Научная статья на тему 'ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАДИОЛОКАЦИОННЫХ НАБЛЮДЕНИЙ ЗА НАВИГАЦИОННОЙ ОБСТАНОВКОЙ В ЛЕДОВЫХ РАДИОЛОКАЦИОННЫХ СТАНЦИЯХ В УСЛОВИЯХ СИЛЬНЫХ ПОМЕХ'

ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАДИОЛОКАЦИОННЫХ НАБЛЮДЕНИЙ ЗА НАВИГАЦИОННОЙ ОБСТАНОВКОЙ В ЛЕДОВЫХ РАДИОЛОКАЦИОННЫХ СТАНЦИЯХ В УСЛОВИЯХ СИЛЬНЫХ ПОМЕХ Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
43
11
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЛЕДОВАЯ РАДИОЛОКАЦИОННАЯ СТАНЦИЯ / УСТРОЙСТВО ОСЛАБЛЕНИЯ ПЕРЕГРУЗКИ / ГИДРОМЕТЕОРОЛОГИЧЕСКИЕ ОБЪЕКТЫ / МАЛОРАЗМЕРНЫЕ ЦЕЛИ / ДЕТЕКТОР ПОМЕХИ

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Суслов Александр Николаевич, Пеньковская Ксения Вячеславовна

Рассматриваются особенности радиолокационных наблюдений в ледовых радиолокационных станциях (РЛС) окружающей навигационной обстановки в полярных широтах и анализируются причины возможного снижения эффективности выполнения этой задачи. Описан механизм негативного влияния радиоволн, принимаемых ледовыми РЛС, в случае их отражения от гидрометеорологических образований, занимающих большую площадь сканируемого навигационного пространства. Анализируются возможные пути улучшения качества работы ледовых РЛС и необходимые для этого условия. Сделан вывод о том, что в случае наблюдения малоразмерных объектов на фоне мощных протяженных гидрометеорологических помех цифровая обработка радиолокационных данных не дает существенного улучшения качества функционирования ледовых локаторов. Установлено, что для повышения качества обнаружения малоразмерных целей и измерения их параметров необходимо обеспечить надежную защиту РЛС от возможной перегрузки вследствие воздействия помех еще на этапе первичной обработки радиолокационной информации (до использования цифрового фильтра). Предлагается структура устройства, позволяющего осуществить не только частичное ослабление влияния гидрометеорологических помех на качество работы ледовой РЛС, но и существенное подавление этих помех. Указывается, что улучшение помехозащищенности локатора при использовании этого устройства достигается за счет применения в его составе дополнительных блоков, осуществляющих быстрое обнаружение в обрабатываемом радиолокационном сигнале кратковременных импульсов, вызванных отражением от малоразмерных целей, и их преобразование в форму, при которой удается практически полностью компенсировать помехи большой длительности. Методом математического моделирования исследована эффективность предложенного устройства посредством измерения достигаемого в нем соотношения «сигнал - помеха», времени реакции, структуры радиолокационных сигналов после их обработки. На основе анализа результатов математического эксперимента сделаны выводы об отсутствии факторов, ограничивающих возможность использования предложенного устройства в составе ледовой РЛС, и оптимальном варианте его реализации.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по электротехнике, электронной технике, информационным технологиям , автор научной работы — Суслов Александр Николаевич, Пеньковская Ксения Вячеславовна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

IMPROVING EFFICIENCY OF RADAR OBSERVATIONS OF NAVIGATION SITUATION IN ICE RADARS UNDER STRONG INTERFERENCE

The article considers the specific features of radar observations of the surrounding navigation situation in ice radars (IR) in polar latitudes and the reasons of their possible decreasing effectiveness. There is described a negative effect of the radio waves received by IR due to their reflection from hydrometeorological formations that occupy a large area of the scanned navigation space. The possible ways of improving the IR operation and creating the necessary conditions are analyzed. It has been inferred that in the case of observing the small-sized objects against the background of a strong extended hydrometeorological interference, digital processing of radar data slightly improves functioning of ice locators. It has been found out that in order to improve detecting small targets and measuring their parameters, it is necessary to ensure the safety of the radar from possible overload caused by the interference at the stage of primary processing of radar information (before using a digital filter). The structure of the device is proposed, which allows not only partial weakening the hydrometeorological interference in the IR operation, but also suppressing this interference. It is stated that improving the locator noise immunity during its operation is achieved by using the additional blocks in its composition that quickly detect short-term pulses caused by reflection from small-sized targets in the processed radar signal and convert them into a form in which it is possible to almost completely compensate for continuous interference. The method of mathematical modeling is used to study the effectiveness of the proposed device by measuring the signal-to-noise ratio achieved in it, the reaction time, and the structure of radar signals after their processing. According to the analysis results of the mathematical experiment there have been made the conclusions about the lack of factors limiting the possibility of using the proposed device as part of IR and the optimal variant of its implementation.

Текст научной работы на тему «ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ РАДИОЛОКАЦИОННЫХ НАБЛЮДЕНИЙ ЗА НАВИГАЦИОННОЙ ОБСТАНОВКОЙ В ЛЕДОВЫХ РАДИОЛОКАЦИОННЫХ СТАНЦИЯХ В УСЛОВИЯХ СИЛЬНЫХ ПОМЕХ»

Вестник АГТУ. Серия: Морская техника и технология. 2023. № 1

ISSN2073-1574 (Print), ISSN 2225-0352 (Online) Vestnik ASTU. Series: Marine engineering; and technologies. 2023. N. 1

_ISSN2073-1574 (Print), ISSN 2225-0352 (Online)

СУДОВЫЕ ЭЛЕКТРОЭНЕРГЕТИЧЕСКИЕ КОМПЛЕКСЫ И СИСТЕМЫ

SHIP POWER GENERATING COMPLEXES AND SYSTEMS

Научная статья

УДК [621.396.96:629.5.058.54]:004.942 https://doi.org/10.24143/2073-1574-2023-1-56-63 EDN UQYUBH

Повышение эффективности радиолокационных наблюдений за навигационной обстановкой в ледовых радиолокационных станциях в условиях сильных помех

Александр Николаевич Суслов, Ксения Вячеславовна Пеньковская^

Мурманский государственный технический университет, Мурманск, Россия, ksemamgtu@ramЫer.ruш

Аннотация. Рассматриваются особенности радиолокационных наблюдений в ледовых радиолокационных станциях (РЛС) окружающей навигационной обстановки в полярных широтах и анализируются причины возможного снижения эффективности выполнения этой задачи. Описан механизм негативного влияния радиоволн, принимаемых ледовыми РЛС, в случае их отражения от гидрометеорологических образований, занимающих большую площадь сканируемого навигационного пространства. Анализируются возможные пути улучшения качества работы ледовых РЛС и необходимые для этого условия. Сделан вывод о том, что в случае наблюдения малоразмерных объектов на фоне мощных протяженных гидрометеорологических помех цифровая обработка радиолокационных данных не дает существенного улучшения качества функционирования ледовых локаторов. Установлено, что для повышения качества обнаружения малоразмерных целей и измерения их параметров необходимо обеспечить надежную защиту РЛС от возможной перегрузки вследствие воздействия помех еще на этапе первичной обработки радиолокационной информации (до использования цифрового фильтра). Предлагается структура устройства, позволяющего осуществить не только частичное ослабление влияния гидрометеорологических помех на качество работы ледовой РЛС, но и существенное подавление этих помех. Указывается, что улучшение помехозащищенности локатора при использовании этого устройства достигается за счет применения в его составе дополнительных блоков, осуществляющих быстрое обнаружение в обрабатываемом радиолокационном сигнале кратковременных импульсов, вызванных отражением от малоразмерных целей, и их преобразование в форму, при которой удается практически полностью компенсировать помехи большой длительности. Методом математического моделирования исследована эффективность предложенного устройства посредством измерения достигаемого в нем соотношения «сигнал - помеха», времени реакции, структуры радиолокационных сигналов после их обработки. На основе анализа результатов математического эксперимента сделаны выводы об отсутствии факторов, ограничивающих возможность использования предложенного устройства в составе ледовой РЛС, и оптимальном варианте его реализации.

Ключевые слова: ледовая радиолокационная станция, устройство ослабления перегрузки, гидрометеорологические объекты, малоразмерные цели, детектор помехи

Для цитирования: Суслов А. Н., Пеньковская К. В. Повышение эффективности радиолокационных наблюдений за навигационной обстановкой в ледовых радиолокационных станциях в условиях сильных помех // Вестник Астраханского государственного технического университета. Серия: Морская техника и технология. 2023. № 1. С. 56-63. https://doi.org/10.24143/2073-1574-2023-1-56-63. EDN ^УШН.

© Суслов А. Н., Пеньковская К. В., 2023

Original article

N

Improving efficiency of radar observations of navigation situation in ice radars under strong interference

Aleksandr N. Suslov, Ksenia V. PenkovskayaM

Murmansk State Technical University, Murmansk, Russia, kseniamgtu@rambler.ruM

Abstract. The article considers the specific features of radar observations of the surrounding navigation situation in ice radars (IR) in polar latitudes and the reasons of their possible decreasing effectiveness. There is described a negative effect of the radio waves received by IR due to their reflection from hydrometeorological formations that occupy a large area of the scanned navigation space. The possible ways of improving the IR operation and creating the necessary conditions are analyzed. It has been inferred that in the case of observing the small-sized objects against the background of a strong extended hydrometeorological interference, digital processing of radar data slightly improves y functioning of ice locators. It has been found out that in order to improve detecting small targets and measuring their parameters, it is necessary to ensure the safety of the radar from possible overload caused by the interference at the stage of primary processing of radar information (before using a digital filter). The structure of the device is proposed, which allows not only partial weakening the hydrometeorological interference in the IR operation, but also suppressing this interference. It is stated that improving the locator noise immunity during its operation is achieved by using the additional blocks in its composition that quickly detect short-term pulses caused by reflection from small-sized targets in the processed radar signal and convert them into a form in which it is possible to almost completely compensate for continuous interference. The method of mathematical modeling is used to study the effectiveness of the proposed device by measuring the signal-to-noise ratio achieved in it, the reaction time, and the structure of radar sig- J nals after their processing. According to the analysis results of the mathematical experiment there have been made the conclusions about the lack of factors limiting the possibility of using the proposed device as part of IR and the optimal variant of its implementation.

в

era

Keywords: ice radar, overload attenuation device, hydrometeorological objects, small-sized targets, detector of interference

For citation: Suslov A. N., Penkovskaya K. V. Improving efficiency of radar observations of navigation Situation in ice radars under strong interference. Vestnik of Astrakhan State Technical University. Series: Marine Engineering and Technologies. 2023;1:56-63. (In Russ.). https://doi.org/10.24143/2073-1574-2023-1-56-63. EDN UQYUBH.

Введение вания (заряды снега, дождь, полоса тумана). Все эти

В настоящее время при совершении рейсов объекты опасны для РЛС тем, что дают достаточно

в Арктической зоне на судах все большее примене- хорошее отражение радиолокационного сигнала ние получают ледовые радиолокационные станции и приводят к воздействию на ее усилитель напряже-

(РЛС), которые позволяют улучшать радиолокацион- ния большой величины и длительности [2]. Вслед-ное наблюдение как за одиночными целями, так и за ствие таких ситуаций наступает перегрузка усилите-

ледовыми образованиями различных типов. Это ля, при которой обнаружение кратковременных им-

улучшение достигается за счет специальной цифро- пульсов от малоразмерных целей становится практи-

вой обработки радиолокационного сигнала, позволя- чески невозможным даже в случае применения циф-

ющей повысить четкость контуров целей на дисплее ровой обработки радиолокационного сигнала.

РЛС, увеличить вероятность обнаружения льда, Для улучшения качества обработки радиолокаци-

обеспечить возможность штурману определить его онных сигналов в подобных ситуациях в отечествен-

сплоченность в ближней зоне судна [1]. Поскольку ной и зарубежной научной литературе предлагаются

такая обработка сигнала производится после его уси- различные способы: использование двух и более

ления, то все указанные выше преимущества могут независимых приемных каналов [3], измерение коор-

быть сведены к минимуму или полностью исключе- динат и параметров движения ледовых образований ны в случае воздействия на приемник РЛС помех в миллиметровом диапазоне частот [2], обнаружение достаточно высокого уровня, которые уменьшают малоразмерных целей и других объектов, дающих

контраст полезного сигнала. слабый отраженный сигнал на фоне помех, на основе В арктических акваториях наиболее сложная адаптивного выбора порогового уровня радиоло-

помеховая обстановка складывается в условиях кационного сигнала для принятия решения о его

низкой видимости, когда в атмосфере присутству- наличии или отсутствии в смеси с помехами [4].

ют протяженные гидрометеорологические образо- Также возможно достаточно существенное подав-

х я

>я я я

ч 2 ч

а

¡5

•е -е-

ление помех на основе совместного использования данных, поступающих от нескольких РЛС [5]. Однако все перечисленные методы требуют значительного удорожания радиолокационной аппаратуры и внедрения относительно сложного программного обеспечения для реализации предлагаемых алгоритмов обработки радиолокационных сигналов. Кроме этого, высокая эффективность каждого из указанных методов будет достигаться только в случае полного отсутствия перегрузки в каждом из используемых приемных каналов РЛС. Несмотря на то что современные ледовые РЛС оснащены устройством ослабления перегрузки (УОП), полезный сигнал на выходе их усилителя может оказаться недостаточным для его эффективной обработки при помощи цифрового фильтра.

Для устранения указанного недостатка необходимо применить в ледовых РЛС дополнительную додетекторную обработку радиолокационных сигналов, которая позволит не только сохранить на прежнем уровне соотношение «сигнал - помеха» на входе станции, но и повысить его за счет подавления помех, вызванных отражениями зондирующих импульсов от гидрометеорологических объектов. Данная дополнительная обработка заключается в том, что в функциональную схему УОП РЛС включаются блоки, позволяющие достаточно быстро обнаруживать появление полезных сигналов на фоне длительных помех и выдавать команды на изменение коэффициента усиления, существенно ослабляя влияние такого рода помех.

Функциональная схема усовершенствованного УОП

В составе УОП, применяемого в ледовых РЛС, действуют два амплитудных детектора с различной

степенью инерции: один из них является сигнальным детектором (СД), он реагирует и на полезный сигнал, и на помеху - формирует напряжение, пропорциональное сумме их огибающих; второй из детекторов - детектор помех (ДП) - настроен таким образом, что напряжение на его выходе будет напрямую зависеть только от величины помехи.

Сформированный ДП сигнал изменяет степень усиления РЛС с помощью электронного регулятора, который на основе входного напряжения снижает величину усиления приемного устройства в обратной зависимости от значения амплитуды помехи, поступающей в антенну ледового радиолокатора.

Данный принцип работы не позволяет УОП ослаблять сигнал, вызванный отражением зондирующих импульсов от гидрометеорологических объектов. Причина этого недостатка состоит в неспособности амплитудных детекторов выделять огибающую высокочастотных импульсов без значительных искажений.

Огибающая импульса на входе ледовой РЛС включает в себя кратковременные фронт и срез, а также относительно длительную вершину (рис. 1, а). Реакция инерционного детектора на такой сигнал приведена на рис. 1, б. Срез выходного сигнала детектора оказывается сильно «затянутым» по времени. Уменьшение его длительности возможно за счет снижения степени инерционности детектора, но в этом случае вершина импульса подвергается сильным искажениям. Следовательно, амплитудный детектор при работе в составе УОП оказывается не в состоянии быстро обнаружить момент окончания импульсного сигнала на фоне помех от гидрометеорологических образований.

w

3

S3

<фр

(ср. ампл. дет

О

t

б

а

Рис. 1. Структура огибающей радиоимпульса (а) и выходной сигнал амплитудного детектора РЛС при обработке прямоугольного радиоимпульса (б)

Fig. 1. Structure of the radio pulse envelope (a) and the output signal of the amplitude detector of the radar station

in processing a rectangular radio pulse (б)

Для повышения эффективности УОП ледовых РЛС необходимо внести в его функциональную схему следующие изменения (рис. 2). Импульсный сигнал, принятый ледовой РЛС при одновремен-

ном воздействии помех, вызванных гидрометеорологическими объектами, подается на усилитель, коэффициент передачи которого управляется электронным регулятором.

Рис. 2. Функциональная схема усовершенствованного УОП Fig. 2. Functional diagram of the advanced overload mitigation device

Сигнал с выхода усилителя поступает на СД и ДП. После выделения амплитуд входных напряжений при помощи вычитающего устройства (ВУ) вычисляется их разность, которая представляет собой сигнал, пропорциональный амплитуде радиоимпульса, вызванного отражением зондирующего импульса от малоразмерного объекта. После этого данное выходное напряжение пропускается через дифференцирующую цепь (ДЦ), которая позволяет быстро «обнаружить» моменты формирования фронта и среза такого сигнала. Импульсы, сформированные ДЦ в моменты появления и окончания видеоимпульса, подаются на первый вход логической схемы сравнения (ЛСС), сравнивающего их уровень с аналогичным параметром на втором его входе. На второй вход ЛСС поступает сигнал, уровень которого принимается за пороговый для фронта импульса. Третий вход ЛСС служит для формирования порогового уровня, соответствующего срезу импульса. В случае если напряжение на выходе ДЦ становится больше порогового уровня фронта импульса, ЛСС сформирует кратковременный прямоугольный импульс логической единицы в момент появления на выходе СД видеоимпульса малой длительности (т. е. на вход ледовой РЛС поступил сигнал, вызванный отражением зондирующего импульса от малоразмерного

в

о У

i

объекта). В момент времени, когда выходное напряжение ДЦ уменьшится ниже уровня порога, установленного для среза видеоимпульса на выходе детектора ледовой РЛС, ЛСС также сформирует кратковременный импульс логической единицы, который означает завершение сигнала, отраженного от малоразмерного объекта. Логическая схема сравнения передает сформированные импульсы на триггерное устройство (ТУ), которое сформирует единичный импульс, длительность и положение которого на оси времени точно соответствуют аналогичным параметрам радиоимпульса, вызванного отражением зондирующих сигналов ледовой РЛС от малоразмерного объекта. За счет применения цепи ДЦ - ЛСС - ТУ сигнал на выходе ТУ будет представлять импульс, форма которого практически совпадает с прямоугольным видеоимпульсом. При этом уровень этого импульса соответствует логической единице. Триггерное устройство передает сигнал на умножитель, который формирует напряжение, уровень которого равен произведению выходных сигналов ТУ и ВУ, т. е. прямоугольный импульс, вершина которого совпадает с вершиной импульса сигнала, отраженного от малоразмерного объекта. Сформированный при помощи умножителя сигнал поступает на инвертирующий вход второго вычитающего устройства (ВУ2) одно-

X я

ч

Ч

временно с выходным напряжением ДП. Тогда уровень выходного сигнал ВУ2 будет крайне незначительно отличаться от аналогичного параметра помех, которые формируются при переизлучении импульсов крупными объектами. В ситуации, когда в ходе локационного наблюдения пространства в луч антенны ледовой РЛС попадает малоразмерная цель (даже если она расположена внутри зоны наличия рассматриваемых помех), уровень выходного сигнала ВУ2 быстро снизится на величину, равную огибающей напряжения, вызванного переизлучением радиоволн малоразмерной целью. Поэтому в любом возможном случае напряжение, формируемое ВУ2, является оптимальным сигналом, регулирующим коэффициент передачи усилителя ледовой РЛС.

Рассмотренная функциональная схема УОП,

помимо защиты локатора от перегрузки, наступающей в случае отражения зондирующих импульсов от гидрометеорологических объектов, обеспечивает также возможность существенного подавления таких помех, сохраняя практически неизменным уровень сигналов, обусловленных отражением импульсов РЛС от малоразмерных целей.

Результаты испытаний

На рис. 3-6 приведены результаты вычислительного эксперимента, в ходе которого моделировался прием полезного сигнала в ледовой РЛС на фоне мощной помехи без применения УОП. На рис. 3 представлен радиолокационный сигнал, который подвергался обработке в усовершенствованном УОП и стандартном варианте реализации УОП.

>я я я

Ч 2 ч

50

UBX, мкВ

21

Рис. 3. Огибающая напряжения на входе ледовой РЛС Fig. 3. Envelope voltage at the input of the ice radar

a

¡5

-е-•e

с и w 3

M о CQ О SÄ -Q

S

С

Я'

<

о

UBlIX, В

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1

/

!

J......

Рис. 4. Импульсы напряжения на выходе ледовой РЛС без применения УОП Fig. 4. Voltage pulses at the output of the ice radar without using the overload mitigation device

■ UBlIX, В

я

Рис. 5. Импульсы напряжения на выходе ледовой РЛС в случае применения стандартного УОП Fig. 5. Voltage pulses at the output of the ice radar in case of using a standard overload mitigation device

t, мкс

t, мкс

t, мкс

и„ых, В

54

Рис. 6. Импульсы напряжения на выходе ледовой РЛС в случае применения усовершенствованного УОП Fig. 6. Voltage pulses at the output of the ice radar with using the improved overload mitigation device

Осциллограммы на рис. 4 и 5 соответствуют напряжению на выходе ледовой РЛС без использования УОП и в случае применения стандартного УОП соответственно. График, представленный на рис. 6, иллюстрирует сигнал на выходе ледовой

и„ых, В

в

о У

РЛС при использовании усовершенствованного УОП. Для удобства анализа результатов моделирования на рис. 7-9 приведены увеличенные фрагменты рис. 4-6 соответственно, на которых изображены первые импульсы указанных напряжений.

i

12

15

18

21

f, МКС

Рис. 7. Импульс напряжения на выходе ледовой РЛС без применения УОП (фрагмент рис. 4) Fig. 7. Voltage pulse at the output of the ice radar without using the overload mitigation device (Fragment of Fig. 4)

и„ых, В

15

18

21

24

i" t, мкс

Рис. 8. Импульс напряжения на выходе ледовой РЛС в случае применения стандартного УОП (фрагмент рис. 5) Fig. 8. Voltage pulse at the output of the ice radar with using the standard overload mitigation device (Fragment of Fig. 5)

t, мкс

х я

12

15

18

21

30 f. мкс

Рис. 9. Импульс напряжения на выходе ледовой РЛС в случае применения усовершенствованного УОП,

включающего ДЦ, ЛСС и ТУ (фрагмент рис. 6)

Fig. 9. Voltage pulse at the output of the ice radar with using the improved overload mitigation device including a differentiating circuit, a comparison logic circuit and a trigger device (Fragment of Fig. 6)

«

я я

Ч 2 ч

а

¡5

-е--е-

а з

S3

о

В указанных экспериментах моделировалось радиолокационное наблюдение за объектом, находящимся на удалении приблизительно 6 морских миль на фоне помех, вызванных наличием гидрометеорологических образований, величина которых равнялась амплитуде полезных сигналов, что соответствует наступлению критичного режима радиолокационных наблюдений. Разрешающая способность ледовой РЛС составляла 150 м, при которой принимаемый импульс имел достаточную длительность для обеспечения возможности его обнаружения в приемнике ледовой РЛС.

Согласно графику на рис. 7 в результате воздействия помех, обусловленных отражениями зондирующих импульсов от гидрометеорологических объектов, отношение «сигнал - помеха» уменьшается приблизительно до величины 43 % (аналогичный параметр для первого каскада ледовой РЛС составлял единицу). Применение стандартного УОП в тех же условиях (см. рис. 8) позволяет повысить отношение «сигнал - помеха» до 67 %. Согласно графику на рис. 8 в случае применения в ледовой РЛС стандартного УОП период времени, необходимый для ослабления помехи, составляет более 6 мкс, за который ее уровень успевает возрасти приблизительно до 80 % от ее максимального значения. Следовательно, ослабление такой помехи достигается, но эффективность работы УОП в случае воздействия более сильной помехи окажется крайне низкой. Результаты моделирования усовершенствованного УОП (см. рис. 9) доказывают, что в аналогичных условиях эксплуатации отношение «сигнал - помеха» на выходе ледовой РЛС повышается до 160 %. Таким образом, применение предложенной функциональной схемы УОП позволяет более чем в 2 раза повысить эффективность ледовых РЛС в сложной помеховой обстановке. При этом график на рис. 9 подтверждает,

что в случае применения в ледовой РЛС усовершенствованного УОП период времени, необходимый для ослабления помехи, составляет 3 мкс, за который ее уровень успевает возрасти приблизительно до 60 % от ее максимального значения. После данного момента времени помеха начинает подавляться, а минимальный ее уровень составит примерно 62 % от ее значения в момент полного срабатывания УОП.

Следовательно, рассматриваемая помеха подавляется более чем в 2 раза, поэтому эффективность работы ледовой РЛС в случае использования усовершенствованного УОП повышается минимум в 2,4 раза, а при благоприятных ситуациях (импульсы, отраженные от малоразмерных целей, принимаются с задержкой, превышающей время реакции усовершенствованного УОП примерно на 6 мкс) отношение «сигнал - помеха» может превышать аналогичный параметр для стандартной ледовой РЛС в 4,5 раза.

Выводы

Предложенная структура усовершенствованного УОП позволяет достичь следующих преимуществ (по сравнению с традиционными вариантами реализации ледовых РЛС):

1. Использование ДЦ повышает быстродействие УОП более чем на 65 %, что не только предотвращает последствия перегрузки РЛС, а гарантированно подавляет помехи, вызванные отражением зондирующих импульсов от гидрометеорологических образований.

2. Усовершенствованное УОП в незначительной степени искажает вершину импульсов в начале их длительности, однако этот эффект совершенно не препятствует их дальнейшей обработке в ледовых РЛС, поскольку основными информативными параметрами радиолокационного сигнала являются

"Цых, В

момент появления импульса и его длительность, которые сохраняются неизменными в предложенном варианте реализации устройства.

3. Техническая реализация предложенного варианта усовершенствованного УОП не требует значительного усложнения аппаратной части ледовых РЛС или их стоимости, т. к. рассмотренная структура усовершенствованного УОП производит

обработку радиолокационного сигнала после его основного усиления и детектирования, т. е. сигнал на входе УОП является низкочастотным и достаточно высоким по уровню, что позволяет реализовать предложенную защиту ледовых РЛС в цифровой форме (в виде дополнительного программного обеспечения).

Список источников

1. Приставка «Дельта» / АО «Равенство». URL: http://www.rawenstvo.ru/ru/products/radar/delta (дата обращения: 14.11.2022).

2. Ничипоренко Н. Т., Сиваченко Б. Н. Использование современных судовых навигационных РЛС для определения максимальной дальности ледового покрова // Эксплуатация мор. трансп. 2011. № 3. С. 34-36.

3. Пат. 2467347 Рос. Федерация, МПК G01S 13/00 (2006.01). Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система, его реализующая / Баскаков А. И., Егоров В. В.,

А.;

References

1. Pristavka «Del'ta» [Receiver Delta]. AO «Ra-venstvo». Available at: http://www.rawenstvo.ru/ru/ products/radar/delta (accessed: 14.11.2022).

2. Nichiporenko N. T., Sivachenko B. N. Ispol'zovanie sovremennykh sudovykh navigatsionnykh RLS dlia opre-deleniia maksimal'noi dal'nosti ledovogo pokrova [Using modern ship navigation radars to determine maximum range of ice sheet]. Ekspluatatsiia morskogo transporta, 2011, no. 3, pp. 34-36.

3. Baskakov A. I., Egorov V. V., Isakov M. V., Lukashenko Iu. I., Permiakov V. A. Sposob obnaruzheniia i vysokotochnogo opredeleniia parametrov morskikh le-

Исаков М. В., Лукашенко Ю. И., Пермяков В. № 2011113486/07; заявл. 08.04.2011; опубл. 20.11.2012.

4. Alaee M., Firoozmand M., Amiri R., Sepahvand M. Adaptive Thresholding in Marine RADARs // Iranian Journal of Electrical and Electronic Engineering. 2010. V. 6. N. 3. P. 168-174.

5. Hsieh T., Wang S., Liu W., Xu N. Sea ice warning visualization and path planning for ice navigation based on radar image recognition // Journal of Marine Science and Technology. 2021. N. 3. P. 277-286.

T,

n'

era e

i

i

n

Cj

У

dovykh polei i radiolokatsionnaia sistema, ego reali-zuiushchaia [Method of locating and hi-fi detecting sea ice fields parameters and radar system integrating it]. Patent RF, no. 2011113486/07, 20.11.2012.

4. Alaee M., Firoozmand M., Amiri R., Sepahvand M. Adaptive Thresholding in Marine RADARs. Iranian Journal of Electrical and Electronic Engineering, 2010, vol. 6, no. 3, pp. 168-174.

5. Hsieh T., Wang S., Liu W., Xu N. Sea ice warning visualization and path planning for ice navigation based on radar image recognition. Journal of Marine Science and Technology, 2021, no. 3, pp. 277-286.

Статья поступила в редакцию 02.12.2022; одобрена после рецензирования 18.01.2023; принята к публикации 27.01.2023 The article was submitted 02.12.2022; approved after reviewing 18.01.2023; accepted for publication 27.01.2023

Информация об авторах / Information about the authors

Александр Николаевич Суслов - кандидат технических наук; доцент кафедры судовождения; Мурманский государственный технический университет; SuslovAN@mstu.edu.ru

Ксения Вячеславовна Пеньковская - кандидат технических наук; доцент кафедры судовождения; Мурманский государственный технический университет; kseniamgtu@rambler.ru

Aleksandr N. Suslov - Candidate of Sciences in

Technology; Assistant Professor of the Department

of Navigation; Murmansk State Technical University; SuslovAN@mstu.edu.ru

Ksenia V. Penkovskaya - Candidate of Sciences in

Technology; Assistant Professor of the Department

of Navigation; Murmansk State Technical University; kseniamgtu@rambler.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.