Научная статья на тему 'POLARIZATION AND ELECTROPHYSICAL PARAMETERS OF PIEZOCERAMIC MATERIALS INVESTIGATION'

POLARIZATION AND ELECTROPHYSICAL PARAMETERS OF PIEZOCERAMIC MATERIALS INVESTIGATION Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
16
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
TEMPERATURE / POLARIZATION / PIEZOCERAMICS

Аннотация научной статьи по электротехнике, электронной технике, информационным технологиям, автор научной работы — Zhurina A.E., Pecherskaya E.A., Fimin A.V., Zinchenko T.O., Kozlov G.V.

The effect of temperature and electric field strength on the polarization and dielectric relaxation of the Ba0,85Ca0,15Zr0,1Ti0,9O3 piezoceramic material has been studied. Experimental studies were carried out using the automated information-measuring system developed by the authors. It is based on the modified Sawyer-Tower circuits, which make it possible to measure the hysteresis loops of the polarization dependences on the electric field strength in the ferroelectric phase at different temperatures.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «POLARIZATION AND ELECTROPHYSICAL PARAMETERS OF PIEZOCERAMIC MATERIALS INVESTIGATION»

Conference materials UDC 53.096

DOI: https://doi.org/10.18721/JPM.153.248

Polarization and electrophysical parameters of piezoceramic materials investigation

A. E. Zhurina 1H, E. A. Pecherskaya \ A. V. Fimin \ T. O. Zinchenko \ G. V. Kozlov \

1 Penza State University, Penza, Russia H gelya.zhurina@mail.ru

Abstract. The effect of temperature and electric field strength on the polarization and dielectric relaxation of the Ba0 85Ca0 15Zr0 jTiQ 9O3 piezoceramic material has been studied. Experimental studies were carried out using the automated information-measuring system developed by the authors. It is based on the modified Sawyer—Tower circuits, which make it possible to measure the hysteresis loops of the polarization dependences on the electric field strength in the ferroelectric phase at different temperatures.

Keywords: temperature, polarization, piezoceramics

Citation: Zhurina A. E., Pecherskaya E. A., Fimin A. V., Zinchenko T. O., Kozlov G. V., Polarization and electrophysical parameters of piezoceramic materials investigation, St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.2) (2022) 263-268. DOI: https://doi.org/10.18721/JPM.153.248

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons. org/licenses/by-nc/4.0/)

Материалы конференции УДК 53.096

DOI: https://doi.org/10.18721/JPM.153.248

Исследование поляризации и электрофизических параметров пьезокерамических материалов

А. Е. Журина 1Н, Е. А. Печерская \ А. В. Фимин \ Т. О. Зинченко \ Г. В. Козлов 1

1 Пензенский государственный университет, г. Пенза, Россия н gelya.zhurina@mail.ru

Аннотация. Исследовано влияние температуры и напряженности электрического поля на поляризованность и диэлектрическую релаксацию пьезокерамического материала Ва0 85Са0 ^г0 ^^ 903. Экспериментальные исследования выполнены с помощью разработанной авторами автоматизированной информационно-измерительной системы. В ее основе —модифицированные схемы Сойера — Тауэра, которые позволяют измерять петли гистерезиса зависимостей поляризованности от напряженности электрического поля в сегнетоэлектрической фазе при разных температурах.

Ключевые слова: температура, поляризация, пьезокерамика

Ссылка при цитировании: Журина А. Е., Печерская Е. А., Фимин А. В., Зинченко Т. О., Козлов Г. В. Исследование поляризации и электрофизических параметров пьезокерамических материалов // Научно-технические ведомости СПбГПУ. Физико-математические науки. Т. 15. № 3.2. С. 263-268. БОГ: https://doi.org/10.18721/JPM.153.248

Статья открытого доступа, распространяемая по лицензии СС ВУ-МС 4.0 (И^:// creativecommons.Org/licenses/by-nc/4.0/)

© Zhurina A. E., Pecherskaya E. A., Fimin A. V., Zinchenko T. O., Kozlov G. V., 2022. Published by Peter the Great St. Petersburg Polytechnic University.

Introduction

Materials based on barium titanate (BaTiO3) are promising piezomaterials. It has been found that the dielectric and piezoelectric properties of BaTiO3 can be improved by adding elements such as Ca, Sr, Mg or Zr. It is stated in [1] that the BCZT ceramics having the composition Ba0 85Ca015Zr01Ti09O3 has the most uniform microstructure.

BCZT Piezoceramic Polarization Study

Heating ceramic samples to a glassy phase with subsequent cooling to room temperature leads to the fact that during cooling in the crystal cells a phase transition occurs, as a result of which the vectors of spontaneous piezoceramics polarization in the entire set of crystal lattices do not take the same direction, while regions (domains) appear. ) having the same direction of spontaneous polarization [2]. In [3], Ba0 85Ca015Zr01Ti09O3 (BCZT) ceramics were obtained using a conventional solid solution. Experimental studies of the dependences of the electrophysical parameters of the samples on temperature, electric field strength, and the surface morphology were studied using a scanning electron microscope. Based on the studies results [3], a graph of the dependence of the Ba0 85Ca015Zr01Ti0 9O3 polarization on temperature and the strength of the external electric field was plotted (Fig. 1).

P,( mC/cm2)

100 29.8

Fig. 1. Dependence of Ba0 85Ca015Zr01Ti09O3 polarization P (mC/cm2) on temperature T (°C) and external electric field strength E (kV/cm)

Fig. 2. Dependence of the Ba0 85Ca015Zr01Ti09O3 complex permittivity on temperature

© Журина А. Е., Печерская Е. А., Фимин А. В., Зинченко Т. О., Козлов Г. В., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

For a detailed study of the Ba0 85Ca015Zr01Ti09O3 polarization, it is necessary to consider dielectric relaxation. In the case of dielectric relaxation, the polarization response to an external electric field is considered [4]. Dielectric relaxation is usually associated with the dynamics of electric dipoles of individual molecules or molecules groups, ions or electrons, passing between allowed energy levels. In the case of orientational polarization, the dipole moments of elementary dipoles remain constant in magnitude, but the directions change due to the thermal motion manifestation [5].

The activation energy of the dielectric relaxation was calculated using the Debye relation [6], the Debye relaxation can be expressed using the complex permittivity. The complex dielectric function is formed by summing the imaginary and real parts [7, 8], dependence of the imaginary part of the permittivity temperature [7]. The dependence of the Ba0 85Ca015Zr01Ti09O3 complex permittivity on temperature is shown in Fig. 2.

To study the phenomenon of dielectric hysteresis of the polarization P dependence on the electric field strength E, the authors proposed an automated information-measuring system based on the modified Sawyer-Tower method [9, 10]. Fig. 3 shows the experimental dependence of the polarization of a ferroelectric ceramic sample based on barium titanate on the intensity electric field at a temperature of 80 °C.

The automated methods developed by the authors make it possible to estimate the coercive field (marked as "2" and "5" in Fig. 3) and the residual polarization (marked as "3" and "4" in Fig. 3, respectively) , as well as calculate the values of other electrophysical parameters, including the tangent of the dielectric loss angle, relative permittivity [11, 12].

2

p, (iC/cm

s e

4

2

0 2" 4 -6 -6

Fig. 3. Experimental dependence of the polarization of a ferroelectric ceramic sample based on barium titanate on the electric field strength at a temperature of 80 °C

1 1 1 1 t i iiik'^iir" J ! yl^jlip 1

t I 1 1 i t LiK^^ler^ ' 1 t JL/T jJlr >

1 1 1 1 i ¿F JiT 1 f I-"1"» 1 Jf ' '

1 1 1 1 IWl.......\.......i * "DF 1 1 '

1 1 1 1 ^(Th.

1 1 1 1 ' Jbr ■ * * jpr * t I

' 1 Jfl -t i t » i

I 1 jJi» 'lir L_------- 1 t i lit» ........ tttl lit»

UiSjJiffTT1 «iiii

-200 -100 0 100 200

E. kv/m

Methods for measuring the tangent of the dielectric loss angle

To measure the dielectric loss tangent, the authors used two modifications of the Sawyer-Tower scheme (Fig. 4, a, b).

When using the first of the proposed methods, based on the scheme shown in Fig. 4,a, an indirect determination of the capacitance C is performed using the following formula:

(D

where U is the voltage across a capacitor of known value , included in the lower arm of the capacitive divider.

Using scheme in Fig. 3,b, an indirect determination of rx (the resistance) was made using the following formula:

r =

T2r2

x _ , (2)

T2 -T1

where r1, r2 are the known resistances of the resistors, which are connected in turn in series to the capacitor with the materials under study (Fig. 4,b); tp t2 and r1, r2are connected.

It should be noted that the relative measurement error is the sum of the relative measurement errors of frequency, capacitance and resi&ance:

5(ig5) = 5/ + 5CX +5rx. (3)

Next, we consider another method for indirectly measuring the dielectric loss tangent, which involves determining the area of the hy&eresis loop of the dependence U (U\ where Uc = U - U = UC0/(C0 + Cx) is the voltage across the capacitor with the active dielectric under &udy.

xThe power Wa dissipated in the ferroelectric during the period of the sinusoidal signal T is directly proportional to the area of the hy&eresis loop (see Fig. 3) W = (1/T)§U dq, al under &udy dq = C0dU. Let us denote the integral in the numerator J = fUc"d U, for its calculation it is advisable to use the methods of numerical integration. In this casex there is an error A due, firmly, to the presence of a truncation error due to the replacement of curvilinear trapezoids by rectilinear ones and, secondly, to an error component caused by errors in measuring the values of the function U (Uc).

To e&imate the Sandard deviation of the in&rumental error of indirect measurement under the normal di&ribution law, the expression is applicable:

)2 + (dtg5^ )2 + (dig5 )2

J ) + (-°n ) + (-arr ) , (4)

J 3UX 3UV Uy ()

x

where J = §U dU.

c v

To calculiite the ultimate absolute resulting error A2, it is necessary to find the sum A2 = A7 + A s , where A s = 3.09a s . In turn, in relative units, the measurement error of the dielectric loss

tgS2' . tgS2 , tg52 ' , '

tangent is determined by the expression:

5,=^ =

A2 A2n(Uc_ )m (Uv )„

tg5 UCdUy

(5)

The instrumental implementation of the Sawyer—Tower scheme modifications proposed by the authors makes it possible to measure the dielectric loss tangent with relative errors not exceeding, respectively, 81 < 0.60%, 52 < 0.65%.

Results and Discussion

As a result of studying the dependences of the electrophysical parameters of BCZT piezoceramics samples on temperature and electric field strength, graphs of the porosity dependence on influencing factors were obtained, which made it possible to study dielectric relaxation as a response of polarization to an external electric field. The relationship between the complex permittivity and temperature indicated a diffuse transformation confirming the relaxor-type behavior.

Fig. 4. Modified Sawyer-Tower circuits

Two modifications of the Sawyer—Tower scheme, the use of which is dictated by research goals: the hysteresis loops measurement (the scheme in Fig. 4,a) or the study of the repolarization of piezoceramic images, the measurement of the switching current versus time (the scheme in Fig. 4,b) are proposed. Both modifications make it possible to indirectly determine the parameters characterizing the dielectric hysteresis. Two methods for measuring the tangent of the dielectric loss angle based on metrological analysis are considered, formulas for estimating the limiting measurement errors, which in relative form do not exceed 0.60% and 0.65%, respectively, are obtained.

It is expedient to use the results presented in the study of ceramic piezos with ferroelectric properties, as well as in the design of functional electronics products based on active dielectrics.

REFERENCES

1. Kolthoum I. Othman, Ahmed A. Hassan, Amr. Hashim, A .M . Emam, E. E-Kashif, Synthesis and characterization of Ba0 85Ca015Zr01TiO3 Lead-Free Piezoelectric Ceramic Materials, Technology Reports of Kansai University. 62(11) (2020) 6535-6546.

2. Vernigora G.D., Lupeiko T.G., Skaliukh A.S., Solovyov A.N., About polarization and determination of the porous piezoceramics effective characteristics, Physical and mathematical sciences, Bulletin of the DSTU. 4(55) (2011) 463-469.

3. Asma Dahri, Yaovi Gagou, Najmeddine Abdelmoula, Hamadi Khemakhem, Mimoun E Marssi, The structural, dielectric, electrocaloric, and energy storage prope,Hrties of lead-free Ba0 85Ca015Zr01Ti09O3, Ceramics International 48 (2022) 3157-3171.

4. Alexei A. Bokov, Zuo-Guang Ye, Dielectric relaxation in relaxor ferroelectrics, Journal of Advanced Dielectrics. 2(2) (2012) 24 pages.

5. Hamad Rahman Jappor, Majeed Ali HabeebHamad Rahman Jappor, Majeed Ali Habeeb, Optical properties of two-dimensional GaS and GaSe monolayers, Physica E: Low-dimensional Systems and Nanostructures. 101 (2018) 251-255.

6. Belkhadir S., Neqali A., Amjoud M., Mezzane D., Alimoussa A., Choukri E., Gagou Y., Raevski I., El Marssi M., Luk'yanchuk I. A., Rozic B., Kutnjak Z., Structural, dielectric and electrocaloric properties of (Ba0 85Ca015)(Ti09Zr01-xSnx)O3 ceramics elaborated by sol-gel method, Journal of Materials Science: Materials in Electronics. 210(15) (2019) 14099-14111.

7. Larionov A.N.,Bogdanov D.L., Larionova N.N., Efremov A.I., Toshchenko K.A., Dielectric relaxation and viscoelastic properties of nematic liquid crystals, Condensed Media and Interfacial Boundaries. 17(3) (2015) 364-370.

8. Rybakov D.O. and Belyaev V.V., Temperature Dependences of Molecular Coefficients and Activation Energy of Nematic Mixture 2F-3333, Zhid. crist. and their practical use / Liq. Cryst. and their Appl. 18(3) (2018) 94-103.

9. Gurin S.A., Pecherskaya E.A., Spitsyna K.Y., Fimin A.V., Artamonov D.V., Shepeleva A.E., Thin piezoelectric films for micromechanical systems, Moscow Workshop on Electronic and Networking Technologies, MWENT 2020 - Proceedings.

10. Pecherskaya E.A., Golubkov P.E., Fimin A.V., Zinchenko T.O., Pechersky A.V., Shepeleva J.V., Intelligent system for active dielectrics parameters research, Procedia Computer Science 132 (2018) 1163-1170.

11. Golubkov P.E., Pecherskaya E.A., Golovyashkin A.N., Golovyashkin A.A., Pecherskiy, A.V., Shepeleva, Y.V., Analysis of the technological parameters influence on the reproducibility of the active dielectrics properties, International Conference of Young Specialists on Micro/ Nanotechnologies and Electron Devices, EDM. (2018) 57-61.

12. Artamonov, D.V., Baranov, V.A., Pecherskaya, E.A., Pushkareva A.V., Tsypin, B.V., Fimin, A.V., Application of a Hyper-Complex Impedance Model for Indirect Measurements of Materials Parameters of Functional Electronics, International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM. (2019) 760-764.

THE AUTHORS

ZHURINA Angelina

gelya.zhurina@mail.ru ORCID: 0000-0002-5076-3191

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ZINCHENKO Timur

scar0243@gmail.com ORCID: 0000-0002-9342-9345

PECHERSKAYA Ekaterina

KOZLOV Gennady

politeh@pnzgu.ru

pea1@list.ru

ORCID: 0000-0001-5657-9128

ORCID: 0000-0002-5113-1305

FIMIN Andrey

mr.l0tus@mail.ru

ORCID: 0000-0001-6527-9944

Received 11.07.2022. Approved after reviewing 19.07.2022. Accepted 19.07.2022.

© Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.