Из графика (рис. 2 и 3) видно, что с увеличением скорости У0, высота Ь подъема частиц зерновой смеси растет. Также из графика видно, что высота подъема частиц зерновой смеси увеличивается пропорционально увеличению массы частиц зерновой смеси. Соответственно частицы, имеющие наибольшую массу поднимаются на наибольшую высоту и пролетают на максимальное расстояние по ОХ. Таким образом, зерновая смесь (семенные, продовольственные, фуражные зерна, семена других растений и разные возможные примеси...) в зависимости от массы разделяются по всей длине камеры сепарации на фракции и входят в соответствующие отсеки, где специальные приспособления обеспечивают разделение зерен от всевозможных при-
месей. Пыль и легкие частицы (соломистые и другие примеси) удаляются из камеры сепарации аспираци-онными каналами путем всасывания.
Таким образом, разработана современная конструкция сепаратора для сыпучих материалов, в котором осуществляется одновременная очистка зернового материала от различных примесей и его фракционирование в зависимости от массы и скорости полета зерна. Теоретико-экспериментальные исследования процесса полета и разделения зерен различной массы является обоснованием для рациональной конструкции комбинированного сепаратора, подтверждают высокую эффективность качества очистки зернового материала.
Список литературы:
1. Фоминых А. В. Повышение эффективности сепарирования зерна и сои на основе совершенствования фракционных технологий и машин: Автореф. дисс. ... докт. техн. наук. Челябинск, 2006. - 26 с.
2. Лапшин И. П. Расчет и конструирование зерноочистительных машин/И. П. Лапшин, Н. И. Косилов. Курган: ГИПП «Зауралье», 2002. 168 с.
3. Стрикунов Н. И. Очистка зерна и семян. Машины и технологии: учебное пособие/Н. И. Стрикунов, В. И. Беляев, Б. Т. Тарасов. Барнаул: Изд-во АГАУ 2007. 131 с.
4. Васильев Н. Ф. Совершенствование технологии фракционной обработки зернового материала в условиях Забайкалья: Автореф. дисс. ... канд. техн. наук. - Улан-Уде, 2006. - 24 с.
5. Баракаев Н. Р., Ризаев А. А., Бахадиров Г. А. и др. Сепаратор. Патент РУз №БАР 00631, Государственное патентное ведомство Республики Узбекистан, Официальный бюллетень, № 7 (123), 2011 г.
6. Баракаев Н. Р., Ризаев А. А., Бахадиров Г. А. и др. Питающее устройство сепаратора зерна. Патент РУз №БАР 00820, Государственное патентное ведомство Республики Узбекистан, Официальный бюллетень, № 6 (123), 2013 г.
Djahangirova Gulnoza Zinatullaevna, Tashkent chemical-technological institute, The senior researcher of the department «Technology of foodstuffs»
Е-maü: [email protected] Tursunkhodjaev Pulat Muhamedovich, Tashkent chemical-technological institute, Dr.Tech.Sci., the professor of the department «Technology of foodstuffs»
Physiological effect and safety of the use of vegetative additives in the bread production technology
Abstract: In the paper the safety issue of application of vegetative additives in the preparation technology ofbread has been studied. It has been determined that the introduction in the diet of the experimental animal flour products containing fruit and vegetable additives, positively influences on the clinical picture and behavioural reactions of rodents.
Keywords: safety, bread, vegetative additives, physiological effect.
Plant products dominate the evolutionary diet of (as separate products or in dishes) daily. These include man as the total number — about 1300 ... 1400 g/a grains, legumes, vegetables, fruits, berries, herbs, nuts, day, and on the range — not less than 10 ... 15 names vegetable oils, which are the only natural sources of car-
bohydrates, non-starch polysaccharides (dietary fiber), vitamins C and E, ^-carotene, bioflavonoids, minerals and other essential minor nutrients.
The most important in this group are the products of technological processing of cereals, combining a large group of components of the diet. The nutrient structure of cereal is characterized by the presence of fiber up to 12%, up to 4% of fat, up to 70% of carbohydrates on average. They provide up to 90% of dietary intake of complex carbohydrates (starches). Grain protein deficient in lysine and threonine, while in the composition of the mixed diet due to grain provided 40% protein requirements. A relatively low content of fat existing in the germ and membranes is characterized by a high nutritional value because it contains essential fatty acids (linoleic and linolenic), phospholipids, tocopherols. In the corcule of the grain there are also phytoestrogens and phytosterols, which have high biological activity [1, 3-4; 2, 10-12].
At present there was a whole direction in the field of a food on creation of scientifically well-founded approach on the nutrification of socially significant base foodstuff, in particular, bread and bakery products, essential and minor substances to recommended level of adequate consumption [3, 20-24; 4, 66-78].
Modern methods of the preparation of bread include both traditional technologies, and use of various additives, in particular, products of processing of fruit-berry and vegetable raw materials. Introduction of the given additives in the compounding of products will allow to solve a number of technological problems: the improvement of consumer advantages ofproduction, the increase of its biological value, the intensification of the process of dough-making, the expansion of
assortment of «a healthy food» products sector, the economy of the basic raw materials [5, 14-18].
By the authors of the paper it has been investigated the chemical compound of fruit and vegetable powdery half-finished products from apples (PA), beets (PB), carrots (PC), pumpkins (PP) and red sweet pepper (PSR), meeting the requirements TS 64.1831008901:2002 and made by the corporation of «Ildiz» (Uzbekistan). Then, for the purpose of comparability of values macro- and micronutrients of the given raw materials with similar indicators of 1st grade wheaten flour have been made recalculation, being guided by the maintenance of solids of flour (86,0%) as the mass fraction of solids of additives changed in limits from 91,4 to 91,9%. It has allowed to estimate most obj ectively biological value of investigated raw materials and expediency of its use for partial replacement of composition quantities of wheaten high-quality flour in technology of preparation of bread.
Biological and caloric values of additives are presented in tab. 1.For each kind of investigated raw materials ranging on their biochemical indicators (by criteria of the maximum maintenance of proteins, organic acids, dietary fibers, mineral substances and vitamins, the minimum maintenance of carbohydrates and fats) has been spent. Then by the expert way the products-leaders having the minimum total rank have been allocated (tab. 1). At the equality of ranks the preference is given to a product containing smaller quantity of carbohydrates.
As a result on biological value the investigated raw materials have settled down in the following sequence (on decreasing): PP^PA^PC^PRP^PB^ 1st grade wheaten flour.
Mass fraction of nutrients,%/(rank)
Nutrients I st grade wheaten flour Powder from
Apples (PA) Beets (PB) Carrots (PC) Pumpkins (PP) Red pepper (prp)
1 2 3 4 5 6 7
Proteins 10,6 9,5±0,04 5,8±0,02 10,2±0,01 9,2±0,01 13,2±0,01
(2) (4) (6) (3) (5) (1)
Carbohydrates 67,8 44,7±0,03 71,5±0,01 64,9±0,02 44,7±0,02 53,0±0,03
(4) (1) (5) (3) (1) (2)
Organic acids 4,4±0,01 0,5±0,06 0,7±0,05 0,4±0,07 0,1±0,01
(6) (1) (3) (2) (4) (5)
Dietary fibers 02 25,5±0,05 9,2±0,01 14,2±0,04 15,1±0,02 1,3±0,02
(6) (1) (4) (3) (2) (5)
Fats 15 0,4±0,07 1,3±0,02
(4) (2) (1) (1) (1) (3)
Table 1. - Chemical composition and caloric value of investigated fruit and vegetable half-finished products
1 2 3 4 5 6 7
Ashes 0,7 2,0±0,06 3,4±0,03 3,4±0,03 4,3±0,01 0,5±0,06
(4) (3) (2) (2) (1) (5)
Mineral substances,
mg/100 g: — Potassium 176,0 210,3±0,01 237,3±0,01 232,3±0,03 1864,4±0,05 815,8±0,01
(6) (5) (3) (4) (1) (2)
— Sodium 12,0 106,7±0,01 20,6±0,03 17,5±0,02 303,5±0,03 46,1±0,05
(6) (2) (4) (5) (1) (3)
— Magnesium 44,0 160,0±0,02 135,0±0,05 92,7±0,05 103,7±0,06 33,8±0,07
(6) (1) (2) (4) (3) (5)
— Calcium 24,0 284,9±0,01 213,8±0,03 408,4±0,05 122,1±0,05 80,0±0,07
(6) (2) (3) (1) (4) (5)
— Phosphorus 115,0 340,5±0,01 52,0±0,01 140,4±0,01 720,7±0,01 36,0±0,01
(4) (2) (2) (2) (2) (2)
— Iron 2,1 14,0±0,04 106,9±0,01 6,1±0,01 22,1±0,01 1,9±0,01
(5) (3) (1) (4) (2) (6)
Ca: P (1,0:1,5) 1,0:4,8 1,0:1,1 1,0:0,2 1,0:0,3 1,0:5,5 1,0:0,4
(3) (1) (6) (5) (2) (4)
Vitamins, mg/100g:
— carotenoids 0,92±0,008 0,03±0,007 0,14±0,001 9,40±0,001 9,41±0,001
(6) (3) (5) (4) (2) (1)
— thiamine (B1) 0,25 0,20±0,006 1,73±0,005 0,11±0,002 0,32±0,005 0,17±0,003
(3) (4) (1) (6) (2) (5)
— riboflavin (B2) 0,12 0,13±0,001 0,04±0,007 0,28±0,001 0,17±0,001 0,30±0,001
(5) (4) (6) (2) (3) (1)
— pyridoxine (B6) 0,20 0,28±0,001 0,56±0,002 0,56±0,002 0,47±0,001
(4) (5) (3) (1) (1) (2)
— niacin (PP) 2,20 0,84±0,002 2,44±0,001 3,75±0,001 2,26±0,001
(4) (5) (6) (2) (1) (3)
Caloric value, kcal 325 218 308 298 213 273
(6) (2) (5) (4) (1) (3)
Total rank 90 51 71 59 38 67
The production technology of bread with powdery vegetative half-finished products have been developed. Additives have been introduced with replacement of 7,0% of flour from its composition quantities that led to enrichment of products by dietary fibers, vitamins, mineral substances, improvement of their quality indicators, important on the consumer point of view, and also to increase in the yield of products and prolongation of terms of their freshness.
Bread, as a rule, does not serve an environment for the development of microorganisms, capable to cause food poisonings. At the same time, introducing vegetative additives in its structure can promote microbiological damage of finished products.
The purpose of our researches was the toxicological estimation of bread with various fruit and vegetable
additives after intragastric introduction by a laboratory animal for the purpose of definition of its influence on functional characteristics of their internal and the basic biochemical indicators of blood. It is the first and obligatory stage of a medical and biologic estimation of new products according to recommendations of technical regulations of the Customs union «About safety of foodstuffs» [6].
The experiment has been carried out under vivaria conditions in the nutrition laboratory of Tashkent scientific research institute of sanitary, hygiene and profdiseases.
Chronic experience has been on outbred white rats (males) with initial weight 140 ... 150 g for 45 days. 6 groups of animals have been generated: control and 5 experimental of which kept in the isolated cages.
The diet of control group on dietary and caloric value bread with vegetable additives (in the kind of fresh-made
corresponded to physiological norms and requirements rusks) on the account of daily norm of the person (on
of an organism animal (tab. 2). The part of a day high- the average nearby 400). grade diet of experimental groups has been replaced by
Table 2. - Composition components and caloric value of forage
Forage components Weight, g Composition, g The caloric value, kA,^
proteins fats carbohydrates
Oatmeal 70 8,3 4,8 43,9 4,2
Wheat flour 20 2,1 0,2 13,8 1,2
Starch 4 - - 3,2 0,2
Sugar 2 - - 2,0 0,1
Cottonseed oil 3 - 3,0 - 0,5
Iodized (table) salt 1 - - - -
Total 100 10,4 8,0 62,9 6,2
During the experiment surveillance over the clinical condition of rats of control and experimental groups was conducted. Each experimental group was fed with crackers from bread from one of investigated additives: groups of rodents № 1 — PA, № 2-PB, № 3-PC, № 4-PP, № 5-PRP.
Absolute growth of weight has been calculated on the difference between initial and final weight of experimental animals. Daily average growth rate has been calculated under the compounding formula: A = [(mK/mo) 1/T — l]x 100 (%), where m and m — weight of the animals at the end
K o O
and at the beginning of experiment, g; T-the duration of the experiment, days.
The cost offeed is calculated for the whole experiment as a ratio of the amount used during the experiment, the feed to the unit of weight growth [7, 1-24].
Results of research are presented in tab. 3 ... 5 and represented on fig. 1, 2.
It is determined that the introduction of products with fruit and vegetable additives in a diet of rodents did not render negative influence on the clinical presentation and their behavioural reactions. All animals were active and willingly accepted food. Woolen covers and visible mucous were without changes. Thus the greatest growth of weight of rodents has been observed in the exprimen-tal groups (tab. 3, fig. 1).
Table 3. - Change of live weight of experimental animals at use of bread with additives in a food allowance
Indicators Group of animals (n=6)
Control Experiment
№ 1 № 2 № 3 № 4 № 5
Initial weight, g 138±3,4 142±4,2 142±4,5 135±4,3 140±4,1 138±3,8
Final weight, g 199±5,3 214±6,8 212±6,5 210±5,7 215±6,2 218±6,7
Absolute growth, g —% for control 61,0 100,0 72 118,0 70 114,7 75 123,0 75,0 123,0 80 131,1
Daily average growth rate,% 0,81 0,91 0,89 0,98 0,95 1,01
Feed cost, unit —% for control 1,44 100,0 1,17 81,2 1,20 83,3 1,12 77,8 1,12 77,8 1,05 72,9
The data from tab. 3 and fig. 1 shows that at feeding bread with vegetative additives the tendency of increase in intensity of rates of the growth of rodents of experimental groups is found out.
Despite undifferentiation in live weight of experimental animals prior to the beginning ofexperiment, in the end of cultivation it has on average 9,2% (P <0,03), and feed cost per 100 g body weight has decreased concerning the sample of comparison on 16,7 ... 27,1% (P <0,05).
Duration of experiment, a (lav
□ control group □ experiinftit.il group
Fig. 1. Dynamics of absolute weight growth of rodents Naturally with the decrease in feed consumption in In dynamics the average given quantities of the liquid
experimental groups decreased, and also excrement consumed by animals in the course of experiment are excretion. Results of the visual analysis of excrement presented in fig. 2. testified to good digestion ofbreadby experimental animals.
_ J6
Th
u
■w*
s >
a
a
o
£ <
5 10 15 20 25 SO 35 40
Duration of experiment, a day
■— ■ control group ■ ■»■■ experimental group
Fig. 2. The average given water consumptions 100 g body weight of animals
The water consumption on 100 g body weight of rats was higher in control group and by the experiment end on the average up to 2,6% exceeded similar value of the animals of experimental groups.
Alongside with the definition of body weight pathoanatomical researches have been conducted and
weight factors of viscera have been estimated. From the data presented in tab. 4, it is visible that the relative weight ofviscera in experimental groups animals has differed from that in intact groups a little. Pathoanatomical researches have not revealed visible changes ofviscera ofexperimental groups ofrats, in comparison with control group ofanimals.
Table 4. - Average weight factors of viscera of experimental animals.
Viscera Value of weight factors o: r viscera of animal groups
The control The experimental
Heart 5,00±0,04 4,80±0,10
Liver 31,4±0,20 32,0±0,90
Kidneys 6,70±0,06 6,60±0,20
Lungs 6,90±0,09 7,00±0,20
Spleen 4,30±0,06 4,12±0,08
Brain 10,8±0,04 11,6±0,20
Testes 18,1±0,20 16,9±0,80
Adrenal 0,20±0,002 0,23±0,003
Morphological and biochemical blood tests have been carried out in 2, 4 and 6 weeks from the beginning of experiment (tab. 5).
By results of the analysis of morphological structure of blood it has not revealed statistically significant distinctions between the maintenance of erythrocytes, leukocytes and haemoglobin level in experimental and control groups of animals.
The maintenance sulfhydric groups, the activity of cholinesterase and catalase in integral blood of animals
Table 5. - Morphological structure of
of experimental groups have not differed statistically authentically from indicators in control group throughout all experiment.
Data on the body weight growth has been coordinated with results of morphological and biochemical blood tests, from which is visible that under the influence of a diet with addition of investigated names of bread with fruit and vegetable additives the basic indicators of metabolism in the organism of rats had fluctuations within the determined physiological norms.
peripheral blood in experimental animals
Indicator Week Group of animals (n=6)
Control Experiment
№ 1 № 2 № 3 № 4 № 5
Erythrocytes (10 12/l) 2 6,46±0,12 6,71±0,24 6,50±0,18 6,18±0,41 6,39±0,14 6,25±0,28
4 6,44±0,43 6,28±0,21 6,44±0,12 6,43±0,18 6,24±0,19 6,64±0,21
6 6,90±0,23 6,58±1,18 7,25±0,98 7,01±0,39 6,46±0,15 6,78±1,21
Leukocytes (109/a) 2 11,04±1,97 10,10±1,56 10,10±1,25 10,10± 1,15 11,86±1,22 10,10±0,98
4 12,50±1,93 13,10±1,62 13,10±1,59 13,10±1,20 11,96±1,65 13,10±1,38
6 12,68±0,85 12,38±1,01 11,98±0,78 12,50±2,0 11,98±1,93 13,01±0,98
Haemoglobin (g/%) 2 123±1,70 126±1,80 125±2,10 122±4,50 129±1,30 120±2,70
4 124±1,80 130±2,10 132±2,20 126±3,80 132±1,90 122±2,60
6 128±1,18 132±1,48 137±1,35 129±1,51 134±1,20 127±1,64
As a result of the carried out researches it has been defined that introduction of bread with fruit and vegetable additives in the diet of experimental animals makes positive impact on behavioural reactions ofrats, promotes faster growth of their weight. The morphological and histologic data ofviscera and biochemical indicators ofblood ofanimals testify to improvement ofexchange processes in an organism of experimental groups of rodents. On the basis of the clinical data it is possible to draw a conclusion on positive physiological effect of use of fruit and vegetable
additives in grain products for completion of the diet of person natural biologically active nutrients, in this case ^-carotenes, bioflavonoids and dietary fibers.
Thus, it has been determined the appropriateness of application of products of processing of fruit and vegetable raw materials in the preparation technology ofbread that will allow to reduce also the use of additives of not alimentary nature, and, hence, it is established to increase the safety level ofproducts and physiological effect from their application in food allowance.
References:
1. Polandova R. D., Schneider T. I. Priorities of the development of assortment of bakery and pasta.//Breadmak-ing in Russia. - 2000. - № 4.
2. Voropaeva O. N., Ponomareva E. I., Zhuravlev A. A. Optimization of the composition of bread increased the nutritional value.//Breadmaking in Russia. - 2015. - № 5.
3. Spirichev V. B., Shatnyuk L. N. Food enrichment with micronutrients: scientific principles and practical solu-tions//Food Industry. - 2010. - № 4.
4. Kodentsova V. M., Vrjesinskaya O. A., Sokolnikov A. A. Vitaminization of food products of mass consumption: History and Prospects//Nutrition issues. - 2012. - T.81. - № 5.
5. Kodentsova V. M. Food enrichment of mass consumption of vitamins and minerals as the method of increase in their nutritional value//Food Industry. - 2014. - № 3.
6. Technical Regulation of the Customs Union (CU TR 024/2011) [electronic resource]. Access: httr://www. tehred.ru/TP_TC_024_2011.htm
7. Castell J. D., Tiews K. Report of the EIFAC, IUNS and ICES Working Group on the standardization of the methodology in fish nutrition research//Hamburg (Germany, March 21-23, 1979) EIFAC Tech. pap. 36. - 1979.