальное значение), что недопустимо согласно требованиям ГОСТ 32144-2013. При подключении гибридного ФКУ № 2 создается добавка напряжения (ДЦ), действующее значение составляет 1 о.е.:

5Ц = ином - ^400 % = Ь°^100 % = 16 %. (10)

ином 1

Гибридное ФКУ № 2 на основе последовательного активного фильтра одновременно с компенсацией провалов напряжения способно подавлять высшие гармоники напряжения, что также подтверждает многофункциональность устройства. При этом уровень гармоник напряжения снижается на 85 %.

Также наличие активной части, несмотря на ее дороговизну, в виде параллельного или последовательного активного фильтра в составе гибридных структур существенно повышает эффективность подавления высших гармоник тока и напряжения. В частности, наличие параллельного активного фильтра в структуре гибридного ФКУ № 1 существенно повышает эффективность компенсации высших гармоник тока (ТИВ/ без активной части снижается с 29,09 до 14,25 %, а с активной - до 2 %). Наличие последовательного активного фильтра в структуре гибридного ФКУ № 2 существенно повышает эффективность компенсации высших гармоник напряжения (ТИВи без активной части снижается с 14,38 до 8,48 %, а с активной - до 2,14 %).

Обсуждение. Рассмотренные структуры гибридных ФКУ могут быть использованы в рамках единого электротехнического комплекса для автоматизированного повышения качества электроэнергии в сетях и системах электроснабжения различной структуры [19]. Гибридные ФКУ на основе последовательных и параллельных активных фильтров способны подавлять высшие гармоники тока и напряжения, корректировать коэффициент мощности, компенсировать отклонения напряжения в условиях МСК, где активная мощность отдельных технологических установок изменяется от нескольких десятков до нескольких сотен кВт, уровень искажения напряжения - от 1 до 20 %, уровень искажения тока - от 4 до 60 %.

На базе подобных структур могут быть созданы более совершенные универсальные компенсаторы [32, 33] в рамках гибких систем передачи переменного тока для условий предприятий МСК. Рассмотренные гибридные структуры обладают переменной структурой, что позволяет использовать их в системах комбинированного электроснабжения на основе параллельной работы централизованных и автономных источников, когда в случае аварийных режимов режим электроснабжения изменяется, а также при отключении части неответственной нелинейной нагрузки. Предметом дальнейших исследований является анализ влияния показателей режимов энергообеспечения и энергопотребления на уровень эффективности гибридных ФКУ.

Заключение. Выявлены основные типы гибридных ФКУ на основе параллельных и последовательных активных фильтров, применение которых позволяет повысить уровень качества электроэнергии в условиях систем электроснабжения предприятий МСК по ключевым показателям, включая величину высших гармоник напряжения и тока, а также отклонения напряжения. Гибридное ФКУ на основе параллельного активного фильтра способно компенсировать реактивную мощность узла нагрузки, приближая коэффициент мощности к единице.

DOI: 10.31897/PMI.2021.1.14

Результаты моделирования показали достаточную, согласно требованиям ГОСТ 32144-2013, эффективность повышения качества электроэнергии разработанными гибридными ФКУ, в частности, гибридное ФКУ на основе последовательного активного фильтра на 15 % снижает уровень отклонения сетевого напряжения и в семь раз - степень его искажения. Гибридное ФКУ на базе параллельного активного фильтра способно приблизить коэффициент мощности сети к 1, снизить уровень искажений тока в десять раз, а искажений напряжения - в четыре раза. Совместное применение активных и пассивных фильтров повышает эффективность коррекции уровня высших гармоник тока и напряжения более чем в два раза.

Результаты моделирования доказали многофункциональность проанализированных гибридных ФКУ и возможность их использования в рамках более сложных электротехнических комплексов и систем автоматизированного повышения качества электроэнергии, в частности, в гибких системах передачи переменного тока (FACTS).

ЛИТЕРАТУРА

1. Баланс энергии в электрических цепях / В.Е.Тонкаль, А.В.Новосельцев, С.П.Денисюк и др. Киев: Наукова думка, 1992. 312 с.

2. Гамазин С.И. Применение тиристорных компенсаторов в системах электроснабжения / С.И.Гамазин, А.И.Ненахов // Главный энергетик. 2014. № 4. С. 55-58.

3. Герман-Галкин С.Г. Исследование спектральных характеристик многоуровневых полупроводниковых преобразователей / С.Г.Герман-Галкин, Б.Ф.Дмитриев // Электротехника. 2014. № 3. С. 45-53.

4. Ершов М.С. Методика экспериментального определения параметров источников питания промышленных систем электроснабжения / М.С.Ершов, Р.Н.Конкин // Промышленная энергетика. 2017. № 2. С. 34-39.

5. КозярукА.Е. Современные эффективные электроприводы производственных и транспортных механизмов // Электротехника. 2019. № 3. C. 33-37.

6. Литвиненко В.С. Методика определения параметров режима бурения наклонно прямолинейных участков скважины винтовыми забойными двигателями / В.С.Литвиненко, М.В.Двойников // Записки Горного института. 2020. Т. 241.

C. 105-112. DOI: 10.31897/PMI.2020.1.105

7. Методы компенсации провалов и искажений напряжения в электрических сетях нефтедобывающих предприятий / Б.Н.Абрамович, Д.А.Устинов, Ю.А.Сычев, А.Я.Шклярский // Нефтяное хозяйство. 2014. № 8. С. 110-112.

8. Моделирование влияния величины нелинейной нагрузки на качество электроэнергии промышленных электротехнических систем / Н.Н.Портнягин, М.С.Ершов, П.Ю.Барбасов, М.Ю.Чернев // Известия высших учебных заведений. Электромеханика. 2017. Т. 60. № 1. С. 61-66. DOI: 10.17213/0136-3360-2017-1-61-66

9. Пашкевич Н.В. Управление эколого-экономическим риском негативного воздействия отходов горно-металлургического производства / Н.В.Пашкевич, М.А.Пашкевич, Т.А.Петрова // Записки Горного института. 2005. Т. 166. С. 68-70.

10. ПронинМ.В. Электромеханотронные комплексы и их моделирование по взаимосвязанным подсистемам / М.В.Пронин, А.Г.Воронцов. СПб: Ладога, 2017. 220 с.

11. Розанов Ю.К. Многофункциональный регулятор качества электроэнергии на основе силового электронного преобразователя / Ю.К.Розанов, М.Г.Лепанов, М.Г.Киселев // Электротехника. 2014. № 8. С. 51-59.

12. Розанов Ю.К. Управление потоками электроэнергии и повышение эффективности электроэнергетических систем / Ю.К.Розанов, А.П.Бурман, Ю.Г.Шакарян. М.: Издательский дом МЭИ, 2012. 336 с.

13. Тетерин Н.В. Математическое описание микроволнового контактного уровнемера жидких сред / Н.В.Тетерин, О.М.Большунова // Записки Горного института. 2010. Т. 186. С. 151-158.

14. Хабибуллин М.М. Активный фильтр электроэнергии с общим звеном постоянного тока и системой управления на основе релейного регулятора тока / М.М.Хабибуллин, В.Н.Мещеряков // Приборы и системы. Управление, контроль, диагностика. 2014. № 7. С. 26-33.

15. Шакарян Ю.Г. Установившиеся режимы работы электроэнергетических систем с сетевыми устройствами гибких электропередач / Ю.Г.Шакарян, В.К.Фокин, А.П.Лихачев // Электричество. 2013. № 12. С. 2-13.

16. CostabeberA. Distributed cooperative control of low-voltage residential microgrids / A.Costabeber, P.Tenti, P.Mattavelli // 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 25-28 June, 2012, Aalborg, Denmark, 2012. P. 457-463. DOI: 10.1109/PEDG.2012.6254042

17. Development of fire safety measures aimed at preventing and responding to spontaneous combustion in brown coal mines / E.B.Gridina, S.V.Kovshov, T.I.Antonenko, A.K.Miroshnichenko // Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2020. № 6. P. 96-101. DOI: 10.33271/nvngu/2020-6/096

18. Device for limiting single phase ground fault of mining machines / R.S. Fediuk, N.Y. Stoyushko, Y.G. Yevdokimova et al. // IOP Conference Series: Earth and Environmental Science. 2017. Vol. 87. Iss. 3. P. 032009. DOI: 10.1088/1755-1315/87/3/032009

19. Gulkov Y.V. Research of grounding systems of electrical complexes in the conditions of permafrost soils / Y.V.Gulkov, A.V.Turysheva, A.V.Kopteva // Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 28-31 January, 2019, St. Petersburg and Moscow, Russia, 2019. P. 969-972. DOI: 0.1109/EIConRus.2019.8657119

20. Kovalchuk M.S. Ensuring the Reliable Operation of the Pumping Units by Efficient State Diagnosis / M.S.Kovalchuk,

D.A.Poddubniy // All-Russian research-to-practice conference «Ecology and safety in the technosphere: current problems and solutions» (EST 2018), 22-24 November, 2018, Yurga, Russia, 2019. Vol. 224. Iss. 1. P. 012032. DOI: 10.1088/1755-1315/224/1/012032

DOI: 10.31897/PMI.2021.1.14

21. Litran S.P. Comparative Analysis of Compensation Strategies for Series APF Based on the Electric Power Dual Formulation // Proceedings of the 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 4-6 April, 2017, Cadiz, Spain, 2017. P. 199-204. DOI: 10.1109/CPE.2017.7915169

22. Litran S.P. Design Criteria of a Control Strategy for Hybrid Power Filters Based on Current and Voltage Detection / S.P.Li-tran, P.Salmeron // International Transactions on Electrical Energy Systems. 2015. Vol. 25. Iss. 3. P. 419-432. DOI: 10.1002/etep.1850

23. Litran S.P. Electromagnetic Compatibility Analysis of a Control Strategy for a Hybrid Active Filter / S.P.Litran, P.Salmeron // Electric Power Systems Research. 2017. Vol. 144. P. 81-88. DOI: 10.1016/j.epsr.2016.11.014

24. Pai F. Design of a dynamic voltage restorer with cascade inverter / F.Pai, P.Tseng, J.Huang // Proceedings of the 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), 21-23 October, 2016, Shanghai, China, 2016. P. 172-176. DOI: 10.1109/ICPRE.2016.7871195

25. PashkevichM.A. Development of an operational environmental monitoring system for hazardous industrial facilities of Gazprom Dobycha Urengoy / M.A.Pashkevich, T.A.Petrova // Journal of Physics: Conference Series, 14-17 May, 2019, St. Petersburg, Russia, 2019. Vol. 1384. № 1. P. 012040.

26. Power supply distribution system for calorimeters at the LHC beyond the nominal luminosity // P.Tenti, G.Spiazzi, S.Buso et al. // Journal of Instrumentation. 2011. Vol. 6. P. 1-17. DOI: 10.1088/1748-0221/6/06/P06005

27. Revuelta P.S. Active Power Line Conditioners: Design, Simulation and Implementation for Improving Power Quality / P.S.Revuelta, S.P.Litran, J.P.Thomas. Amsterdam: Elsevier, 2016. 420 p.

28. Serzhan S.L. Substantiation of the Draghead Application as a Mining Unit in Conditions of Solid Minerals Deep-Sea Mining / S.L.Serzhan, I.S.Trufanova, D.V.Malevannyi // IOP Conference Series: Earth and Environmental Science. 2019. Vol. 272. Iss. 2. P. 1-6. DOI: 10.1088/1755-1315/272/2/022048

29. Skamyin A.N. Energy efficiency improving of reactive power compensation devices / A.N.Skamyin, M.S.Kovalchuk // Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 29 January -1 February, 2018, Moscow, Russia, 2018. P. 780-783. DOI: 10.1109/EIConRus.2018.8317207

30. Thomas J.P. Assessment on Apparent Power Indices with Hybrid Active Power Filters // Proceedings of the 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG), 4-6 April, 2017, Cadiz, Spain, 2017. P. 181-186. DOI: 10.1109/CPE.2017.7915166

31. Thomas J.P. Practical Evaluation of Unbalance and Harmonic Distortion in Power Conditioning // Electric Power Systems Research. 2016. Vol. 141. P. 487-499. DOI: 10.1016/j.epsr.2016.08.012

32. Ustinov D.A. Increase of Dynamic Stability of Alternating Current Electric Drives at Short-Term Violations of Oilfield Power Supply // Proceedings of the 12th International Scientific and Technical Conference «Dynamics of Systems, Mechanisms and Machines» (Dynamics), 13-15 November, 2018, Omsk, Russia, 2018. P. 1-5. DOI: 10.1109/Dynamics.2018.8601457

33. Valles A.P. A New Distributed Measurement Index for the Identification of Harmonic Distortion and/or Unbalance Sources Based on the IEEE Std. 1459 Framework / A.P.Valles, P.S.Revuelta // Electric Power Systems Research. 2019. Vol. 172. P. 96-104. DOI: 10.1016/j.epsr.2019.03.007

34. Xu X. Novel current-tracking control for hybrid active power filter with injection circuit and its engineering application / Proceedings of the 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), 21-23 October, 2016, Shanghai, China, 2016. P. 269-274. DOI: 10.1109/ICPRE.2016.7871214

35. Zagrivnyi E.A. Studying the operating mode of the down-hole electrode heater for the production of high-viscosity oil / E.A.Zagrivnyi, V.I.Malarev, A.V.Kopteva // Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), 28-31 January, 2019, St. Petersburg and Moscow, Russia, 2019. P. 1110-1113. DOI: 10.1109/EIConRus.2019.8656868

Авторы: Ю.А.Сычев, канд. техн. наук, доцент, [email protected], https://orcid.org/0000-0003-0119-505X (Санкт-Петербургский горный университет, Санкт-Петербург, Россия), Р.Ю.Зимин, аспирант, [email protected], https://orcid.org/0000-0002-0498-8904 (Санкт-Петербургский горный университет, Санкт-Петербург, Россия).

Авторы заявляют об отсутствии конфликта интересов.

Статья поступила в редакцию 20.01.2021. Статья принята к публикации 01.02.2021.

i Надоели баннеры? Вы всегда можете отключить рекламу.