УДК 665.35+637.2
DOI 10.29141/2500-1922-2022-7-2-3 EDN HSDYUL
Plant Antioxidants
in the Oxidative Mayonnaise
Spoilage Study
Marina N. Shkolnikova1 Evgeny D. Rozhnov2, Yulia V. Golubtsova3, Elena E. Banshchikova4, Elena A. Kovtun4
1Ural State University of Economics, Ekaterinburg, Russian Federation
2Biysk Technological Institute (branch) of the Altay State Technical University n.a. Ivan I. Polzunov, Biysk, Russian Federation 3Kemerovo State University, Kemerovo, Russian Federation 4Limited Liability Company «Kit Plus», Biysk, Russian Federation H [email protected]
Abstract
The article presents the data systematization results on the plant antioxidants use in mayonnaise, that is a popular seasoning at home and in the food industry. The objective disadvantage of fat-containing products is the process of self-oxidation under the influence of a number of factors changing the organoleptic properties of mayonnaise, reducing nutritional value, safety and shelf life. Manufacturers solve the lipid oxidation problem of fat-containing products and the fat phase of mayonnaise by using officially registered antioxidants / oxidation inhibitors mainly of synthetic origin. Due to the increased demand for natural antioxidants caused by the growing market of food products with natural food additives, one of the promising approaches to the mayonnaise oxidation prevention is the use of isolated individual substances and plant extracts with the high antioxidant activity. The paper systematizes the examples of the plant antioxidants use in the mayonnaise composition described in modern scientific literature, reveals the features of their influence on the oxidative spoilage process and organoleptic indicators. A man indicated that plant extracts containing polyphenolic substances, vitamins, carotenoids, a-tocopherol and terpenes inhibit the mayonnaise oxidative spoilage process, acting as primary antioxidants slowing down the lipid oxidation onset, and secondary - reducing the oxidation rate. The research proved the plant antioxidants ability to suppress targets of oxidant activity - hydroxyl radical, superoxide, singlet oxygen lipid radical, lipid peroxides and metals of variable valence.
For citation: Marina N. Shkolnikova, Evgeny D. Rozhnov, Yulia V. Golubtsova, Elena E. Banshchikova, Elena A. Kovtun. Plant Antioxidants in the Oxidative Mayonnaise Spoilage Study. Индустрия питания|Food Industry. 2022. Vol. 7, No. 2. Pp. 26-36. DOI: 10.29141/2500-19222022-7-2-3. EDN: HSDYUL.
Paper submitted: April 12, 2022
Keywords:
raw materials
antioxidants;
mayonnaise;
oxidative spoilage;
inhibition;
targets
Исследование влияния растительных антиоксидантов на окислительную порчу майонеза
М.Н. Школьникова1 Е.Д. Рожнов2, Ю.В. Голубцова3, Е.Е. Банщикова4, Е.А. Ковтун4
1Уральский государственный экономический университет, г. Екатеринбург, Российская Федерация
2Бийский технологический институт (филиал) Алтайского государственного технического университета им. И.И. Ползунова, г. Бийск, Российская Федерация
3Кемеровский государственный университет, г. Кемерово, Российская Федерация 4Общество с ограниченной ответственностью «КиТ плюс», г. Бийск, Российская Федерация H [email protected]
Реферат
В статье представлены результаты изучения систематизации использования растительных антиоксидантов в майонезе - популярной приправе, распространенной как в домашних условиях, так и в индустрии питания. Объективный недостаток жиросо-держащих продуктов - процесс их самоокисления под воздействием ряда факторов - характерен и для майонеза, в котором изменяются органолептические свойства, снижаются пищевая ценность и безопасность, сокращается срок годности. Проблема окисления липидов в жиросодержащих продуктах и наступления жировой фазы майонеза решается изготовителями посредством применения официально зарегистрированных антиокислителей / антиоксидантов преимущественно синтетического происхождения. В связи с растущим спросом на натуральные антиоксиданты, обусловленным популярностью пищевых продуктов с натуральными пищевыми добавками, одним из перспективных способов предотвращения окисления майонеза стало использование выделенных индивидуальных веществ и экстрактов растений, обладающих высокой антиоксидантной активностью. В работе систематизированы описанные в современной научной литературе примеры включения растительных антиоксидантов в состав майонеза, раскрыты особенности их влияния на процесс окислительной порчи и органолептические показатели. Показано, что растительные экстракты, содержащие полифенольные вещества, витамины, каротиноиды, а-токо-ферол и терпены, ингибируют процесс окислительной порчи майонеза, выступая как первичные антиоксиданты, замедляющие начало окисления липидов, и как вторичные, снижающие скорость окисления. Доказана способность растительных антиоксидантов подавлять «мишени» оксидантной активности - гидроксильный радикал, супер-оксид, синглетный кислород, липидный радикал, перекиси липидов и металлы переменной валентности.
Для цитирования: Marina N. Shkolnikova, Evgeny D. Rozhnov, Yulia V. Golubtsova, Elena E. Banshchikova, Elena A. Kovtun. Plant Antioxidants in the Oxidative Mayonnaise Spoilage Study // Индустрия питания|Food Industry. 2022. Т. 7, № 2. С. 26-36. DOI: 10.29141/25001922-2022-7-2-3. EDN: HSDYUL.
Дата поступления статьи: 12 апреля 2022 г.
Ключевые слова:
растительные
антиоксиданты;
майонез;
окислительная порча;
ингибирование;
мишени
Introduction
Mayonnaise is an emulsion product made from edible vegetable oils and water, with the addition of emulsifying and flavoring ingredients, acidifiers and other food additives. It is a familiar and popular seasoning all over the world, used both in the food industry and at home.
Mayonnaise is an oil-in-water emulsion, usually containing 65-80 % vegetable oil (sunflower, corn, olive, rapeseed, etc.). Its decrease in the content leads to a change in the usual organoleptic charac-
teristics, particularly, consistency. So, fat has a positive effect on the "creaminess" of the consistency.
Also, a vegetable oil proportion decrease in mayonnaise reduces the density of its drops weakening the stability and interaction between the drops and the emulsion& Also it leads to an increase in the oil content in the aqueous phase, and a decrease in density and viscosity [1].
At the same time, mayonnaise has the high content of fatty component - unsaturated fatty acids,
ISSN 2686-7982 (Online) ISSN 2500-1922 (Print)
Т. 7 № 2 2022
ИНДУСТРИЯ
ПИТАНИЯ INDUS
and under the influence of oxygen, ultraviolet rays, elevated temperature, metal ions, enzymes, etc. So, mayonnaise is subject to self-oxidation causing chemical stability violation with the formation of undesirable peroxide components, such as free radicals, peroxide and carbonyl compounds, reactive aldehydes, ketones, low molecular weight acids, oxy acids, etc. There is a change in the organoleptic characteristics of mayonnaise - unpleasant aroma and tastes (for example, the rancidity of oxidized fats, which occurs, particularly, due to small molecules of aldehydes, ketones, hexane and malonic aldehyde, which can be detected by humans at threshold values of parts per million). As a result, the nutritional value and safety of fats decrease: fats become toxic, induce the oxidative stress development in the human body and shorten the shelf life of mayonnaise. This is an interphase oxidation, which is influenced by the chemical composition and physico-chemical properties of the aqueous and fatty phases, the type of surfactants used and the surface area of the fatty phase [2; 3]. A man must consider the fact that a stable fine-dispersed system is formed in the process of obtaining an emulsion. Oxygen dissolved in water reacts more actively with the fat phase, catalyzing the oxidation processes in it due to an increase in the contact area of the phases [4; 5].
Thus, the type and quality of liquid vegetable oil (usually processed, including the stages of bleaching, deodorization, neutralization - during which there is a significant loss of endogenous antioxidants) in the mayonnaise composition determine directly the processes features of hydrolytic and ox-idative spoilage occurring in it and influence on its fundamental characteristics - organoleptic and microbiological, resistance to oxidation and shelf life.
Preserving the original quality, appearance, taste and smell of mayonnaise against the background of an increase in the shelf life declared by the manufacturer, as well as improving its safety, is an urgent problem. Its solution is of great practical importance. The development and introduction of food products containing natural ingredients into the nutrition structure is one of the main tasks for creating safe and high quality products improving the nutritional status of the population [4].
Manufacturers solve the lipid oxidation problem of fat-containing products and the fat phase of mayonnaise by using antioxidants / oxidation inhibitors, officially registered food additives E300-399. The most commonly used antioxidants are:
1) synthetic phenolic compounds - butylhy-droxyanisole (BHA, E320), butylhydroxytoluene (BHT, E321), propyl gallate (PG, E310) and tert-bu-tylhydroquinone (TBHQ, E319) are the most widely used food antioxidants due to their low cost, high efficiency and availability. Their maximum content
is regulated by the TR CU 029/2011 "On the Safety of Food Additives", for example: E320 - 200 mg/ kg (per product fat). There is information about the prooxidant effect of propyl gallate depending on its content in the product [6];
2) ethylenediaminetetraacetate calcium-nitrate (EDTA, E385, the rate of application to mayonnaise and mayonnaise sauces according to the TR CU 029/2011 - 75 mg/ kg) is the most effective;
3) citric acid (E330) and other acids;
4) individual compounds, including vitamins -ascorbic acid (ascorbic acid, E300, vitamin C), gallic acid, tocopherols (E306-309) and others and their combinations: line of antioxidants NovaSOL, etc.
In recent years, the demand for natural antiox-idants, especially of plant origin, has sharply increased. It is due to the use restriction of synthetic food additives in food products caused by their tox-icological effect and an increase in demand for food products with natural and "understandable" food additives, with "clean" labeling [1; 7].
Having regard to the above, one of the promising approaches to preventing the mayonnaise oxidation is the plant raw materials use - the addition of isolated individual substances and extracts of plant parts with the high antioxidant activity.
The variety of plant food raw materials (fruit, vegetable, grain, herbal (spicy plants) and medicinal-technical) determined the study aim - the data systematization on the plant antioxidants use in mayonnaise and mayonnaise sauces, in practice enabling to use one or another plant antioxidant considering its composition, effect on the oxidative spoilage process and interaction mechanism with other antioxidants.
Research Objects and Methods
The study object was the sources of primary information - modern scientific data on the antioxidants (AO) effect of plant origin on the processes of mayonnaise oxidative spoilage. The authors made the search by the keywords in Russian and foreign scientometric databases (RSCI, Google Academy, Scopus, Web of Science, etc.). The study is analytical in nature, which requires the use of such general scientific methods as: thematic search, analysis and synthesis, categorization, generalization and sys-tematization.
Research Results and Their Discussion
The detailed analysis of scientific sources showed that a man uses extracts obtained from various parts of edible plant raw materials - fruit, vegetable, grain, herbal (spicy-aromatic) and medicinal-technical, essential oils and individual compounds. The Figure demonstrated their structuring, performed by the authors.
Examples of the Food Raw Materials Use for Inhibiting Oxidative Spoilage of Mayonnaise Примеры использования пищевого сырья для ингибирования окислительной порчи майонеза
The acid number expressed the hydrolytic spoilage process of lipids initiated by enzymatic and non-enzymatic hydrolysis. However, the quality of mayonnaise most objectively reflects by the oxida-tive spoilage indicators, namely the peroxide number. Its measure is regulated and available [8]. Due the introduction of the TR CU 024/2011 "Technical Regulations for Fat-and-Oil Products", the peroxide number value of the fat phase of mayonnaise (the maximum permissible level of 10.0 mmol of active oxygen/ kg) has become one of the main factors limiting its shelf life. Tables 1 and 2 systematize the data on the plant antioxidants influence on the oxidation process and peroxide number. Its visualization enables to obtain a more objective picture of the oxidative spoilage process of mayonnaise and evaluate its effect on the organoleptic properties and mayonnaise shelf life.
A man uses spicy-aromatic and medicinal-technical plants not only to flavor food, but also to improve the overall quality of the product and extend the shelf life due to their antioxidant properties, both in the form of extracts and essential oils (Table 2). At the same time, rosemary extract has the status of a registered antioxidant E392.
In addition to the antioxidants from food raw materials listed in Tables 1 and 2, there is an information about the use of plant extracts shown high antioxidant properties in the mayonnaise composition, such as:
• arabic gum - after 5 months of storage at a temperature of 5 °C, only a sample of vegan mayonnaise containing 20 mg/l of gum arabic was standard quality due to the high AOA of this ingredient; at the same time, the oxidative stability of the mayonnaise sample remained unchanged at the end of the
Table 1. Influence of the Plant Antioxidants from Food Fruits, Vegetables andGrain Raw Materials
on the Mayonnaise Oxidative Stability Таблица 1. Влияние растительных антиоксидантов из пищевого плодоовощного и зернового сырья
на окислительную стабильность майонеза
Plant and the Part
Used / Form of Introduction / Reference to the Source
Grapes
(seeds, fat-free
powder)
[9]
Content in the Product
Effect on the Oxidative Spoilage Process
Sea buckthorn (fruits, pressed oil from seeds) [10]
Apples
(pectin powder) [11]
Garden currant (fruits, CO2 extract in vegetable oil) [12]
Ordinary raspberries (fruits, puree) [13]
Table beet (peel, powder after freeze-drying and grinding) [14]
Black rice (seeds, acetone-water extract) [15]
0.05; 0.10; 0.15 % After storing mayonnaise samples for 8 weeks in the dark at room temperature, there were the highest antioxidant capacity and the lowest content of lipid hydroperoxides and thio-barbituric acid in mayonnaise with the highest percentage of grape seed extract - 0.15 %. At a concentration of 0.05 % for 8 weeks it does not show toxicity, which provides high protection against oxidation during storage
Oxidative stability study of mayonnaise samples (for the peroxide and acid number control) during 3 months showed a slowdown in oxidative deterioration. The optimal concentration of sea buckthorn oil is 1.00 %.
0.50; 0.75; 1.00
and 1.25 % (as a substitute for vegetable oil)
1.50 % for mayonnaise with a fat content of 53.50 %, 2.00 % for
sauce with a fat content of 34.00 %
3.00-5.00 %
Effect on the Organoleptic Parameters
The color is light pink with increased intensity depending on the extract concentration
A man found that when stored for 45 days at T = 18 °C and humidity no more than 75 %, a mayonnaise sample with pectin was more resistant to the oxidative spoilage process while maintaining the initial organoleptic parameters than a control sample
A man stored mayonnaise samples by an accelerated method for 19 days and at the room temperature for 19 days. The mayonnaise samples with the food additive "Bioiod" and CO2 extract of black currant do not differ from the control samples in terms of oxidative damage
10.00 % The experiment for 40 days of storage demonstrated that the control sample of mayonnaise "Moskovsky" is subjected to greater oxidation: the peroxide number value was 10 mmol of active oxygen/kg; in the experimental sample of mayonnaise sauce "Malinka" - was 7 mmol of active oxygen / kg, which is 30 % lower than in the control mayonnaise sauce
1.50; 3.50 The oxidative stability of the mayonnaise and 7.00 % enriched with beet powder is slightly higher when stored for 28 days: thus, the acid number values in the samples are the lower, the greater the powder concentration. However, in all samples over the storage the value increases. There is also a gradual increase in the peroxide number of all samples, but it is significantly lower in enriched samples both at the beginning of storage and after 28 days.
1,000 mg/kg At a concentration of 1,000 mg/kg, the extract effectively increases the oxidative stability of mayonnaise
Consumers rated the samples at 9.6 points on a 10-point scale
Similar to samples without the addition of apple pectin
The taste of samples with the food additive "Bioiod" and CO2 extract is similar to the control samples. The absence of extraneous tastes and identity in consistency and color were noted
Mayonnaise sauce "Malinka" is pink, homogeneous in the whole mass of color and a more delicate taste
The powder addition to mayonnaise increased the emulsion density, adhesion, prototypes viscosity, the color of which changed from pink (1.5 % powder) to purple (7 % powder) with an increase in beet powder in the mayonnaise recipe
According to the authors, the color of mayonnaise changes due to the Maillard reaction and the oxidative decomposition of anthocyanin to undesirable brown products
Table 1 (Breakover) Окончание табл. 1
Plant and the Part
Used / Form Content in the Product Effect
of Introduction / Reference Effect on the Oxidative Spoilage Process on the Organoleptic Parameters
to the Source
Red tomatoes
(peel / skin,
crystalline
lycopene)
[16]
Purple corn (aril, anthocyanin extract) [17]
50 mg of lycopene crystals per 1 kg of mayonnaise
0.4 g of isolated anthocyanins
per 1 kg of mayonnaise
The study of mayonnaise samples with the lycopene addition for 4 months showed better oxidative stability in comparison with the control sample: the initial values of the peroxide number of 1.21 and 0.81 mEq O^kg of fat increased to 9.49 and 4.74 meq O^kg of fat for the control and experimental samples, respectively, i.e. the increase in the peroxide number value was lower in the sample containing lycopene, which acted as an antioxidant, interrupting the chain of free radicals involved in auto-oxidation
A man assessed an antioxidant activity (AOA) effect of mayonnaise samples by measuring the values of PH, anisidine number and total oxidation for 10 weeks. The AOA effect of mayonnaise with anthocyanins is higher than that of mayonnaise with synthetic antioxidants BHT and EDTA (control samples). Mayonnaise containing 0.4 g/kg of anthocyanins showed maximum antioxidant properties during the storage
The addition of lycopene slowed down the development of unpleasant tastes and odors, color change
Mayonnaise samples with anthocyanins had a purple color, which was positively evaluated by consumers
Table 2. Influence of the Plant Antioxidants from Plant Raw Materials on the Mayonnaise Oxidative Stability Таблица 2. Влияние растительных антиоксидантов из растительного сырья на окислительную стабильность майонеза
Plant and the Part
Used / Form of Introduction / Reference to the Source
Parsley grass and black pepper (1.1,1.2-tetrafluo-roethane extracts in oil) [18]
Rosemary (grass and leaves, extract) [2; 19]
Content in the Product
0.32 % parsley and 0.20 % black pepper
G^ % [18] and % p]
Effect on the Oxidative Spoilage Process
A man evaluated the oxidation process of mayonnaise samples stored at T = 20 °C for 20 days measuring the primary oxidation products formation. A sample of mayonnaise with food emulsions is somewhat more resistant to oxidation: the PH value was 1.20 (fresh), 1.95 (5 days of storage) and 10.03 (10 days of storage) meq O^kg, whereas in the control sample 1.20; 2.62 and 10.20 meq O^kg, respectively. According to the authors, the measurement of the conjugated dienes level presented in olive oil did not show significant differences between the samples. So, during the relatively short period of studying time it was not possible to measure significant processes of decomposition reactions in lipids; and therefore, there were no changes in organoleptic properties in the samples
The rosemary extract suppresses the processes of photo-oxidation of sunflower oil lipids in mayonnaise, leading to a decrease in the content of volatile compounds, has a chelating effect on iron; the control -mayonnaise with EDTA
Effect on the Organoleptic Parameters
High sensory evaluation
It does not significantly influence on the organoleptic properties of mayonnaise
Plant and the Part
Used / Form of Introduction / Reference to the Source
Fenugreek (seeds, extract) [6]
Ginger root (dry extract) [3]
Yarrow (essential oil) [20]
Sage
(grass and leaves, ethanol extract) [21]
Content in the Product
200; 500; 1,500 mg/kg
1.00 % and 1.25 %
5.S5 % and 7.20 %
100; 200 and 400 mcg /g
Effect on the Oxidative Spoilage Process
At a dosage of 500 mg/kg fenugreek extract showed a similar antioxidant effect as the synthetic antioxidant TBHQ (200 mg/kg), but was more effective than the BHT (200 mg/kg); at a dosage of 1,500 mg/kg, the fenugreek extract effectiveness is higher than synthetic antioxidants
In concentrations from 1.00 % to 1.25 % ginger root prevents the formation of primary and secondary oxidation products increasing the stability of mayonnaise samples during storage for up to 20 weeks; it does not affect the rheological properties of mayonnaise
The essential oil added to the mayonnaise samples significantly reduced lipid oxidation compared to the control sample, which was rapidly oxidized
Mayonnaise samples with the addition of the sage extract (400 mcg / g) showed higher oxidative stability during the storage compared with the control samples at T = 20 °C (without the addition of antioxidants and with the addition of the BHA). The antioxidant effect exceeds the BHA effect, since the increase in the peroxide number and malonaldehyde values after storage was lower than in the control samples. Ethanol sage extract (400 mcg/g) inhibited lipid peroxidation by 87.12% and reduced rancidity by about 30 %.
Table 2 (Breakover) Окончание табл. 2
Effect on the Organoleptic Parameters
It is a part of mixtures of spices khme-li-suneli, curry, etc. It brings light spicy notes to the mayonnaise smell
Improves taste and aroma during the shelf life
No data
No data
shelf life, which implies acceptable quality and safety for consumption, according to the authors [1];
• green tea (Camellia sinensis) - the green tea extract in an amount of 0.025-0.25 % of the weight in a sample of mayonnaise effectively slows down the oxidative spoilage process while preserving traditional organoleptic characteristics. The peroxide number of the fat phase isolated from the product for a control sample of mayonnaise for 30 days of storage at room temperature increased by 22 times, while in samples with the addition of green tea extract - by 4-9 times depending on the dosage. Increasing the dosage of green tea extract to 0.50.75% of the weight leads to a sharp deterioration of the organoleptic properties of the product. At the same time, the high antioxidant properties of the additive are preserved [22];
• mate tea - extract from the Paraguaya tea (Ilex paraguariensis) leaves (138.0 mgGAE/g of powder) shows a noticeable increase in the oxidation stability of mayonnaise samples: the oxidation time increased by 6 times compared to the control sample (without the addition of extract); the AOA
was proportional to the content of polyphenols, while encapsulated extracts had a higher AOA potential [1]; and others.
Antioxidants both slow down the onset of oxidation and reduce the rate at which oxidation occurs in fat-containing products. Therefore, they can be classified as primary or secondary. A man studied its mechanism of action in sufficient detail and described in a number of works [4]. The primary AO, along with synthetic antioxidants (BHA, BHT, TBHQ and PG), include phenolic compounds and tocophe-rols. Thus, a number of extracts and essential oils inhibit oxidation processes, significantly, as shown in the examples (Table 1 and 2).
On the other hand, secondary antioxidants do not convert free radicals into more stable products, but act indirectly:
1) reduce the oxidation rate by chelating pro-ox-idant metals (iron and copper). Thus, rosemary extract (composed of phenolic diterpenes, carnosol and carnosic acid) has the ability to form chelate complexes with Fe2+ ions, cascade ability to renew vitamin E, and also participates in the carnosic acid
Table 3. Influence of the Plant Antioxidant Components on "Targets" During the Oxidation of Mayonnaise/Emulsion Food Matrices Таблица 3. Влияние составляющих растительных антиоксидантов на «мишени» при окислении майонеза /эмульсионных пищевых матриц
Antioxidant Hydroxyl Radical (OHO Superoxide (•o2- ) Singlet Oxygen (O2) Lipid Radical (RO-) Lipid Peroxides (ROO) Metals of the Variable Valence
Ascorbic acid + + - + - +
Carotenoids (ß-carotene and lycopene) - - + + + +
a-tocopherol (vitamin E) - - - + + +
Polyphenolic substances + + - + + +
Terpenes - - + + + +
cascade. As soon as the antioxidant molecule of carnosic acid "catches" the free radical, it changes its structure and turns into carnosol. Carnosol also "catches" the free radical and changes again, converting to rosmanol. Rosmanol continues to "catches" radicals. The galdosol is obtained from it implementing a cascade continuous process of replenishing hydrogen with primary antioxidants [2];
2) absorb ultraviolet radiation or act as singlet oxygen extinguishers: ascorbic acid, ascorbyl palmitate, erythrobic acid (stereoisomer of vitamin C), etc. It is worth noting that carotenoids (such as p-carotene and lycopene) deprive singlet oxygen of its excess energy and dissipate it in the form of heat, thereby returning it to an unexcited state and allowing the carotenoid to be processed as an antioxidant. The Table 3 presents the list of "targets" for the action of the most common plant antioxidants.
The Table 3 data enables considering the vegetable AO effect on specific targets in the product
composition, and shows the possibility and / or the need for their joint use in the recipe development for mayonnaise or emulsion food matrices based on fat-containing raw materials.
Conclusion
The presented classification of edible plant raw materials containing antioxidants enables to systematize and facilitate its use in research and practical (HoReCa, small enterprises) purposes. The information summarized in the Figure and in Tables 1-3 demonstrate the variety of vegetable raw materials clearly, enabling to conclude that there are wide possibilities of its use in the production of mayonnaise or emulsion food matrices based on fat-containing raw materials with added benefits and increased shelf life due to the suppression and / or reduction of the undesirable oxidative processes rate of the formulations fatty part.
Bibliography
1. Fenoglio, D.; Soto, M-D.; Alarcon, M-J.; Ferrario, M.; Guerrero, S.; Matiacevich, S. Active Food Additive Based on Encapsulated Yerba Mate (Ilex Paraguariensis) Extract: Effect of Drying Methods on the Oxidative Stability of a Real Food Matrix (Mayonnaise). Journal of Food Science and Technology. 2021. Vol. 58. Iss. 4. Pp. 1574-1584. DOI: https://doi.org/10.1007/s13197-020-04669-y.
2. Naumova, N.L.;Lukin, A.A., Koval, A.S. Formirovanie Kachestva Majoneza s Antioksidantnymi Svojstvami v Processe Okislitel'noj Porchi [Quality Formation of the Mayonnaise with Antioxidant Properties in the Process of Oxidative Spoilage]. Vestnik Altajsko-go Gosudarstvennogo Agrarnogo Universiteta. 2014. No. 6 (116). Pp. 1 33-139.
3. Kishk, Y.F.M.;Elsheshetawy, H.E. Effect of Ginger Powder on the Mayonnaise Oxidative Stability, Rheological Measurements, and Sensory Characteristics. Annals of Agricultural Sciences. 2013. Vol. 58. Iss. 2. Pp. 213-220. DOI: https://doi.org/10.1016/'. aoas.2013.07.016.
Библиографический список
1. Fenoglio, D.; Soto, M-D.; Alarcon, M-J.; Ferrario, M.; Guerrero, S.; Matiacevich, S. Active Food Additive Based on Encapsulated Yerba Mate (Ilex Paraguariensis) Extract: Effect of Drying Methods on the Oxidative Stability of a Real Food Matrix (Mayonnaise). Journal of Food Science and Technology. 2021. Vol. 58. Iss. 4. Pp. 1574-1584. DOI: https://doi.org/10.1007/s13197-020-04669-y.
2. Naumova, N.L.;Lukin, A.A., Koval, A.S. Formirovanie Kachestva Majoneza s Antioksidantnymi Svojstvami v Processe Okislitel'noj Porchi [Quality Formation of the Mayonnaise with Antioxidant Properties in the Process of Oxidative Spoilage]. Vestnik Altajsko-go Gosudarstvennogo Agrarnogo Universiteta. 2014. No. 6 (116). Pp. 1 33-139.
3. Kishk, Y.F.M.;Elsheshetawy, H.E. Effect of Ginger Powder on the Mayonnaise Oxidative Stability, Rheological Measurements, and Sensory Characteristics. Annals of Agricultural Sciences. 2013. Vol. 58. Iss. 2. Pp. 213-220. DOI: https://doi.org/10.1016/'. aoas.2013.07.016.
4. Nechaev, A.P.;Nikolaeva, Yu.V.; Pilipenko, O.V.;Dubrovin, G.A.; Samojlov, A.V. Puti Povysheniya Stojkosti Nizkozhirnyh Spredov k Okisleniyu s Ispol'zovaniem Prirodnyh Antioksidantov v Micel-lirovannojForme [Ways to Increase the Resistance of Low-Fat Spreads to Oxidation Using Natural Antioxidants in the Micellated Form]. Pishchevaya Promyshlennost'. 2018. No. 3. Pp. 11-14.
5. Feofilaktova, O.V.;Zavorokhina, N.V.; Labeckij, V.V. Poluchenie Stabil'nyh Emul'sionnyh Sistem [Obtaining Stable Emulsion Systems]. Food Industry. 2021. Vol. 6. No. 3. Pp. 76-83. DOI: https://doi. org/10.29141/2500-1922-2021-6-3-9.
6. Ghorbani, G.S.; Smyth, H.E.; Sharma, M.; Fitzgerald, M. Lipid Oxidation in Mayonnaise and the Role of Natural Antioxidants: A Review. Trends in Food Science & Technology. 2016. Vol. 56. Pp. 88-102. DOI: https://doi.org/10.1016/jj.tifs.2016.08.002.
7. Mirzanajafi-Zanjani, M.; Yousefi, M.; Ehsani, A. Challenges and Approaches for Production of a Healthy and Functional Mayonnaise Sauce. Food Science & Nutrition. 2019. Vol. 7. Iss. 8. Pp. 2471-2484. DOI: https://doi.org/10.1002/fsn3.1132.
8. Golyak, Yu.P. Razrabotka Majoneza s Uvelichennym Srokom God-nosti na Osnove Vysokooleinovogo Podsolnechnogo Masla i Ego Tovarovednaya Ocenka [Mayonnaise Development with an Extended Shelf Life Based on the High Oleic Sunflower Oil and Its Commodity Evaluation]: Dis. ... Kand. Tekhn. Nauk: 05.18.15. M., 2016. 185 p.
9. Altunkaya, A.; Hedegaard, R.V.; Harholt, J.; Brimer, L.; Gökmen, V.; Skibsted, L.H. Oxidative Stability and Chemical Safety of Mayonnaise Enriched with Grape Seed Extract. Food & Function. 2013. Vol. 4. Iss. 11. Pp. 1647-1653. DOI: https://doi.org/10.1039/C3FO60204D.
10. Pureckij A.A., Butova S.N., Soldatova S.Yu. Razrabotka Majon-eznogo Sousa s Dobavleniem Oblepihovogo Masla [Development of Mayonnaise Sauce with the Sea Buckthorn Oil Added]. Vestnik Nizhnevartovskogo Gosudarstvennogo Universiteta. 2015. No. 3. Pp. 61-66.
11. Gavrilova, D.V. Razrabotka i Tovarovednaya Ocenka Majoneza i Majoneznogo Sousa dlya Zdorovogo Pitaniya s Pektinom [Development and Commodity Evaluation of Mayonnaise and Mayonnaise Sauce for Healthy Nutrition with Pectin]: Dis. ... Kand. Tekhn. Nauk: 05.18.15. M., 2014. 147 p.
12. Berestova, A.V.; Mezhueva, L.V.; Pustarnakova, I.A. K Voprosu o Funkcional'nosti Majoneznoj Produkcii [On the Question of the Mayonnaise Products Functionality]. Racional'noe Pitanie, Pish-chevye Dobavki i Biostimulyatory. 2014. No. 2. Pp. 15-15. URL: https://journal-nutrition.ru/ru/article/view?id=57.
13. Davydova, U.Yu.; Velichko, N.A. Izmenenie Kachestva Majoneznogo Sousa v Processe Hraneniya [Change in the Mayonnaise Sauce Quality during the Storage]. Vestnik KrasGAU. 2017. No. 6. Pp. 85-90.
14. Lazär, S.; Constantin, O.E.; Horincar, G.; Andronoiu, D.G.; Stänciuc, N.; Muresan, C.; Râpeanu, G. Beetroot By-Product as a Functional Ingredient for Obtaining Value-Added Mayonnaise. Processes. 2022. Vol. 10. Iss. 2. Article Number: 227. DOI: https://doi.org/10.3390/ pr10020227.
15. Tananuwong, K.; Tewaruth, W. Extraction and Application of Antioxidants from Black Glutinous Rice. LWT-Food Science and Technology. 2010. Vol. 43. Iss. 3. Pp. 476-481. DOI: https://doi.org/10.1016/)'. lwt.2009.09.014.
16. Kaur, D.; Wani, A.A.; Singh, D.P.; Sogi, D.S. Shelf Life Enhancement of Butter, Ice-Cream, and Mayonnaise by Addition of Lycopene. International Journal of Food Properties. 2011. Vol. 14. Iss. 6. Pp. 1217-1231. DOI: https://doi.org/10.1080/10942911003637335.
4. Нечаев А.П., Николаева Ю.В., Пилипенко О.В., Дубровин Г.А., Самойлов А.В. Пути повышения стойкости низкожирных спре-дов к окислению с использованием природных антиоксидантов в мицеллированной форме // Пищевая промышленность. 2018. № 3. С. 11-14.
5. Феофилактова О.В., Заворохина Н.В., Лабецкий В.В. Получение стабильных эмульсионных систем // Индустрия питания^ Industry. 2021. Т. 6, № 3. С. 76-83. DOI: https://doi. org/10.29141/2500-1922-2021-6-3-9.
6. Ghorbani, G.S.; Smyth, H.E.; Sharma, M.; Fitzgerald, M. Lipid Oxidation in Mayonnaise and the Role of Natural Antioxidants: A Review. Trends in Food Science & Technology. 2016. Vol. 56. Pp. 88-102. DOI: https://doi.org/10.1016/j.tifs.2016.08.002.
7. Mirzanajafi-Zanjani, M.; Yousefi, M.; Ehsani, A. Challenges and Approaches for Production of a Healthy and Functional Mayonnaise Sauce. Food Science & Nutrition. 2019. Vol. 7. Iss. 8. Pp. 2471-2484. DOI: https://doi.org/10.1002/fsn3.1132.
8. Голяк Ю.П. Разработка майонеза с увеличенным сроком годности на основе высокоолеинового подсолнечного масла и его товароведная оценка: дис. ... канд. техн. наук: 05.18.15. М., 2016. 185 с.
9. Altunkaya, A.; Hedegaard, R.V.; Harholt, J.;Brimer, L.; Gokmen, V.; Skibsted, L.H. Oxidative Stability and Chemical Safety of Mayonnaise Enriched with Grape Seed Extract. Food & Function. 2013. Vol. 4. Iss. 11. Pp. 1647-1653. DOI: https://doi.org/10.1039/ C3FO60204D.
10. Пурецкий А.А., Бутова С.Н., Солдатова С.Ю. Разработка майо-незного соуса с добавлением облепихового масла // Вестник Нижневартовского государственного университета. 2015. № 3. С.61-66.
11. Гаврилова Д.В. Разработка и товароведная оценка майонеза и майонезного соуса для здорового питания с пектином: дис. . канд. техн. наук: 05.18.15. М., 2014. 147 с.
12. Берестова А.В., Межуева Л.В., Пустарнакова И.А. К вопросу о функциональности майонезной продукции // Рациональное питание, пищевые добавки и биостимуляторы. 2014. № 2. С. 15-15. URL: https://journal-nutrition.ru/ru/article/view?id=57.
13. Давыдова У.Ю., Величко Н.А. Изменение качества майонезного соуса в процессе хранения // Вестник КрасГАУ. 2017. № 6. С. 85-90.
14. Lazâr, S.; Constantin, O.E.; Horincar, G.; Andronoiu, D.G.; Stânciuc, N.; Muresan, C.; Râpeanu, G. Beetroot By-Product as a Functional Ingredient for Obtaining Value-Added Mayonnaise. Processes. 2022. Vol. 10. Iss. 2. Article Number: 227. DOI: https://doi.org/10.3390/ pr10020227.
15. Tananuwong, K.; Tewaruth, W. Extraction and Application of Antioxidants from Black Glutinous Rice. LWT-Food Science and Technology. 2010. Vol. 43. Iss. 3. Pp. 476-481. DOI: https://doi.org/10.1016/)'. lwt.2009.09.014.
16. Kaur, D.; Wani, A.A.; Singh, D.P.; Sogi, D.S. Shelf Life Enhancement of Butter, Ice-Cream, and Mayonnaise by Addition of Lycopene. International Journal of Food Properties. 2011. Vol. 14. Iss. 6. Pp. 1217-1231. DOI: https://doi.org/10.1080/10942911003637335.
17. Li, C.-Y.; Kim, H.-W.; Li, H.; Lee, D.-C.; Rhee, H.-I. Antioxidative Effect of Purple Corn Extracts During Storage of Mayonnaise. Food Chemistry. 2014. Vol. 152. Pp. 592-596. DOI: https://doi.org/10.1016/j. foodchem.2013.11.152.
18. Mihov, R.B.; Nikovska, K.; Nenov, N.S.; Slavchev A. Evaluation of Mayonnaise-Like Food Emulsions with Extracts of Herbs and Spices. Emirates Journal of Food and Agriculture. 2012. Vol. 24. Iss. 3. Pp. 191-199.
17. Li, C.-Y.; Kim, H.-W.; Li, H.; Lee, D.-C.; Rhee, H.-I. Antioxidative Effect of Purple Corn Extracts During Storage of Mayonnaise. Food Chemistry. 2014. Vol. 152. Pp. 592-596. DOI: https://doi.org/10.1016/. foodchem.2013.11.152.
18. Mihov, R.B.; Nikovska, K.; Nenov, N.S.; Slavchev A. Evaluation of Mayonnaise-Like Food Emulsions with Extracts of Herbs and Spices. Emirates Journal of Food and Agriculture. 2012. Vol. 24. Iss. 3. Pp. 191-199.
19. Lagunes-Galvez, L.; Cuvelier, M.E.; Ordonnaud, C.; Berset, C. Oxidative Stability of Some Mayonnaise Formulations During Storage and daylight Irradiation. Journal of Food Lipids. 2002. Vol. 9. Iss. 3. Pp. 211-224. DOI: https://doi.org/10.1111/jj.1745-4522.2002. tb00220.x.
20. Ahmadi-Dastgerd, A.; Ezzatpanah, H.; Asgary, S.; Dokhani, S.; Rahi-mi, E.; Gholami-Ahangaran, M. Oxidative Stability of Mayonnaise Supplemented with Essential Oil of Achillea Millefolium Ssp Millefolium During Storage. Food Science and Technology. 2019. Vol. 13. Iss. 1. Pp. 34-41. DOI: http://dx.doi.org/10.15673/fst.v13i1.1340.
21. Rasmy, N.M.; Hassan, A.A.; Foda, M.I.; El-Moghazy, M.M. Assessment of the Antioxidant Activity of Sage (Salvia Officinalis L.) Extracts on the Shelf Life of Mayonnaise. World Journal of Dairy & Food Sciences. 2012. Vol. 7. Iss.1. Pp. 28-40.
22. Tyrsin, Yu.A.;Kazanceva, I.L. Perspektivnye Natural'nye Dobavki dlya Majonezov s Funkcional'nymi Svojstvami. Soobshchenie 2 [Promising Natural Additives for Mayonnaise with Functional Properties. Message 2]. Ekstrakt Zelenogo Chaya. Maslozhirovaya Promyshlennost'. 2014. No. 4. Pp. 21-23.
19. Lagunes-Galvez, L.; Cuvelier, M.E.; Ordonnaud, C.; Berset, C. Oxidative Stability of Some Mayonnaise Formulations During Storage and daylight Irradiation. Journal of Food Lipids. 2002. Vol. 9. Iss. 3. Pp. 211-224. DOI: https://doi.org/10/mVj.1745-4522.2002. tb00220.x.
20. Ahmadi-Dastgerd, A.; Ezzatpanah, H.; Asgary, S.; Dokhani, S.; Rahi-mi, E.; Gholami-Ahangaran, M. Oxidative Stability of Mayonnaise Supplemented with Essential Oil of Achillea Millefolium Ssp Millefolium During Storage. Food Science and Technology. 2019. Vol. 13. Iss. 1. Pp. 34-41. DOI: http://dx.doi.org/10.15673/fst.v13i1.1340.
21. Rasmy, N.M.;Hassan, A.A.; Foda, M.I.;El-Moghazy, M.M. Assessment of the Antioxidant Activity of Sage (Salvia Officinalis L.) Extracts on the Shelf Life of Mayonnaise. World Journal of Dairy & Food Sciences. 2012. Vol. 7. Iss.1. Pp. 28-40.
22. Тырсин Ю.А., Казанцева И.Л. Перспективные натуральные добавки для майонезов с функциональными свойствами. Сообщение 2. Экстракт зеленого чая // Масложировая промышленность. 2014. № 4. С. 21-23.
Information about Authors / Информация об авторах
Shkolnikova, Marina Nikolaevna
Школьникова Марина Николаевна
Тел./Phone: +7 (343) 221-26-72 e-mail: [email protected]
Doctor of Technical Sciences, Associate Professor, Professor of the Nutrition Technology Department
Ural State University of Economics
620144, Russian Federation, Ekaterinburg, 8 Marta/Narodnaya Volya St., 62/45
Доктор технических наук, доцент, профессор кафедры технологии питания Уральский государственный экономический университет
620144, Российская Федерация, г. Екатеринбург, ул. 8 Марта/Народной Воли, 62/45 ORCID: https://orcid.org/0000-0002-9146-6951
Rozhnov,
Evgeny Dmitrievich
Рожнов
Евгений Дмитриевич
Тел./Phone: +7 (354) 43-53-05 e-mail: [email protected]
Doctor of Technical Sciences, Associate Professor of the Biotechnology Department
Biysk Technological Institute (Branch) of the Altay State Technical University n.a. Ivan I. Polzunov
659305, Russian Federation, Altay Territory, Biysk, Trofimova St., 27
Доктор технических наук, доцент кафедры биотехнологии
Бийский технологический институт (филиал) Алтайского государственного
технического университета им. И.И. Ползунова
659305, Российская Федерация, г. Бийск, ул. им. Героя Советского Союза Трофимова, 27 ORCID: https://orcid.org/0000-0002-3982-9700
Golubtsova, Yulia Vladimirovna
Голубцова
Юлия Владимировна
Тел./Phone: +7 (3842) 58-10-11 e-mail: [email protected]
Doctor of Technical Sciences, Professor, Head of the Technology and Public Catering Department
Kemerovo State University
650000, Russian Federation, Kemerovo, Red St., 6
Доктор технических наук, профессор, заведующий кафедрой технологии и организации
общественного питания
Кемеровский государственный университет
650000, Российская Федерация, Кемеровская обл., г. Кемерово, ул. Красная, 6 ORCID: https://orcid.org/0000-0002-2958-4172
Банщикова Елена Евгеньевна
Banshchikova, Elena Evgenievna
Тел./Phone: +7 (960) 959-75-35 e-mail: [email protected]
Market Researcher
Limited Liability Company «KiT Plus»
630047, Russian Federation, Novosibirsk region, Novosibirsk, Svetlanovskaya St., 50/2 Маркетолог
Общество с ограниченной ответственностью «КиТплюс» 630047, Российская Федерация, Новосибирская обл., г. Новосибирск, ул. Светлановская, 50/2
ORCID: https://orcid.org/0000-0001-8757-3984
Kovtun,
Elena Anatolievna
Ковтун
Елена Анатольевна
Тел./Phone: +7 (905) 081-17-89 e-mail: [email protected]
Production Manager
Limited Liability Company «KiT Plus»
630047, Russian Federation, Novosibirsk region, Novosibirsk, Svetlanovskaya St., 50/2 Заведующий производством
Общество с ограниченной ответственностью «КиТ плюс» 630047, Российская Федерация, Новосибирская обл., г. Новосибирск, ул. Светлановская, 50/2
ORCID: https://orcid.org/0000-0003-4591-9697