UDK: 625.51
POSSIBILITIES OF EVAPORATIVE COOLING METHODS FOR APPLICATION IN AIR CONDITIONING SYSTEMS
Toshpulatov Islomjon Adiljon o'g'li Islom Karimov nomidagi Toshkent davlat texnika universiteti Qo'qon filiali
e.mail: [email protected]
Annotatsiya: Zamonaviy qishloq xo'jaligi binolarida havo muhitining holati mikroiqlimli konditsioner tizimlari yordamida ta'minlanadi. Biroq, an'anaviy iqlim nazorati tizimlari va ularning jihozlari ancha qimmat, energiya talab qiladi va ulardan foydalanish qiyin. Shu sababli, havo muhitining zarur texnologik parametrlarini yaratish va saqlash, energiya xarajatlarini kamaytirish va qishloq xo'jaligi ishlab chiqarishining mahsuldorligini oshirish uchun oddiyroq, ishonchli, energiya tejamkor mikroiqlimni sozlash tizimlari va qurilmalarini ishlab chiqish va ulardan foydalanish muammosi (masalan,). , parrandachilik uylari) dolzarbligicha qolmoqda, bu ham hukumatlar, ham alohida fermer xo'jaliklari uchun iqtisodiy bo'lishidan tashqari muhim ijtimoiy ahamiyatga ega. Qishloq xo'jaligi binosining mikroiqlimini sozlash tizimi faol (konditsioner tizimlar) va passiv (tashqi to'siqlar) muhandislik vositalarining kompleks qo'llanilishi bo'lishi kerak. Shunday qilib, havo o'tkazuvchan tashqi to'siqlari bo'lgan energiya tejamkor qishloq xo'jaligi binolarida tavsiya etilgan mikroiqlim parametrlarini yaratish va saqlash usullarini ilmiy asoslash va ularni hisoblash metodologiyasini ishlab chiqish.
Аннотация. Состояние воздушной среды в современных сельскохозяйственных зданиях обеспечивается с помощью систем кондиционирования микроклимата. Однако традиционные системы климат-контроля и их оборудование достаточно дороги, энергоемки и сложны в эксплуатации. Поэтому проблема разработки и использования более простых, надежных, энергоэффективных систем и устройств кондиционирования микроклимата для создания и поддержания требуемых технологических параметров воздушной среды, обеспечивающих снижение энергозатрат и повышение производительности сельскохозяйственного производства (например, птичников), остается актуальной, что помимо экономической целесообразности как для органов государственного управления, так и для отдельных хозяйств имеет важное социальное значение. Система кондиционирования микроклимата сельскохозяйственного здания должна представлять собой комплексное применение активных (системы кондиционирования воздуха) и пассивных (наружные ограждения) инженерных средств. Таким образом, было научно обосновано методы создания и поддержания рекомендуемых параметров микроклимата в энергоэффективных сельскохозяйственных зданиях с воздухопроницаемыми наружными ограждениями и разработана методика их расчета.
Abstract. The state of the air environment in modern agricultural buildings is ensured using microclimate air conditioning systems. However, traditional climate control systems and their equipment are quite expensive, energy-intensive and difficult to operate. Therefore, the problem of developing and using simpler, more reliable, energy-efficient microclimate conditioning systems and devices to create and maintain the required technological parameters of the air environment, ensuring a reduction in energy costs and increasing the productivity of agricultural production (for example, poultry houses), remains relevant, which in addition to being economic for both governments and for individual farms it has important social significance. The microclimate conditioning system of an agricultural building should be a complex application of active (air conditioning systems) and passive (external fences) engineering means. Thus, there was a scientific substantiation of methods for creating and maintaining recommended microclimate parameters in energy-efficient agricultural buildings with air-permeable external fences and the development of a methodology for their calculation.
Kalit so'zlar: konditsioner, bug'latgich, harorat, termometr, sovitish qurilmasi.
Ключевые слова: кондиционер, испаритель, температура, термометр, охлаждающее устройство.
Keywords: air conditioner, evaporator, temperature, thermometer, refrigeration unit.
1. Introduction
Maintaining the required microclimate parameters in poultry houses, compared to other agricultural buildings, including livestock buildings, is more limited in terms of deviation from acceptable parameters. This is due to the high concentration of birds in limited areas, a decrease in the area and volume of premises per unit of live weight, which contribute to the release of a large amount of harmful substances per unit of premises. We consider only the most difficult case - cage keeping of birds. The determining factors of microclimate are the following. Physical factors, including temperature ta, relative humidity фа, air mobility va and the direction of air flows relative to the location of the birds, dust concentration in the air in the room and others. Chemical factors characterized by the concentration of harmful gases. Biological factors associated with the concentration of microorganisms in indoor air [1-7].
The chicken's body temperature is within 40 — 43°C, the upper critical temperature is 44 — 46°C, the lower 20 — 25°. Maintaining body temperature at a constant level is possible provided there is a balance between the biological heat of the bird and the release of excess heat to the external environment. Heat transfer is mainly carried out due to the heat removed with the vapor of exhaled air, and through convection, and is expressed by the relationship:
Qtot = Qsen + Qlat = Qkon + Qeva + Qred. (!)
The form of equation (1) is valid only if the bird is in the zone of thermal neutrality. The body's main protection from hypothermia is provided by contour feathers that have the properties of down. Bird feathers form a multi-layer coating with air voids.
Relative humidity. Moisture enters the air of the poultry house due to secretions during breathing, evaporation from droppings, drinking bowls, and so on. For example, 1000 chickens release 228 liters of moisture per day, of which 54 liters from breathing, and 174 liters from
day day
droppings with a moisture content of 80% [8-11]. The calculated values of relative air humidity фа are given in Table 1 and should not be higher than 75-80% and lower than 40-50%.
Important physical factors affecting the condition of the bird include air mobility in the poultry house va. Due to the presence of feather cover in birds, the cooling effect from an increase in the value of va is insignificant. Under conditions of elevated temperatures, only an increase in va to 2.0-2.5 ш. helps to improve the physiological state of the bird. Recommended values of air
s
mobility in premises for keeping birds during the cold and warm periods of the year are given in Table 2.
Table 1
Optimal temperature anc relative humidity when keeping chickens in cages
Species and age group of birds ta during the cold season, °C фа %
Adult poultry: cnickens 12-18 OU" 70
Young birds: aged, weeks 1-4 5-9 10-22 33-24 60- 70
18 60- 70
16 60- 70
Broiler chickens:
1 32-28 65- 70
2-3 25-24 65- 70
4-6 20 70- 65
7-9
18
70-60
Table 2
Air speed in poultry houses,
s
Birders Cold period of the year Warm period of the year
Min. Opt. Max. Min. Opt. Max.
for chickens and turkeys 0,2 0,3 0,6 0,3 0,6 1,0
for ducks and geese 0,2 0,5 0,8 0,3 0,8 1,2
for young chickens, ducks, geese, turkeys 0,1 0,2 0,5 0,2 0,4 0,6
Light conditions and production noise as stress factors are not considered in the work. Therefore, a specific analysis of their influence on bird productivity is not provided [12-15].
To organize the thermal, humidity and air conditions of poultry houses, ventilation is used, during which heat is removed along with harmful substances. During the transition period, and especially during the cold period of the year, this leads to an increase in heat loss, and as a result, a significant waste of energy. To increase the efficiency of energy saving in poultry houses, it is necessary to use a new air exchange system based on the integrated use of the positive effects of pore air infiltration through air-permeable enclosures, as well as recirculation of internal air.
2. Experiment
The purpose of the experimental studies was to determine the characteristics of the new material and the possibility of using it as a heat and mass transfer and filter material: open-cell polyurethane foam PRF E0-130, according to TU 6-55-53-91. The research was carried out on an installation developed and installed by us in the Heat Engineering and Thermodynamics laboratory. The installation diagram is shown in Figure 1.
Experimental studies of samples of the PRF E0-130 polyurethane foam material with a cross section of 0.4^0.4 m were carried out at thicknesses of 0.025, 0.05 and 0.075 m. For a stable position of the material samples (6) in the cassette chamber (5), the material was placed in a frame from polyvinyl chloride (PVC) corners with sides of 0.012 m. In the resulting cassette (5), the live section area Ffr.s. was 0.14 m2. The values of material porosity Player = 0.97 and material layer density piayer = 34 were provided by the developer of the PRF E0-130 material.
Determination of aerodynamic resistance of the sample material in dry and wet states. The aerodynamic resistance of the material was determined by the difference in static pressures in chambers (10) and (11). To stabilize the air speed in the static pressure chamber (10), a mesh (23) was installed. Measurements of static pressure differences APHat were carried out with a micromanometer MMN-240(5)-1.0 (7). One of the tubes connected the static pressure chamber (10) and the fitting of the three-way valve of the micromanometer (7). Another tube connected the static pressure chamber (11) and the measuring tube of the micromanometer (7):
APstat = kM ■ (hstat - hind (2)
Fig. 1. Scheme of the experimental stand for studying direct evaporative cooling of air in the irrigated layer: 1 - collector; 2 - fan; 3, 4, 20, 21, 22 - thermometer TL-4; 1, 9 - micromanometer MMN-240; 5 - cassette camera; 6 - sample of material PPU E0-130; 8 - diaphragm; 10, 11 -static pressure chamber; 12, 13, 14 - rubber tube; 15 - water container; 16 - pipeline; 17 -irrigation device; 18 - pump; 19 - pallet; 23 - mesh for equalizing air speed; 24 - grid for uniform distribution of water; 25 - air duct; 26 - three-way valve.
3. Results and Discussion
Results of measurements of the difference in static pressure AP^ at various thicknesses 5 = 0.025; 0.05 and 0.075 m of E0-130 polyurethane foam samples are given for dry material in appendix A-6, for wet material in appendix A-7 [2, 4, 16]. Based on the results of experimental studies, graphs of the dependences of aerodynamic resistance on air mass velocities in the material Mfiye r-were constructed at three different values of the relative thickness of the sample material S, in particular: 1, 2, 3 (fig. 2-a and fig. 2-b). The same figures show values for other materials [17]. A generalized graph is presented in figure 3 with a relative thickness of the sample material S =_, where S is the thickness of the sample material, equal to 0.025; 0.05 and 0.075 m.
0,025
Based on the three curves plotted on the graph (fig. 2-a), a functional dependence of the aerodynamic resistance of the dry PRF E0-130 material on the air mass velocity was obtained for different values of the relative thickness of the material, approximated by the equation:
AP = 8,19 • (vp)15 • S (3)
Based on the three curves constructed on the graph (Fig. 2-b), functional dependences of the aerodynamic resistance of the wet PRF E0-130 material on the air mass velocity were obtained for different values of the relative thickness of the material, approximated by the equations:
at 8 = 0,025 m (8= 1) AP = 25,83 • (vp)15f; (4)
at S = 0,025 m (8= 1) AP = 34,40 • (vp)15 g; (5)
at S = 0,025 m (8= 1) AP = 43,05 • (vp)15f • 8. (6)
The error of AP values obtained from formulas (1-3) does not exceed ±10%.
To assess the thermotechnical efficiency of direct evaporative air cooling modes, the indicator Ea is used, expressing the thermodynamic perfection of the process in the form of the ratio of the actual process of lowering the air temperature in the mode of its adiabatic humidification, to the maximum possible [18, 19], where the theoretical limit of cooling is the initial wet-bulb temperature of the humidified air tm:
p _ fQsen ____(7)
Ca max rr ( s
Vsen u ^p,a (Lini Lm) Lini Lm
Qurilish va Ta 'lim ilmiy jurnali 3-jild, 6-son https://jurnal. qurilishtalim. uz
238
To confirm the obtained theoretical indicators, we conducted experimental studies.
Fig. 2. Dependence of aerodynamic resistance of dry with 3 equation (a) and wet with 4, 5, 6 equations (b) polyurethane foam material E0-130 on mass air velocity: at a thickness Si = 0.025 m, S2 = 0.025 m, S3 = 0.025 m. ▲ - glass fiber mesh, S = 0,05 m, • - glass fiber mesh, S = 0,025 m, ♦ - flax twine, S = 0,05 m, ■ - flax twine, S = 0,025 m.
Calculation of the efficiency coefficient of direct evaporative air cooling. Theoretically, the efficiency coefficient of direct evaporative air cooling is calculated using formula (7). The experimentally obtained values of Ea are given in Appendix 4, 5, 11]. Based on the results of experimental studies, a graph was constructed of the dependence of the efficiency coefficient of direct evaporative cooling of air Ea on the mass velocity of air in the material (vp)IlI^yer at three
different values of the relative thickness of the sample material S, in particular 1, 2, 3 (Fig. 4). The same figure shows values for other materials [1]. The curves on the graph (Fig. 4) are approximated by the dependence of Ea on (vp)Il{,or for different values of S:
'layer
Ea = 0,68 • ((vp)'»yer)-015 • (S)0,06
(8)
where 0.68 is a coefficient that takes into account the influence of the Gukhman (Gu) criterion and the layer density player.
The Gukhman value in formula (8) was taken as a constant value from the average values in the interval Gu = 0.019 -h 0.021. The error in the experimental values of Ea did not exceed ±8%.
&P, l'a
J
ISO-160— 140 120100-S0-6040 20-
0-
Fig.3
(net)
2 (wet)
■3 (dry)
■2 (dry)
(dn)
0,85 -
0,80-
0,70
0.65-
0.60-
I Г I I Г
0 0,5 1.0 1.5 2,0 2,5 (vp)fis . -Ç-
Fig. 3. Dependence of aerodynamic
Fig-4
I I I I Г
Ж
0 0.5 1,0 1,5 2.0 2.5 (vp)frt, -jÇ
Fig. 4. Dependence of the Ea value on
resistance of dry and wet PRF E0-130 the value (vp)iayer of the irrigated layer of
the E0-130 polyurethane foam material, with 8 equation: □ - pine wood shaving, = 60 , 5 = 0,075 m; x - glass
P
layer
materials on mass air velocity: 1 - for material thickness S = 0,025 m (5 = 1); 2 - for material thickness Ô = 0,050 m (5 = 2); 3 - for material thickness S = 0,075 m (5= 3)
Determination of the heat removal value of the wet sample material. The reduction in the amount of heat during adiabatic air humidification is described by equations (9) and (10):
M.
fiber sheets, p = 87
layer
S = 0,03 m
where F.
spec
Q — Lspec • Cp,a • pa • (tini tfin) Q — a • Fspec • (tini — tw)
- specific surface area of the material (_), equal to:
m3
F
=
j - specific air flow,
'-'spec r
spec 3
per 1 m3, determined by the formula:
L
spec
V„
vini—Lfin
tini
Solving equations (9) and (10) regarding the amount of heat removal, we can write:
j-. _ , p tj„j—tf
^ * spec ^spec ^p,a ' Pa
Taking into account (7), equation (13) will look like:
tf • Fspec = Lspec • Cp,a • pa • Ea The calculated values of heat removal tf • Fspec
(9) (10)
(11) (12)
(13) (13)
are given in Appendix [13].
Based on the calculation results, a graph was constructed of the dependence of the heat removal value a • Fspec with E0-130 polyurethane foam on the specific air flow Lspec at material thickness 5=0.025; 0.05 and 0.075, presented in figure 5-a. The same figure shows values for other materials [1].
Fig. 5-a. Dependence of the heat removal value of wet polyurethane foam material E0-130 on specific air flow: at a thickness Si = 0.025 m, 82 = 0.050 m, 53 = 0.075 m. • - packaging shavings, S = 0,075 m, ▲ - pine shavings, S = 0,075 m, ■ - aspen shavings, S = 0,075 m, x - fiberglass sheet (10x10), 8 = 0,03 m.
Fig. 5-b. Dependence of the W ' Fspec value of wet polyurethane foam material E0-130 on the Lspec value of air: 5i — 0.025 m at aFsp — 0,71 • 10—3Lsp5. Ö2 — 0.050 m at aFsp — 0,35 • 10—3Lsp5. 83 — 0.075 m at aFsp — 0,24 • 10—3Lsp8.
v
m
Fig. 6. Dependence of the heat removal value on the air mass velocity in the layer (a) and (b) front section of wet polyurethane foam material E0-130: for material thickness Si = 0.025 m, 62 = 0.050 m, 53 = 0.075 m. • - packaging shavings, 5 = 0,075 m, ▲ - pine shavings, 5 = 0,075 m, ■ - aspen shavings, S = 0,075 m, x - fiberglass sheet (10x10), S = 0,03 m.
By replacing the curves on the graph (Fig. 5-a) with straight lines, functional dependences of the heat removal value a • Fspec of wet E0-130 polyurethane foam material on the specific air flow Lspec were obtained at different values of the relative material thickness 5 (Fig. 5-b), approximated by the equations:
at S = 0,025 m (<T = 1) Œ • Fspec = 0,71 • 10-3 • Lspec • S; (15)
at S = 0,050 m (5 = 2) Œ • Fspec = 0,35 • 10-3 • Lspec • S; (16)
at S = 0,075 m (5 = 3) Œ • Fspec = = 0,24 • 10-3 • Lspec • S. (17)
The error of the a • Fspec values obtained using formulas (15)-(17) lies within ±10%.
("Pl/r.,
Fig. 7. Dependence of the value aFspec of wet material PRF E0-130 on the mass air velocity: 1 - for material thickness Ô = 0,025 m (5 = 1), equation (18); 1 - for material thickness Ô = 0,05 m (S = 2), equation (19); 1 — for material thickness S = 0,075 m (S = 3), equation (20).
Based on the calculated values, the following were constructed:
- graph of the dependence of the heat removal value a • Fspec of wet material PRF E0-130 on the mass velocity of air in the layer of material (vp)'[IJy with a material thickness 5=0.025; 0.05 and 0.075 m, presented in figure 6-a, the same figure shows the values for other materials [1].
- graph of the dependence of the heat removal value a • Fspec of wet PRF E0-130 material on the mass air velocity in the facade section (vp)'l%y with a material thickness 5=0.025; 0.05 and 0.075 m, presented in figure 6-b, the same figure shows the values for other materials [1, 6, 9].
Curved lines (fig. 6) were replaced by straight ones (fig. 7). Using straight lines, functional dependences of the heat removal value of wet PRF E0-130 material W • Fspec on the air mass velocity (vp)^s and the relative thickness of the material 5, approximated by the equations were obtained:
at 8 = 0,025 m (5 = 1) a • Fspec = 94,4 • (vp)fr.s. • 5; (18)
at Ô = 0,050 m (5 = 2) a • Fspec = 23,0 • (vp)fr.s. • 5; (19)
at 8 = 0,075 m (5 = 3) a • Fspec = 10,6 • (vp)fr.s. • 5. (20)
The error of the a • Fspec values obtained using formulas (18)-(20) lies within ±5%.
4. Conclusions
1. A method for calculating the thermal efficiency of a direct evaporative cooling apparatus using the E0-130 polyurethane foam material has been proposed and justified.
2. Experimental studies of the developed direct evaporative cooling apparatus were carried out, as a result of which experimental calculated dependencies were obtained:
- values of aerodynamic resistance of dry (formula 3, Fig. 2-a) and wet (formulas 4-6, Fig. 2-b) E0-130 polyurethane foam materials from the mass air velocity in the material layer at different thicknesses;
- the magnitude of the efficiency coefficient of direct evaporative cooling of air from the mass velocity of air in a layer of E0-130 polyurethane foam material at various thicknesses (formula 8, fig. 5);
- heat removal values of wet PRF E0-130 material from specific air flow at different thicknesses (formulas 15-17, fig. 6);
- values of heat removal of wet PRF E0-130 material from the mass air velocity in the façade section of the material at various thicknesses (formulas 18-20, fig. 7).
REFERENCES
1. Kokorin 0.Ya. Air conditioning units. Fundamentals of calculation and design. 1978, -264 p.
2. Khafaji H.Q., Ekaid A.L., Terekhov V.I. A numerical study of direct evaporative air cooler by forced laminar convection between parallel-plates channel with wetted walls // Journal of Engineering Thermophysics, 2015, Vol. 24, No. 2, pp. 113 - 122.
3. Shungarov E.Kh., Garanov S.A. Mathematical model of indirect evaporative heat exchanger with allowance for the motion mode of the water film // AIP Conf. Proc. 2171, 200003 (2019)
4. Heidarineiad G. Heat and mass transfer modeling of two stage indirect/direct evaporative air coolers //Ashare (American Society of Heating and Ingineers) Journal. - 2008. - Р. 2-8.
5. Terekhov V.I., Gorbachev M.V., Khafaji H.Q. Simulation for evaporative cooling in partially wetted plate heat mass exchanger // I0P Conf. Series: Journal of Physics: Conf. Series 1105 (2018)012097
6. Terekhov, V.I., Khafaji, H.Q., Gorbachev, M.V. Heat and mass transfer enhancement in laminar forced convection wet channel flows with uniform wall heat flux // Journal of Enhanced Heat Transfer. January, 2018, 25(6):565-577
7. Avezov R.R. and etc. Heat Transfer Coefficient from the Sheet-Piped Light-Absorbing Panels of the Flat-Plate Solar Water-Heating Collectors to the Heat Transfer Fluid in Their Heat-Removing Channels // Applied Solar Energy, - 2018, - Vol. 54, No. 3, - pp. 168-172.
8. Koroli M.A. and etc. Determining the Parameters of the Fluid Layer with a Rigid Mobile Nozzle, Thermal Engineering 68(3), 221-227 (2021)
9. Umardjanova F.Sh. and etc. About possibility of using natural sources of cold in air conditioning system / E3S Web of Conferences 401, C0NMECHYDR0. 04059 (2023)
10. Shodiyev B.B. and etc. A review of heat recovery technology for passive ventilation applications / E3S Web of Conferences 434, ICECAE. 01034 (2023)
11. Anisimov S., Vasiljev V. Renewable energy utilization in indirect evaporative air coolers under combined airflow conditions //Proceedings of Clima. - 2007.
12. Hafiz M.U.R., etc. Investigating Applicability of Evaporative Cooling Systems for Thermal Comfort of Poultry Birds in Pakistan // Appl. Sci. 2020, 10, 4445; doi:10.3390/app10134445
13. Tinghui Xue and etc. A Comprehensive Review of the Applications of Hybrid Evaporative Cooling and Solar Energy Source Systems // Sustainability 2023, 15(24), 16907; https://doi.org/10.3390/su152416907
14. Khazratov A.G. and etc. Calculation of evaporative-radiant cooling of recycled water in summer air-conditioning systems / E3S Web of Conferences 401, C0NMECHYDR0. 05052 (2023)
15. Axmatova S.R. and etc. Development of an experimental facility for cooling circulated water of industrial plants / E3S Web of Conferences 304, ICECAE. 01011 (2021)
16. Ivanisova A.R. and etc. Mathematical modeling of heat and mass exchange processes in the evaporative cooler / E3S Web of Conferences 304, ICECAE. 01012 (2021)
17. Lertsatitthanakorn C.C., etc. Field Experiments and Economic Evaluation of an Evaporative Cooling System in a Silkworm Rearing House // Biosystems Engineering. Volume 93, Issue 2, February 2006, Pages 213-219.
18. Maerefat M.X., Haghighi A.P. Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity // Renewable Energy. Volume 35, Issue 9, September 2010, Pages 2040-2052
19 Anisimov S.0., Pandelidis D.A., Numerical Study of the Maisotsenko Cycle Heat and Mass Exchanger, Int. J. Heat Mass Transfer, 2014, vol. 75, pp. 75-96.
УДК: 628.34.001.57
УМНЫЕ ОПТИКО-ЭЛЕКТРОННЫЕ УСТРОЙСТВА ДЛЯ КОНТРОЛЯ И РЕГУЛИРОВАНИЯ УРОВНЯ ЖИДКОСТЕЙ
Юрий Геннадьевич Шипулин, Профессор Ташкентский государственный технический университет Электронная почта: ergashev [email protected]
Эргашева Шахноза Мавлонбоевна,
Докторант Ташкентский государственный технический университет Электронная почта: ergashev [email protected]
Аннотация: В данной статье рассматривается разработка интеллектуальных оптоэлектронных устройств, предназначенных для контроля и управления уровнем жидкостей в различных технологических системах. Современные технологические схемы требуют высоконадежных и эффективных измерительных преобразователей, которые могли бы самостоятельно адаптироваться к изменяющимся условиям окружающей среды и интегрироваться с цифровой микроэлектроникой. Авторы обсуждают проблемы разработки чувствительных, помехоустойчивых и эксплуатационно гибких измерительных преобразователей. В данной статье предлагается новый структурированный интеллектуальный преобразователь, который включает в себя датчики, усилители и цифровые элементы для обеспечения высокоточной, надежной, самодиагностируемой работы. Кроме того, в статье описывается, как система может быть использована для контроля уровня подземных вод, при этом система минимизирует помехи и повышает точность измерений.
Abstract: The following paper deals with the development of intelligent optoelectronic devices intended for monitoring and controlling the level of liquids in different technological systems. Modern technological layouts require highly reliable and effective measurement transducers that would be capable of self-adaptation to changing conditions of the environment and integrate with digital microelectronics. The authors discuss challenges for the development of sensitive, noise-immune, and operationally flexible measurement converters. This paper proposes a new structured intelligent converter that incorporates sensors, amplifiers, and digital elements in order to provide a highly accurate, reliable, self-diagnostic operation. Besides, the paper describes how the system can be used for monitoring underground water level, with the system minimizing interference and improving the measurement accuracy.
Annotatsiya: Quyidagi maqola turli texnologik tizimlarda suyuqliklar darajasini nazorat qilish va nazorat qilish uchun mo'ljallangan aqlli optoelektron qurilmalarni ishlab chiqishga bag'ishlangan. Zamonaviy texnologik tartiblar atrof-muhitning o'zgaruvchan sharoitlariga o'z-o'zini moslashish va raqamli mikroelektronika bilan integratsiya qilish imkoniyatiga ega bo'lgan yuqori ishonchli va samarali o'lchash transduserlarini talab qiladi. Mualliflar sezgir, shovqinga qarshi immunitetli va operatsion moslashuvchan o'lchash konvertorlarini ishlab chiqishdagi qiyinchiliklarni muhokama qiladilar. Ushbu maqola yuqori aniqlik, ishonchli, o'z-o'zini diagnostika operatsiyasini ta'minlash uchun sensorlar, kuchaytirgichlar va raqamli elementlarni o'z ichiga olgan yangi tuzilgan aqlli konvertorni taklif qiladi. Bundan tashqari, maqolada tizimni er osti suv sathini monitoring qilish uchun qanday foydalanish mumkinligi tasvirlangan, bu tizim shovqinlarni minimallashtiradi va o'lchash aniqligini oshiradi.
Ключевые слова: Интеллектуальные измерительные преобразователи, оптоэлектронные системы, контроль уровня жидкости, интеграция датчиков, цифровая микроэлектроника, системы самодиагностики, обработка сигналов, помехоустойчивость, экологический мониторинг, подземные воды, структурированный интеллектуальный преобразователь, точность измерений.
Qurilish va Ta 'lim ilmiy jurnali 3-jild, 6-son https://jurnal. qurilishtalim. uz