Научная статья на тему 'ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ СИСТЕМЫ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-65 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА СО2'

ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ СИСТЕМЫ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-65 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА СО2 Текст научной статьи по специальности «Механика и машиностроение»

CC BY
9
2
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КОНДЕНСАТОР ПАРОВОЙ ТУРБИНЫ / СИСТЕМА ОХЛАЖДЕНИЯ / БИНАРНАЯ ЭНЕРГОУСТАНОВКА / СЖИЖЕННЫЙ УГЛЕКИСЛЫЙ ГАЗ

Аннотация научной статьи по механике и машиностроению, автор научной работы — Гатина Р.З., Гафуров А.М.

Представлены результаты исследования бинарной энергоустановки на сжиженном углекислом газе по экономии расхода условного топлива в системе охлаждения паровых турбин типа К-500-65 в зимний период.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по механике и машиностроению , автор научной работы — Гатина Р.З., Гафуров А.М.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

INCREASE OF ENERGY EFFICIENCY OF AN COOLING SYSTEM OF К-500-65 STEAM TURBINES WITH USE OF A CONTOUR OF CIRCULATION ON СО2

Results of research of binary power installation are presented on the liquefied carbon dioxide gas on economy of a consumption of equivalent fuel in cooling system of К-500-65 steam turbines in a winter time span.

Текст научной работы на тему «ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ СИСТЕМЫ ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-65 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА СО2»

Абсолютный электрический КПД (рис. 2) турбогенератора низкотемпературного теплового двигателя варьируется от 1,72% до 4,07%. При этом использование низкотемпературного теплового двигателя с замкнутым контуром циркуляции на C3H8 в системе охлаждения паровых турбин типа К-500-65 позволяет дополнительно вырабатывать электроэнергию на ТЭС (рис. 1) в диапазоне температур окружающей среды от 263,15 К (-10°С) до 223,15 К (-50°С).

Использованные источники:

1.Гафуров А.М. Способ утилизации сбросной теплоты в конденсаторах паровых турбин, охлаждаемых водными ресурсами при температуре 5°С в зимний период времени. // Инновационная наука. 2016. - № 4-3. - С. 50-51.

2.Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 4 кПа. // Инновационная наука. 2016. № 2-3. -С. 34-36.

3.Гафуров А.М., Гафуров Н.М., Гатина Р.З. Способ работы низкотемпературного теплового двигателя на сжиженном газе C3H8 с комбинированным охлаждением. // Теория и практика современной науки. -2016. - № 9 (15). - С. 95-98.

4.Гафуров А.М., Гафуров Н.М. Замещение воздушного охлаждения конденсаторов паровых турбин контуром циркуляции на C3H8. // Инновационная наука. - 2016. - № 1-2 (13). - С. 29-31.

5.Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 4,5 кПа. // Инновационная наука. - 2016. № 23. - С. 36-38.

УДК 62-176.2

Гатина Р.З. студент 4 курс

факультет «Энергонасыщенных материалов и изделий»

ФГБОУ ВО «КНИТУ» Гафуров А.М. инженер I категории УНИР ФГБОУ ВО «КГЭУ» Россия, г. Казань ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ СИСТЕМЫ

ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-65 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА СО2 Представлены результаты исследования бинарной энергоустановки на сжиженном углекислом газе по экономии расхода условного топлива в системе охлаждения паровых турбин типа К-500-65 в зимний период. Ключевые слова: конденсатор паровой турбины, система охлаждения, бинарная энергоустановка, сжиженный углекислый газ.

Gatina R.Z.

Gafurov A.M.

INCREASE OF ENERGY EFFICIENCY OF AN COOLING SYSTEM OF К-500-65 STEAM TURBINES WITH USE OF A CONTOUR OF

CIRCULATION ON СО2

Results of research of binary power installation are presented on the liquefied carbon dioxide gas on economy of a consumption of equivalent fuel in cooling system of К-500-65 steam turbines in a winter time span.

Keywords: condenser of the steam turbine, cooling system, binary power installation, liquefied carbon dioxide gas.

В настоящее время существует проблема теплового загрязнения окружающей среды тепловыми электростанциями (ТЭС), связанная с использованием озерной или речной воды в качестве охлаждающей среды, которую прокачивают через конденсаторы паровых турбин для поглощения тепловой энергии, и затем возвращают её в водоёмы без предварительного охлаждения. Полезное использование сбросной теплоты не представляется возможным из-за низкой температуры в 25-40°С [1].

В конденсаторе паровой турбины типа К-500-65 поддерживается низкое давление пара равное 4,0 кПа, что соответствует температуре насыщения в 28,96°С. Процесс конденсации пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости в окружающую среду. При этом потери теплоты в конденсаторе паровой турбины составляют примерно половины (45-50%) затрачиваемой теплоты в цикле. В зимний период времени конденсатор паровой турбины является источником сбросной низкопотенциальной теплоты с температурой в 28,96°С, а окружающая среда - прямой источник холода с температурой вплоть до минус 50°С. Имеющийся теплоперепад можно сработать с помощью бинарной энергоустановки на основе низкотемпературного теплового двигателя с замкнутым контуром циркуляции на сжиженном углекислом газе СО2 [2].

Замкнутый контур циркуляции низкотемпературного теплового двигателя содержит последовательно соединенные насос, теплообменник-конденсатор паровой турбины, турбодетандер с электрогенератором и теплообменник-конденсатор аппарата воздушного охлаждения (АВО). Причем охлаждение низкокипящего рабочего газа СО2 осуществляют наружным воздухом окружающей среды в зимний период времени при температуре от 0°С до минус 50°С [3].

Бинарная энергоустановка работает следующим образом. Отработавший в турбине пар при давлении в 4,0 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. Полученный основной конденсат с помощью конденсатного насоса направляют в систему регенерации. В качестве охлаждающей жидкости используется сжиженный углекислый газ СО2, который сжимают в насосе до высокого давления 6,33 МПа и

направляют в конденсатор паровой турбины для охлаждения отработавшего в турбине пара. Конденсация пара сопровождается выделением скрытой теплоты парообразования равного примерно 2145 кДж/кг, которая отводится на нагрев и испарение сжиженного газа СО2 до температуры перегретого газа в 23,85°С. Далее перегретый газ СО2 расширяют в турбодетандере теплового двигателя, который соединен с электрогенератором. На выходе из турбодетандера отработавший в турбине газ СО2 направляют на охлаждение в конденсатор АВО, где в процессе охлаждения газа СО2 ниже его температуры насыщения происходит интенсивное сжижение, после чего сжиженный газ СО2 направляют для сжатия в насос теплового двигателя. Затем органический цикл Ренкина на основе низкокипящего рабочего тела повторяется [4].

На рис. 1, 2 представлены графики расчетных показателей по экономии расхода условного топлива на ТЭС (т.у.т./ч) и эксергетической эффективности низкотемпературного теплового двигателя при осуществлении процесса охлаждения конденсаторов паровых турбин типа К-500-65 контуром циркуляции на СО2 в зависимости от температуры наружного воздуха [5].

Температурный диапазон использования сжиженного газа СО2 в тепловом контуре бинарной энергоустановки ограничивается показателями критической температуры в 31°С и температурой в тройной точке -56,56°С. Поэтому использование сжиженного СО2 в температурном диапазоне от 60°С до -50°С позволит обеспечить приемлемые давления контура циркуляции теплового двигателя и затраты на его сжатие.

Рис. 1. Для паровых турбин типа К-500-65 с расходом пара в 470 кг/с.

Рис. 2. Для паровых турбин типа К-500-65 с расходом пара в 470 кг/с.

Эксергетическая эффективность низкотемпературного теплового двигателя (рис. 2) варьируется от 0,8% до 13,25%. При этом использование низкотемпературного теплового двигателя с замкнутым контуром циркуляции на СО2 в системе охлаждения паровых турбин типа К-500-65 позволяет экономить (рис. 1) до 9,25 т.у.т./час на ТЭС в температурном диапазоне окружающей среды от 263,15 К (-10°С) до 223,15 К (-50°С).

Использованные источники:

1.Гафуров А.М. Способ утилизации сбросной теплоты в конденсаторах паровых турбин, охлаждаемых водными ресурсами при температуре 12°С в осенне-весенний период времени. // Инновационная наука. 2016. - № 4-3. -С. 51-53.

2.Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 4 кПа. // Инновационная наука. 2016. № 2-3. -С. 34-36.

3.Гафуров А.М., Гафуров Н.М., Гатина Р.З. Способ работы низкотемпературного теплового двигателя на сжиженном газе СО2 с комбинированным охлаждением. // Теория и практика современной науки. -2016. - № 9 (15). - С. 122-125.

4.Гафуров А.М., Гафуров Н.М. Замещение воздушного охлаждения конденсаторов паровых турбин контуром циркуляции на СО2. // Инновационная наука. - 2016. - № 1-2 (13). - С. 27-29.

5.Гафуров А.М., Гафуров Н.М. Эффективность низкотемпературного теплового двигателя по утилизации теплоты в конденсаторе паровой турбины при давлении пара в 4,5 кПа. // Инновационная наука. - 2016. № 23. - С. 36-38.

УДК 62-176.2

Гатина Р.З. студент 4 курс

факультет «Энергонасыщенных материалов и изделий»

ФГБОУ ВО «КНИТУ» Гафуров А.М. инженер I категории УНИР ФГБОУ ВО «КГЭУ» Россия, г. Казань ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ СИСТЕМЫ

ОХЛАЖДЕНИЯ ПАРОВЫХ ТУРБИН ТИПА К-500-65 С ИСПОЛЬЗОВАНИЕМ КОНТУРА ЦИРКУЛЯЦИИ НА С3Н8 Представлены результаты исследования бинарной энергоустановки на сжиженном пропане по экономии расхода условного топлива в системе охлаждения паровых турбин типа К-500-65 в зимний период времени. Ключевые слова: конденсатор паровой турбины, система охлаждения, бинарная энергоустановка, сжиженный пропан.

i Надоели баннеры? Вы всегда можете отключить рекламу.