ТЕХНИЧЕСКИЕ НАУКИ
ПЛАНИРОВАНИЕ ПУТИ МОБИЛЬНОГО РОБОТА В ДИНАМИЧЕСКИХ СРЕДАХ:
ОБЗОР
МАМЕДОВА ТАМИЛЛА АБУСАИД К.,
Ассистент кафедры «Компьютерная инженерия» Азербайджанский Государственный Университет Нефти и Промышленности, Баку, Азербайджан
АЛИЕВА НАЗРИН РАУФ К.
Магистр кафедры «Компьютерная инженерия» Азербайджанский Государственный Университет Нефти и Промышленности, Баку, Азербайджан
Аннотация: Есть много проблем для навигации роботов в густонаселенных динамических средах. В данной статье представлен обзор методы планирования пути для навигации роботов в плотной среде. В частности, планирование пути в рамках навигации мобильных robots состоит из планирования глобального пути и планирования локального пути в отношении объема планирования и исполняемости. В рамках этого статья представлен недавний прогресс методов планирования пути, а также рассмотрены их сильные и слабые стороны. Примечательно, что недавно разработанный метод препятствия скорости и его варианты, которые служат в качестве локального планировщика, всесторонне проанализированы. Кроме того, как метод без моделей, который широко используется в современных приложениях для роботов, планирование пути на основе обучения с подкреплением, aлгоритмы подробно описаны в этой статье.
Ключевые слова: навигация; динамическая среда; Местный планировщик; глобальный планировщик; Движение человека; обучение с подкреплением.
MOBILE ROBOT PATH PLANNING IN DYNAMIC ENVIRONMENTS: AN OVERVIEW
Abstract: There are many challenges for navigating robots in densely populated dynamic environments. This article provides an overview ofpath planning methods for navigating robots in a dense environment. Specifically, path planning within mobile robots navigation consists of global path planning and local path planning in terms ofplanning scope and excitability. Within this article, the recent progress ofpath planning methods is presented, as well as their strengths and weaknesses. It is noteworthy that the recently developed velocity obstruction method and its variants that serve as a local scheduler have been comprehensively analyzed. Also, as a model-free method that is widely used in modern robot applications, reinforcement learning-based path planning, the algorithms are detailed in this article.
Keywords: navigation; dynamic environment; local planner; global scheduler; Human movement; reinforcement learning.
Введение
Автономные роботы, такие как промышленные роботы, в фабрики и сервисные роботы в общественных местах привлекли большое внимание и все больше развивается в последние несколько десятилетия. Например, Мультимодальный торговый центр. Развлекательный робот (MuMMER), разработанный в [1], может оказывать необходимую услугу населению под открытым небом среда площади. Робот Atlas [2], разработанный в Бостоне Dynamics может выполнять специальные задачи как в помещении, так и в наружные среды. Совсем недавно Танака [3] разработал человекоподобного робота по имени Пеппер, который может служить
ОФ "Международный научно-исследовательский центр "Endless Light in Science"
семейным компаньоном, чтобы помочь пожилым людям в бытовые среды. Существует тенденция, что эти роботы все чаще используются или сосуществуют с людьми в все более и более сложные среды, такие как покупки торговых центров, городских улиц или вокзалов. В этих средах обязательным условием является то, что робот планирует безопасный и путь без столкновений для предоставления услуг людям в эффективным способом. В последние годы появилось много обзорных статей о роботах. план маршрута был опубликован. Например, Крузе и др. др. [4] рассмотрели тему социально-сознательной траектории. планирование. В этой статье больше внимания уделялось поведению роботов. во время навигации, когда такие факторы, как человеческий комфорт и социальность исследуются при планировании маршрута. Чик и др. [5] планировщики разделенных путей для навигации роботов в глобальный планировщик и локальный планировщик. Их опрос описывает несколько типов фреймворков для навигации роботов но отсутствует адекватное описание планировщика локального пути. Дутуэйт и др. [6] представили сравнительное исследование Методы препятствия скорости (УО) для нескольких агентов. Они также предложили несколько показателей оценки, чтобы справиться с неопределенностью, вызванной датчиками с низким разрешением в робот. Моханан и др. [7] проанализировали исследования по планирование движения робота в сложных условиях. Они классифицировала методы планирования движения и провела сравнительное исследование их производительности. Зафар и др. [8] разделили методы планирования движения на типичные методы и эвристические методы. Сравнительный анализ из двух категорий показал, что эвристический подход показал лучшую производительность в планировании пути. Совсем недавно Ченг и др. [9] разделил существующие методы на реактивные методы, прогнозные методы, методы, основанные на моделях, и методы, основанные на обучении. Эти опросы представлены в таблице 1 в хронологическом порядке, а выделяются основные черты этих методов. Несмотря на то, что многие доступные опросы вводят путь планирование в навигации роботов в разных аспектах, есть не всестороннее исследование, которое систематически знакомит иерархическая структура планирования пути, включающая планировщик глобального пути и планировщик локального пути. Кроме того, метод ВО, как локальный планировщик пути для препятствия избегание недостаточно изучено. Чтобы устранить эти недостатки, в настоящей статье подробно представлены различные методы, которые можно использовать как глобальные и планировщик локальных маршрутов. Кроме того, обсуждение расширены от методов, основанных на модели, до структуры, основанной на обучении. В настоящей статье исследуется метод обучения с подкреплением (КЬ), способный всесторонне решить проблему планирования пути. Описаны эти методы и их последние представлен ход решения задачи планирования пути. Оставшаяся часть теста организована следующим образом. Раздел 2 знакомит с классической структурой навигации. Представлены современные классические глобальные планировщики и традиционные методы локального планирования пути, ориентированные на ВО.Методы обучения с подкреплением для пути планирование представлено в разделе 3. Выводы статьи приведены в разделе 4.
Таблица 1. Сводка литературы по предотвращению препятствий роботами
Автор Год Основное содержание
Тибо Крузе [4] 2013 Факторы, которые роботы должны учитывать при навигации
С. Ф. Чик [5] 2016 Глобальный планировщик, локальный планировщик, четыре типа навигационной структуры
Даутуэйт Дж. А. [6] 2018 Сравнительное исследование методов скоростных препятствий
М. Г. Моханан [7] 2018 Планирование движения робота
М. Н. Зафар [8] 2018 Классический подход, Эвристический подход
Джию Ченг [9] 2018 Методы на основе реактивных методов, методы на основе прогнозов, методы на основе моделей и методы на основе обучения
2. Иерархическое планирование пути
Модуль планирования пути играет ключевую роль в направляя робота для безопасного движения в динамичной среде. Цель планирования пути состоит в том, чтобы направить робота от начальной точки к целевой с учетом ограничений движения транспортного средства. Как правило, планирование пути можно разделить на два этапа [10]: глобальный планировщик и локальный планировщик, основанный на экологических информацию, которую робот может получить в процессе навигации. Навигационная структура робота состоит из планировщик глобального пути и планировщик локального пути, как показано на Рис. 1. Формально глобальный планировщик пути учитывает планирование пути без столкновений от начальной точки до точка цели. В этом участвует только статическая глобальная карта процесс, поэтому сгенерированный глобальный путь является статическим, без с учетом динамических объектов. Локальный планировщик пути переходит к кусочной оптимизации глобального пути, который учитывает информацию о динамические объекты и ограничения движения робота. Принятие эта иерархическая структура планирования пути приводит ко многим преимущества в реальных приложениях. Недавние разработки алгоритмы планирования глобального пути и локального планирования пути алгоритмы рассматриваются в следующих разделах.
" в
Рис. 1. Пути, запланированные глобальным планировщиком и локальным планировщиком. Начальная точка отмечена как точка A. Целью робота является точка С Зеленый путь создается глобальным планировщиком, а красный путь создается локальным
планировщиком.
Рис. 2. Навигационная структура с глобальным планировщиком пути и локальным
планировщиком пути
2.1 Планировщик глобального пути
Метод планирования глобального пути создает путь для робота в соответствии с глобальной картой и целевой точкой. Необходимо спланировать путь, по которому робот может следовать, используя информацию о карте, полученную в динамической среде, чтобы справиться с любыми препятствиями, которые могут возникнуть. Может появиться в любой момент. Имеется большое количество исследований по глобальному планированию пути. Разработанные алгоритмы можно разделить на три категории: алгоритм поиска по графу [11], алгоритм случайной выборки [12] и интеллектуальный бионический алгоритм [13], как показано на рис. 3. Классические алгоритмы поиска по графу для поиска по графу в основном включают алгоритм Дейкстры [14], алгоритм A* [15],Алгоритм DFS [16] и алгоритм BFS [17]. Алгоритм Дейкстры и алгоритм A* хорошо изучены за последние несколько десятилетий и продемонстрировали свои возможности, широко внедряясь с операционной системой роботов (ROS) [18] для реальных приложений роботов. При эвристической стратегии поиска эти методы эффективен в относительно простых 2D-средах. Однако эти методы страдают от большой вычислительной нагрузки при реализации в крупномасштабных или многомерных средах.
Как правило, как показано на рис. 2, случайная выборка алгоритмы включают Batch Informed Trees (BIT) [19], Регионально ускоренные пакетно-информированные деревья (RABIT) [20], Быстро исследующее случайное дерево (RRT) [21] и Двойное дерево на основе рисков Быстрое изучение случайного дерева (Риск-DTRRT) [22] и др. По сравнению с алгоритмами, основанными на поиске по графу, эти алгоритмы более эффективны и широко используются в динамических или многомерных средах. Другой важной ветвью методов глобального планирования пути является интеллектуальный бионический метод, который представляет собой тип интеллектуального алгоритма, моделирующего эволюционное поведение насекомых. Обычно он включает в себя генетический алгоритм (GA) [23], алгоритм муравьиной колонии (ACO) [24], алгоритм искусственной пчелиной колонии (ABC) [25] и алгоритм оптимизации роя частиц (PSO). Для дальнейшего повышения эффективности вычислений и избежания проблем с локальными оптимумами предлагается множество усовершенствованных алгоритмов. Ван и др. [27] предложил оптимизацию алгоритма оптимизации генетического алгоритма — алгоритма роя частиц (OGA-PSO) для решения задачи планирования кратчайшего пути без столкновений сварочного робота. Лю и др. объединили метод искусственного потенциального поля и геометрической локальной оптимизации с ACO для поиска глобально оптимального пути. Мак и др. предложили ограниченный многокритериальный алгоритм оптимизации роя частиц с методологией
ускорения для создания оптимальной глобальной траектории. Планировщик локального пути фокусируется на создании локального пути с использованием доступной информации об окружающей среде робота, чтобы робот мог эффективно избегать местных препятствий. Локальные планировщики пути широко используются, потому что информация, полученная сенсорной системой, изменяется в реальном времени в динамических средах. По сравнению с методом планирования глобального пути, метод планирования локального пути является более эффективным и практичным, поскольку служит мостом между глобальным путем и управлением. Однако одним заметным недостатком является то, что локальный планировщик может попасть в ловушку локального минимума.
Обычно люди рассматриваются как препятствия в навигации роботов. Нишитани и др. [30] разработали метод планирования движения в пространстве X-Y-T, чтобы избежать людей. Он рассматривает человеческую ориентацию и личную сферу человека. Однако эффективность вычислений сильно зависит от размера сетки навигационной карты. Коллмитц и др. предложили многоуровневую карту социальных издержек для навигации в сложных условиях. Более того, как расширение алгоритма A*, метод A* с временным определением времени способен предсказывать траектории движения человека с использованием функции социальных издержек.
Существует много классических алгоритмов для получения оптимального пути в локальном планировщике и избежания проблемы локальных минимумов, таких как метод искусственного потенциального поля, алгоритм нечеткой логики, алгоритм имитации отжига, алгоритм частиц, гибридный метод в сочетании с генетическим алгоритмом. Однако эти методы не учитывают относительное движение между агентом и динамическими объектами, и, что еще хуже, иногда трудно явно получить профили скоростей динамических объектов.
Недавно был разработан локальный планировщик, который не опирается на явную информацию о профиле скорости. В этой системе навигация каждого агента в среде независима, и агенту не нужно общаться с другими агентами. В частности, П. Фиорини выдвинул теорию ВО, определив ограничение скорости, описываемое как геометрическая область, в которую попадает скорость агента, что вызовет столкновение между агентами на следующем шаге. Метод эффективен при избегании препятствий с учетом скорости агента. Однако в случае VO колебание будет происходить, когда два агента находятся на пути столкновения друг с другом. Эти колебания возникают из-за того, что оба робота выбирают большее смещение текущей скорости в начале объезда препятствия. Чтобы уменьшить смещение скорости течения и улучшить производительность, Van den Berg et al. предложили метод препятствия с обратной скоростью (ВВО). Они рассматривали новый профиль скорости робота как среднее значение его текущей скорости и скорости, лежащей вне ВО других агентов. Предлагается, чтобы RVO был полезным способом планирования плавного и безопасного пути без колебаний при навигации с несколькими агентами. Тем не менее, у него все еще есть недостаток, заключающийся в том, что несколько роботов могут не прийти к консенсусу, на какой стороне пройти, что вызывает проблему, называемую «взаимным танцем». Чтобы решить эту проблему, Снейп расширил RVO до Hybrid Reciprocal Velocity Obstacle (HRVO). Этот подход был применен для навигации с несколькими роботами с учетом кинематики и неопределенности датчиков робота.
Но если в сценарии приложения есть несколько динамических объектов, то скорость робота будет приближаться к начальной точке в пространстве скоростей. В результате робот может застрять в одной области. Эта проблема может быть устранена с помощью подхода усечения, с которым роботы не будут сталкиваться через определенный временной шаг после усечения. Пример ВО показан на рис. 3, где серыми областями отмечен профиль скорости, с которым может произойти столкновение среди агентов. Более подробную информацию можно найти. Новая скорость агентов должна быть выбрана вне этих серых зон. Для этого предлагается несколько методов в разных аспектах. В настоящее время описаны три широко
ОФ "Международный научно-исследовательский центр "Endless Light in Science"
используемых метода, которые были предложены в последние годы. Первый метод — это оптимальное предотвращение взаимных столкновений (ORCA), предложенный Berg et al.. С помощью этого метода полуплоскости бесстолкновительных скоростей могут быть рассчитаны и назначены для каждого агента. Затем можно определить оптимальную область скоростей, решив линейную программную задачу. Агенты выбирают профиль скорости, наиболее близкий к оптимальной скорости, и двигаются дальше с ним. Второй метод, который оценки бесстолкновительной скорости — это ClearPath, поднятый. ClearPath является надежным методом и лучше, чем предыдущие методы на основе VO для предотвращения столкновений. В ClearPath есть два способа расчета скорости без столкновений. Один из них выбрать скорость на пересечении двух граничных линий произвольных ВО. Другой метод выбирает скорость, определяемую проекцией предпочтительного профиля скорости на ближайший ВО. Третий метод — это метод предотвращения столкновений с неопределенностью локализации (CALU), представленный в [46], который сочетает в себе оптимальное предотвращение взаимных столкновений (ORCA) и оптимальное предотвращение взаимных столкновений неголономных роботов (NH-ORCA) для облегчения потребность в предварительных знаниях об окружающей среде.
Рис. 3. Пример рисунка о ВО. Рисунок предоставлен.
ВО могут эффективно справляться с проблемами, вызванными неточной локализацией и связью в сложных средах. Тем не менее, ему нужны адекватные сообщения о форме, скорости и положении агента. Однако он бесполезен при двух условиях: а) шасси робота нельзя рассматривать как диск; Ь) Распределение убеждений о позе AMCL дрейфует в одном направлении. Claes [41] ввел предотвращение столкновений в условиях ограниченной неопределенности локализации (COCALU) для решения этой проблемы. Он меняет форму облака частиц, а не описанного круга. Эволюция этих УО изображена на рис. 4. В таблице 2 приведены доступные планировщики локальных маршрутов.
Рис.4.Связь классических алгоритмов, основанных на скоростном препятствии.
Таблица 2. Классические алгоритмы локального планировщика
Местные планировщики Преимущества Недостатки
Метод искусственного потенциального поля Схема имеет высокую эффективность и позволяет решать задачу локального минимума в традиционном алгоритме. Существует зона захвата, и робот будет колебаться, когда он проходит через узкий проход.
Алгоритм нечеткой логики Он снижает зависимость от информации об окружающей среде и обладает такими преимуществами, как надежность и эффективность. Нечеткие правила часто предопределены опытом людей, поэтому они неспособны к обучению и обладают плохой гибкостью.
Алгоритм имитации отжига Простое описание, гибкое использование, высокая эффективность, меньше начальных условий Медленная сходимость и высокая случайность
ВО Он учитывает скорость препятствия Сложные отношения между обществами не рассматриваются
пространство Х^^ [30] Учитывает направленность человека и его личное пространство. Эффективность зависит от заданного размера сетки карты
Зависящий от времени A*[32] Он может предсказать траекторию движения человека Это не касается движения препятствия
3. Обучение с подкреплением в планировании пути
Обучение с подкреплением (RL) — это эффективный метод машинного обучения, который использует результаты прошлых действий для усиления или ослабления таких действий в зависимости от их успеха или неудачи. В мобильной робототехнике этот метод использует обратную связь с окружающей средой в качестве исходных данных для планирования пути. Он выводит действие для робота посредством постоянного взаимодействия с внешней средой. С помощью механизма обучения с подкреплением робот пытается выполнять действия и получает отзывы, а затем принимает решения на основе отзывов. В частности, при правильном действии алгоритм даст роботу положительное значение подкрепления, а при неправильном действии алгоритм даст роботу отрицательное значение. На протяжении всего процесса робот усиливает его правильное поведение и ослабляет неправильное поведение. В результате для робота может быть создано рациональное решение при встрече с людьми и другими роботами в окружающей среде. Кроме того, как и в любом типе обучения, производительность улучшается с опытом. Процесс обучения с подкреплением показан на рис. 4. Политика, который представляет собой путь в процессе навигации, генерируется при взаимодействии с внешней средой.
Robot system
Action
Рис. 4. Процесс обучения с подкреплением
Классические алгоритмы RL в планировании пути робота включают алгоритм Q-обучения [47], алгоритм SARSA, алгоритм R-обучения. Q-обучение является наиболее изученным алгоритмом RL. Обычно алгоритм выводит значение вознаграждения за состояние и движение робота посредством обратной связи, которую робот получает от окружающей среды. В частности, значение Q правильного действия увеличивается за счет уменьшения количества неправильных действий. Затем метод, основанный на значении Q, выводит оптимальную политику после фильтрации значения Q. Алгоритм Q-обучения также имеет некоторые ограничения. Во-первых, память потребность большая. Во-вторых, учиться придется долго. В-третьих, скорость сходимости низкая. Для решения проблем Q-обучения Пенг предложил алгоритм Q(X), в котором использовалась идея возврата. В этом подходе последующие данные могут быть предоставлены назад во времени, чтобы метод мог предсказать следующее поведение эффективным по времени способом. Возникшее неправильное поведение постепенно забывается в процессе обновления.
RL и его варианты широко используются для навигации роботов. Чтобы изящно взаимодействовать с людьми, роботы должны понимать и следовать определенным правилам. С этой целью Кудерер предложил подход к моделированию кооперативного навигационного поведения людей. Он может получать траектории движения человека в режиме реального времени. В последнее время большой исследовательский интерес вызывает обратное обучение с подкреплением (IRL). Он содержит функцию вознаграждения за процесс принятия решений. Некоторые исследователи применяли IRL, чтобы получить модель человеческого комфорта для совместной навигации. Чтобы достичь изящного планирования пути в густонаселенных средах, Chen et al. предложили децентрализованный многоагентный алгоритм предотвращения столкновений, основанный на глубоком обучении с подкреплением, который эффективно переводит онлайн-вычисления в автономное обучение. Это лучше, чем стратегия алгоритма ORCA, которая может быть хорошо расширена на новые сценарии, которые не появляются на этапе обучения. Применение обучения с подкреплением в динамическом планировании пути в последние годы показано в таблице 3, в которой преимущества и недостатки Указаны методы РЛ.
4. Выводы
В этой статье алгоритмы планирования пути для автономных была пересмотрена навигация роботов. Планирование пути проблема в рамках, разделяющих планирование методы в глобальные планировщики путей и локальные планировщики путей был осмотрен. Эти методы эффективны при решении задач, в то время как метод может привести к колебательному (предельно устойчивому) пути.
Таблица 3. Использование RL в динамическом планировании движений в последние годы
Метод Преимущество Недостаток
ИРЛ [51] Создайте модель человека в разных средах, может обеспечить совместную навигацию. Вычислительные дорогие, сильно зависят от производительности выбора функций.
КАДРЛ [52] Производительность в реальном времени и высокое качество пути Может привести к колеблющемуся пути
СА-КАДРЛ [53][54] Решите случайность человеческого поведения по отношению к общепринятым социальным нормам. Не учитывает отношения между пешеходами.
СРЛ [55] Он может не только решать проблемы планирования движения с учетом социальных аспектов, но также может взаимодействовать с людьми. Нужны предварительные знания.
ЛИТЕРАТУРА
[1] Foster, M. E., Alami, R., Gestranius, O., Lemon, O., Niemela, M., Odobez, J. M., & Pandey, A. K. (2016, November). The MuMMER project: Engaging human-robot interaction in real-world public spaces. In International Conference on Social Robotics (pp. 753-763). Springer, Cham.
[2] Feng, S., Whitman, E., Xinjilefu, X., & Atkeson, C. G. (2014, November). Optimization based full body control for the atlas robot. In 2014 IEEE-RAS International Conference on Humanoid Robots (pp. 120-127). IEEE.
[3] Tanaka, F., Isshiki, K., Takahashi, F., Uekusa, M., Sei, R., & Hayashi, K. (2015, November). Pepper learns together with children: Development of an educational application. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 270-275). IEEE.
[4] Kruse, T., Pandey, A. K., Alami, R., & Kirsch, A. (2013). Human-aware robot navigation: A survey. Robotics and Autonomous Systems, 61(12), 1726-1743.
[5] Chik, S. F., Yeong, C. F., Su, E. L. M., Lim, T. Y.,Subramaniam,Y.,&Chin,P.J.H. (2016).A review of social-aware navigation frameworks for service robot in dynamic human environments. Journal of Telecommunication, Electronic and Computer Engineering (JTEC),8(11),41-50.
[6] Douthwaite, J. A., Zhao, S., & Mihaylova, L. S. (2018, September). A Comparative Study of Velocity Obstacle Approaches for Multi-Agent Systems. In 2018 UKACC 12th International Conference on Control (CONTROL) (pp. 289-294). IEEE.
[7] Mohanan, M. G., & Salgoankar, A. (2018). A survey of robotic motion planning in dynamic environments. Robotics and Autonomous Systems, 100, 171-185.
[8] Zafar, M. N., & Mohanta, J. C. (2018). Methodology for Path Planning and Optimization of Mobile Robots: A Review. Procedia computer science, 133, 141-152.
[9] J. Cheng, H. Cheng, M. Q.-H. Meng, H. Zhang, Autonomous Navigation by Mobile Robots in Human Environments: A Survey, in: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), IEEE, 2018, pp.
[10] Wang, C., Meng, L., She, S., Mitchell, I. M., Li, T., Tung, F., ... & de Silva, C. W. (2017, September). Autonomous mobile robot navigation in uneven and unstructured indoor environments. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 109-116). IEEE.
[11] Chen, P. C., & Hwang, Y. K. (1998). SANDROS: a dynamic graph search algorithm for motion planning. IEEE Transactions on Robotics and Automation, 14(3), 390-403.
[12] Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The international journal of robotics research, 30(7), 846-894.
[13] Chen, T. (2009, April). A simulative bionic intelligent optimization algorithm: artificial searching swarm algorithm and its performance analysis. In 2009 International Joint Conference on Computational Sciences and Optimization (Vol. 2, pp. 864-866). IEEE.
[14] Broumi, S., Bakal, A., Talea, M., Smarandache, F., & Vladareanu, L. (2016, November). Applying Dijkstra algorithm for solving neutrosophic shortest path problem. In 2016 International Conference on Advanced Mechatronic Systems (ICAMechS) (pp. 412-416). IEEE.
[15] Duchon, F., Babinec, A., Kajan, M., Beno, P., Florek, M., Fico, T., & Jurisica, L. (2014). Path planning with modified a star algorithm for a mobile robot. Procedia Engineering, 96, 59-69.
[16] Guo, M., Johansson, K. H., & Dimarogonas, D. V. (2013, May). Revising motion planning under linear temporal logic specifications in partially known workspaces. In 2013 IEEE International Conference on Robotics and Automation (pp. 5025-5032). IEEE.
[17] Yu, J., & LaValle, S. M. (2013, May). Planning optimal paths for multiple robots on graphs. In 2013 IEEE International Conference on Robotics and Automation (pp. 3612-3617). IEEE.
[18] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., & Ng, A. Y. (2009, May). ROS: an open-source Robot Operating System. In ICRA workshop on open source software (Vol. 3, No. 3.2, p. 5).
[19] Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2015, May). Batch informed trees (BIT*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 3067-3074). IEEE.
[20] Choudhury, S., Gammell, J. D., Barfoot, T. D., Srinivasa, S. S., & Scherer, S. (2016, May). Regionally accelerated batch informed trees (rabit*): A framework to integrate local information into optimal path planning. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4207-4214). IEEE.
[21] Wang C, Meng M Q H. Variant step size RRT: An efficient path planner for UAV in complex environments[C]//2016 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, 2016: 555-560.
[22] Chi, W., Wang, C., Wang, J., & Meng, M. Q. H. (2018). Risk-DTRRT-Based Optimal Motion Planning Algorithm for Mobile Robots. IEEE Transactions on Automation Science and Engineering.
[23] Hu, Y., & Yang, S. X. (2004, April). A knowledge based genetic algorithm for path planning of a mobile robot. In IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04. 2004 (Vol. 5, pp. 4350-4355). IEEE.
[24] Wang, J., Wang, N., & Jiang, H. (2015, October). Robot global path planning based on improved ant colony algorithm. In 5th International Conference on Advanced Design and Manufacturing Engineering. Atlantis Press.
[25] Liu, H., Xu, B., Lu, D., & Zhang, G. (2018). A path planning approach for crowd evacuation in buildings based on improved artificial bee colony algorithm. Applied Soft Computing, 68, 360-376.
[26] Tharwat, A., Elhoseny, M., Hassanien, A. E., Gabel, T., & Kumar, A. (2018). Intelligent Bézier curve-based path planning model using Chaotic Particle Swarm Optimization algorithm. Cluster Computing, 1-22.
[27] Wang, X., Shi, Y., Ding, D., & Gu, X. (2016). Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning. Engineering Optimization, 48(2), 299-316.
[28] Liu, J., Yang, J., Liu, H., Tian, X., & Gao, M. (2017). An improved ant colony algorithm for robot path planning. Soft Computing, 21(19), 5829-5839.