Научная статья на тему 'Порошково-активированные бетоны – многоуровнево-модифицированные цементные системы'

Порошково-активированные бетоны – многоуровнево-модифицированные цементные системы Текст научной статьи по специальности «Технологии материалов»

CC BY
81
25
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
БЕТОН / CONCRETE / МОДИФИКАЦИЯ / MODIFICATION / ЦЕМЕНТНАЯ СИСТЕМА / CEMENT SYSTEM

Аннотация научной статьи по технологиям материалов, автор научной работы — Дыкин И.В.

Изложены вопросы структуры и некоторые принципы синтеза дисперсно-модифицированных цементных систем, позволяющих получать бетоны нового поколения с высокими строительно-технических свойствами и оптимизированными расходами сырьевых материалов. Описаны некоторые механизмы структурообразования, предопределяющих свойства дисперсно-оптимизированных цементных систем, а также механика получения плотных упаковок дисперсной фазы.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по технологиям материалов , автор научной работы — Дыкин И.В.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

POWDER-ACTIVATED CONCRETES - MULTILEVEL-MODIFIED CONCRETE SYSTEMS

The paper presents the issues of the structure and some principles of synthesis of dispersion-modified concrete systems allowing to obtain concretes of a new generation with good construction and technical properties and optimized consumption of raw materials. We describe some of the structuring mechanisms, which predetermine the properties of dispersion-optimized concrete systems, as well as the mechanics of obtaining density packing of the dispersed phase.

Текст научной работы на тему «Порошково-активированные бетоны – многоуровнево-модифицированные цементные системы»

DOI: https://doi.org/ 10.23670/IRJ.2017.57.121 Дыкин И.В.

ORCID: 0000-0002-7173-0428, аспирант, Национальный исследовательский Московский государственный строительный университет ПОРОШКОВО-АКТИВИРОВАННЫЕ БЕТОНЫ - МНОГОУРОВНЕВО-МОДИФИЦИРОВАННЫЕ

ЦЕМЕНТНЫЕ СИСТЕМЫ

Аннотация

Изложены вопросы структуры и некоторые принципы синтеза дисперсно-модифицированных цементных систем, позволяющих получать бетоны нового поколения с высокими строительно-технических свойствами и оптимизированными расходами сырьевых материалов. Описаны некоторые механизмы структурообразования, предопределяющих свойства дисперсно-оптимизированных цементных систем, а также механика получения плотных упаковок дисперсной фазы.

Ключевые слова: бетон, модификация, цементная система.

Dykin I.V.

ORCID: 0000-0002-7173-0428, postgraduate, National research Moscow state university of civil engineering POWDER-ACTIVATED CONCRETES - MULTILEVEL-MODIFIED CONCRETE SYSTEMS

Abstract

The paper presents the issues of the structure and some principles of synthesis of dispersion-modified concrete systems allowing to obtain concretes of a new generation with good construction and technical properties and optimized consumption of raw materials. We describe some of the structuring mechanisms, which predetermine the properties of dispersion-optimized concrete systems, as well as the mechanics of obtaining density packing of the dispersed phase.

Keywords: concrete, modification, cement system.

Порошково-активированные бетоны, называемые Reactive Powder Concrete (RPC) - это высокоэффективные строительные композиционные материалы с минимальным содержанием вяжущего вещества и высокими строительно -техническими свойствами.

Синтез порошково-активированных бетонов основывается на подборе оптимального дисперсно-гранулометрического состава, который определяется однородным распределением компонентов на различных структурных уровнях, подборе оптимальных значений пуццоланической активности, а также модуля упругости.

Создание такого уровня плотных упаковок частиц и зёрен обеспечивается их однородным распределением в соответствии с электрокинетическим потенциалом и напряженным состоянием. Например, оптимальное расстояние между частицами заполняющей фракции первого уровня по напряженному состоянию составляет 2D (D - размер частицы), а их объемная доля - 0,2 [1]. При означенных параметрах дисперсные частицы располагаются на значительном расстоянии друг от друга, поля энергии их деформации не накладываются и не вносят соответствующий вклад в напряженное состояние материала. Установлено также, что 95% энергии деформации, связанной с частицей и окружающей ее матрицей, находится в пределах сферического объема радиусом D от центра частицы [9]. Таким образом, частицы могут рассматриваться как изолированные друг от друга только в том случае, если расстояние между ними больше 2D или объемная доля меньше 0,2, что корреспондируется с результатами исследований многокомпонентных цементных систем (МЦС) с минеральными модификаторами (ММ) [2,3]. Кроме того, в реальных композитных системах имеется вероятность того, что две или большее количество дисперсных частиц могут объединиться, и будут представлять собой отдельный агрегат. Вероятность соприкосновения двух и трех частиц при содержании ММ в МЦС в количестве 50% соответственно составляет 0,5 и 0,02 [6]. В таких микрообъемах цементных систем пуццолановая реакция практически не протекает, и они представляют собой псевдопоры размером 5-7 мкм (случай трех частиц) и 0,5-1,5 мкм (случай двух частиц). Означенные дефекты структуры вносят значимый вклад в снижение морозостойкости, деформативных и прочностных характеристик цементного камня и распределяются так же, как пары и тройки дисперсных частиц, а параметрами распределений являются их содержание и размер [7].

Таким образом, объемная доля и дисперсный размер частиц каждой последующей фракции материала должны соответствовать размеру межчастичных пустот и их объему в предыдущей [8]. Объем оставшихся пустот в синтезированной таким образом системе будет минимальным. При недостаточном содержании частиц любого уровня для заполнения соответствующих пустот в предыдущем будет формироваться неоднородная более неупорядоченная с высокой энтропией структура цементного камня с относительно «низкой» прочностью, а при повышенном - будет наблюдаться агрегация частиц и, например, для минеральных добавок образование псевдопор, кроме того частицы предыдущего уровня в таких микрообъёмах будут раздвинуты на определённые расстояния, повысится их пористость, уменьшится концентрация твёрдой фазы и, в результате, также произойдёт снижение прочности материала.

Влияние на подбор компонентов для синтеза RPC-композитов, обеспечивающих однородное распределение частиц на различных структурных уровнях по дисперсности с целью формирования более упорядоченной микроструктуры, оказывает обеспечение процесса их гидратации, а также протекание пуццолановой реакции между частицами соседних уровней.

Кроме того, для обеспечения высоких строительно-технических свойств RPC-композитов модули упругости компонентов должны быть высокими и наиболее целесообразно близкими по значению.

Оценивая влияние модуля упругости на синтез прочности композитных материалов с дисперсными частицами отмечают, что он наиболее широко изучен и обсужден [1]. В общем случае дисперсная фаза либо уменьшает, либо увеличивает модуль упругости матричной фазы в зависимости от того, будет ли модуль дисперсных частиц, соответственно, меньше или больше модуля упругости матрицы. В работах Д.Пауля, З.Хашина, С.Штрикмана и др. с

использованием теорем об энергии деформации получены уравнения для определения модуля композита в зависимости от модулей упругости матрицы, дисперсной фазы и объемного содержания последней. Однако трещины, которые могут развиваться в процессе охлаждения композита ниже температуры его изготовления, поры, образующиеся в процессе изготовления, а также псевдопоры, образующиеся под напряжением вследствие слабой связи по поверхностям раздела фаз, приводят к значительно более низким модулям упругости относительно, рассчитанных теоретически. Очевидно, что модуль упругости цементного камня с ММ определяется модулем упругости гидратных фаз, а также модулями упругости реликтов частиц клинкерного компонента и ММ. Модуль упругости реликтов частиц клинкера оценивается значениями в несколько раз превышающими аналогичные значения для гидратных фаз. Вследствие этого наиболее эффективным ММ цементных систем является тонкодисперсный доменный гранулированный шлак, частицы которого, как и портландцемента, характеризуется высокими прочностью и модулем упругости, и способностью к самостоятельному гидравлическому твердению. Гидратация минералов шлака значимо повышает плотность и прочность цементного камня, особенно в контактной зоне с портландцементными гидратными фазами, а его реликты, являясь более крупными, как и реликты частиц клинкера, внесут значимый вклад в интегральный модуль упругости и прочность синтезируемой многокомпонентной системы.

Увеличение прочностных показателей RPC-композитов помимо повышения плотности исходной упаковки частиц обеспечивается также ограничением степени гидратации минералов клинкера с сохранением максимального объема негидратированной части - реликтов частиц с прочностью 310 МПа (средняя прочность гидратных фаз - 135МПа).

Таким образом, синтез многокомпонентной цементной системы целесообразно осуществлять с использованием следующих принципиальных положений.

Мелкий заполнитель для RPC-композитов принимается в виде пяти фракций, в диапазоне 0,08 - 1,6 мм, обеспечивающих значимое снижение его межзерновой пустотности.

Объем многокомпонентной вяжущей составляющей определяется по методу абсолютных объемов, а дисперсные структурные уровни могут быть синтезированы следующим образом. Первый уровень в виде портландцемента с целью обеспечения длительного сохранения прочных с высоким модулем упругости реликтов частиц клинкера в цементном камне. Для заполнения первого уровня межчастичных пустот портландцемента промышленного помола применяется тонкодисперсный доменный гранулированный шлак в количестве 22% массы [4], для второго уровня -высокодисперсный портландцемент - 9%, в т. ч. допускается гидромеханохимически активированный [6], а для третьего - микрокремнезем -1% - с удельной дисперсностью 18000-21000 м2/кг. При таком выборе компонентов RPC обеспечивается высокая концентрация твердой фазы в единице объема многокомпонентного вяжущего вещества, однородное протекание пуццолановой реакции в микрообъемах матрицы, а также высокий уровень размера реликтов относительно грубодисперсной фракции клинкерного компонента.

Однако следует отметить, что высокая водопотребность синтезированного таким способом RPC требует обязательного применения суперпластифицирующих-суперводоредуцирующих добавок, например, наиболее эффективных поликарбоксилатного типа [5].

Экспериментальные исследования прочности бетона проводили с использованием в качестве мелкого заполнителя полифракционного песка, портландцемента марки ПЦ500-Д0 Шуровского завода, в т.ч. тонкодисперсный цемент Rheocem 900, тонкодисперсного шлака Липецкого металлургического комбината, микрокремнезема.

Дисперсно-гранулометрический состав сырьевых компонентов указан в табл. 1. Измерения проводились согласно ISO 13320-1:2009 «Анализ размера частиц. Методы лазерной дифракции» на лазерном микроанализаторе размеров частиц «Analysette 22»

Таблица 1 - Дисперсно-гранулометрический состав сырьевых компонентов

Образец Средний размер частиц (d50), мкм Максимальный размер частиц (d95), мкм Содержание частиц менее 2 мкм, % по массе Удельная поверхность

Цемент (Щурово) 15,780 43,178 9,81 3200

Шлак 17,120 73,857 13,14 4300

Rheocem900 2,811 14,641 25,3 8200

Содержание многокомпонентного цемента, синтезированного из означенных составляющих в оптимальных количествах, принималось равным 600, 700 и 800 кг/м3 бетона. В качестве суперпластификатора в бетонной смеси использовался Glenium ACE 430 -2%, а также Melflux 1641F. Прочность бетона после твердения в нормальных условиях в возрасте 1 сутки составила при означенных выше расходах цемента соответственно 37,2; 42,4; 58,8Мпа, в возрасте 7 сут 60,4, 66,3, 71,8Мпа, а в 28 суток - 105; 119; 132 МПа. Результаты микроструктурного анализа полученных образов приведена в рис.1. Исследования проводились на сканирующем микроскопе Quanta 200 с приставкой для элементного анализа Apollo 40.

Рис. 1 - (а) Снимок на электронном микроскопе образца цементного бетона, (б) Снимки на электронном микроскопе образца порошково-активированного бетона

Необходимо отметить, что структура порошково-активированного бетона (рис.1б) характеризуется высоким содержанием низкоосновных плотных волокнистых дендритоподобных гидросиликатов кальция, повышающих прочность не только на сжатие, но и на растяжение. Элементным анализом установлено, что содержание свободного гидросиликата кальция уменьшилось на 37%, очевидно вступившего в взаимодействие с диоксидом кремния с образованием вторичных прочных гидросиликатов кальция, содержащих значимо меньшее количество химически-связанной воды.

Полученные результаты указывают на то, что изложенные выше принципы подбора дисперсно -гранулометрического состава позволяют получать высокоэффективные порошково-активированные бетоны с минимальным содержанием вяжущего вещества и высокими строительно-техническими свойствами.

Список литературы / References

1. Ленг Ф.Ф. Разрушение композитов с дисперсными частицами в хрупкой матрице / Композиционные материалы. Разрушение и усталость; ред. Л.Браутман; ред. перевода Г.П.Черепанов. - М.: Мир, 1978. - С. 11-57.

2. Величко Е.Г., Белякова Ж.С. Физико-химические и методологические основы получения многокомпонентных систем оптимизированного состава / Строит. материалы. - 1995. - № 3. - С. 27-30.

3. Белякова Ж.С., Величко Е.Г., Комар А.Г. Экологические, материаловедческие и технологические аспекты применения зол ТЭС в бетоне / Строительные материалы. - 2001. - №3. - С. 46-48.

4. Цховребов Э.С., Величко Е.Г. Вопросы охраны окружающей среды и здоровья человека в процессе обращения строительных материалов / Строительные материалы. - 2014. - № 5. - С. 99-103.

5. Величко Е.Г. Строение и основные свойства строительных материалов. Учебное пособие / М., 2014. - 496с.

6. Величко Е.Г., Дыкин И.В. Многоуровневая дисперсно-гранулометрическая модификация цементных систем / Бетон и железобетон - взгляд в будущее. Том 4. Редакторы Е.Д. Нефёдова, И.Н. Фоманова, В.К. Чупрова, М.: МИСИ -МГСУ, 2014. С. 272-279.

7. Энтин З.Б., Юдович Б.Э. Многокомпонентные цементы. - Научн. тр. / НИИцемент.- вып 107.- 1994. - С. 3-76.

8. Дыкин И.В. Основные принципы оптимизации дисперсно-гранулометрического состава порошково-активированных бетонов нового поколения / Строительство - формирование среды жизнедеятельности. - 2015. -С.834-837.

9. Мелихов И.В. Физико-химическая эволюция твердого вещества. / М.: Бином. Лаборатория знаний. - 2009, 309 с.

Список литературы на английском языке / References in English

1. Leng F.F. Razrushenie kompozitov s dispersnyimi chasticami v hrupkoy matrice [Fracture of composites with dispersed particles in a brittle matrix] / Composicionnjie materialji. Razrushenie i ustalost; Ed. L. Brautman. Translation ed. G. P. Cherepanov. - M.: Mir, 1978. - P. 11-57. [in Russian]

2. Velichko E.G., Belyakova J.S. Fisiko-himicheskie i metodologicheskie osnovji poluchenija mnogokomponentajih system optimizirovannogo sostava [Physico-chemical methodological basis for the production of multi component systems of the optimized structure] / Stroitelnye materialy. - 1995. - № 3.- P. 27-30. [in Russian]

3. Belyakova J.S., Velichko E.G., Komar A.G. Ekologicheskie, materialovedcheskie i tehnologicheskie aspektji primenenija zol TES v betone [Environmental, material science and technological aspects of the use of ash TPP in concrete structure] / Stroitelnye materialy. - 2001. - №3. - P. 46-48. [in Russian]

4. Chovrebov E.S., Velichko E.G. Voprosji ohranji okruzhajushey sredji i zdorovja cheloveka v processe obrashenija stroitelnjih materialov [The issues of environmental protection and human health in the process of handling construction materials] / Stroitelnye materialy. - 2014. - №5. - P. 99-103. [in Russian]

5. Velichko E.G. Stroenie I osnovnjie svoystva stroitelnjih materialov. Uchebnoe posobie. [The structure and basic properties of construction materials. Tutorial]. - M., 2014. - 496p. [in Russian]

6. Velichko E.G., Dykin I.V. Mnogourovnevaja dispersno-granulometricheskaja modifikacija cementnjih sistem [Multilevel optimization of dispersed composition of cement systems] / Beton i zhelezobeton - vzgljad v budushee. Tom 4. Editors E.D. Nefedova, I.N. Fomanova, V.K. Chupronova, M.: MISI-MGSU. - 2014. - P. 272-279. [in Russian]

7. Antin Z.B., Judovich B.A. Mnogokomponentnjie cementji. - Nauchnjie trudji [Mult-component cements. - Scientific work] / NIIcement, rel. 107., - 1994. - P.3-76. [in Russian]

8. Dykin I.V. Osnovnjie principji optimisacii dispersno-granulometricheskogo sostava poroshkovo-aktivirovannjih betonov novogo pokolenija [Basic principles of optimization of dispersion-particle size composition of powder-activated concretes of a new generation] / Stroitelstvo - formirovanie sredji zhisnedejatelnosti. - 2015. - P.834-837. [in Russian]

9. Melichov I.V. Fisiko-himicheskaya evoljucija tverdogo veshestva [Physico-chemical evolution of solids] / M.: Binom. Laboratoriya znaniy. - 2009. - 309 p. [in Russian]

DOI: https://doi.org/10.23670/IRJ.2017.57.146 Закиров В.И.1, Ковалева А.А.1, Третьяков А.С.1, Турбов А.Ю.1, Пономарев Д.Ю.5

1 Аспирант, ФГАОУ ВО Сибирский федеральный университет,

2Кандидат технических наук, ФГБОУ ВО «Сибирский государственный аэрокосмический университет имени академика М.Ф. Решетнева»,

ПРИМЕНЕНИЕ ОРТОГОНАЛЬНЫХ МОДЕЛЕЙ ТЕНЗОРНОГО АНАЛИЗА ДЛЯ ИССЛЕДОВАНИЯ QOS

В SDN

Аннотация

Концепция программно-конфигурируемых сетей (SDN) была представлена еще в 2006 году, но до недавнего времени столь пристального внимания ей не уделялось. Когда стало ясно, что при существующих темпах роста интернет индустрии, в скором времени будет трудно обеспечивать потребности пользователей, технология SDN начала активно развиваться. Важным вопросом в данной области является обеспечение качества обслуживания (QoS), так как именно такие параметры QoS, как загрузка каналов, время потерь и т.д. в конечном счете, оказывают влияние на конечных пользователей. В данной статье рассматривается вопрос применения ортогональных моделей тензорного анализа для исследования сетей SDN. В ходе исследования рассчитываются загрузки каждой ветви исследуемой сети при помощи ортогонального метода тензорного анализа. После полученных результатов, сделаны выводы о применимости используемого математического аппарата в качестве основного инструмента исследования таких сетей, а также выводы об особенностях распределения трафика в исследуемой сети SDN.

Ключевые слова: программно-конфигурируемые сети, тензорный анализ, ортогональный метод, качество обслуживания, загрузка сети.

Zakirov V.I.1, Kovaleva A.A.1, Tretyakov A.S.1, Turbov A.U.1, Ponomarev D.U.2 Postgraduate student, Siberian Federal University, 2PhD in Engineering, Siberian State Aerospace University APPLICATION OF ORTHOGONAL MODELS OF TENSOR ANALYSIS FOR QOS RESEARCH IN SDN

Abstract

The concept of software-defined networks (SDN) was introduced in 2006, but until now, not much attention was paid to it. When it became clear that it would be difficult in the near future to ensure the needs of users at the current development of the Internet industry, the SDN technology began its rapid development. An important issue in this field is to ensure the quality of service (QoS), such as QoS parameters like channel loading, time loss, etc. which eventually affect the end users. This paper considers the use of orthogonal tensor analysis models for the study of SDN networks. In the study the authors calculated the load of each branch of the network using orthogonal method of tensor analysis. The obtained results lead to a conclusion about the applicability of the mathematical apparatus as a basic research tool for such networks, as well as conclusions about the peculiarities of the traffic distribution in the study of SDN network.

Keywords: software-configurable networks, tensor analysis, orthogonal method, quality of service, network load.

Архитектура современных компьютерных сетей, закладывалась в 60-х годах прошлого века. За это время, в области инфокоммуникаций были сделаны большие шаги, связанные, прежде всего не только с различными техническими новшествами, например, с разработкой новых типов оборудования, но и прежде всего с новшествами, которые затрагивают одни из основных уровней модели OSI: канальный, сетевой и транспортный. Связано это, прежде всего с постоянно растущими потребностями пользователей всемирной глобальной сети. Если еще около 4 -5 лет назад, качеству обслуживания в инфокоммуникационных сетях не уделялось должное внимание, то на данном этапе развития, вопрос обеспечения качества обслуживания ставиться «во главу угла». Объемы передаваемого трафика растут в геометрической прогрессии и существующие сети в большинстве случаев не способны адекватно и эффективно реагировать на этот рост. До последнего момента, единственным эффективным решением проблемы, было наращивание сетевых мощностей, путем установки дополнительного оборудования и т.д.

В далеком 2006 году была представлена концепция программно-конфигурируемых сетей (SDN). Совершенно новый подход к проектированию и построению инфокоммуникационных сетей показал, что возможна перестройка сетей не только на физическом, но и на программном уровне. Несмотря на то, что концепция программно-конфигурируемых сетей существует уже около 10 лет, основная работа по её воплощению в реальность, была сделана за последние 3-4 года. На данный момент уже существуют сети передачи данных на основе концепции SDN. Например, это сеть ЦОДов Facebook, или сеть передачи данных компании Microsoft. Для применения данного рода сетей повсеместно, необходимо решение следующих вопросов:

- возможность перестроения существующих сетей без полной замены оборудования, иными словами, функционирование сетей на основе протокола OpenFlow (основной протокол передачи данных в SDN);

i Надоели баннеры? Вы всегда можете отключить рекламу.