Научная статья на тему 'Physical-mechanical and mineralogical-petrographical characteristics of the granodiorite of “Lozjanska Reka”, village of Krusevica (Western Macedonia)'

Physical-mechanical and mineralogical-petrographical characteristics of the granodiorite of “Lozjanska Reka”, village of Krusevica (Western Macedonia) Текст научной статьи по специальности «Биологические науки»

CC BY
92
48
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GRANODIORITE / LOZJANSKA REKA / ARCHITECTURAL STONE / MINERALOGIC-PETROGRAPHIC COMPOSITION / PHYSICAL-MECHANICAL CHARACTERISTICS

Аннотация научной статьи по биологическим наукам, автор научной работы — Spasovski O.

The granodiorite of the Lozjanska Reka, western Macedonia, has been examined in order to determine the possibility to be used as an architectural stone. The samples were taken from the surface parts, and the results from their physical and mechanical examination have shown that rock mass itself satisfies all requirements form the use as architectural stone according to the state standards of R. Macedonia. Also the quality of the stone is greater in the deeper parts of the terrain where the influences from the outside have a very small effect. This stone does not have highly decorative features but it has a very fine grained structure which has a positive effect for the technical characteristics and for the being a subject for processing.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Physical-mechanical and mineralogical-petrographical characteristics of the granodiorite of “Lozjanska Reka”, village of Krusevica (Western Macedonia)»

4. Ракин В.И., Каткова В.И., Макеев Б.А. Неравновесная кристаллизация оксалата кальция в водных растворах. Ж. «Вестник», Институт геологии Коми НЦ УрО РАН, ноябрь, 2005, № 11. С. 5-9.

5. Каткова В.И. Мочевые камни: минералогия и генезис // Сыктывкар: Коми научный центр УрО РАН, 1996. - 88 с.

6. Каткова В.И., Ракин В.И. Эпигенетическая кристаллизация в уролитах // Органическая минералогия: Материалы IV Российского совещания с международным участием. Черноголовка: ИПХФ РАН. 2013. С. 11-13.

7. Голованова О.А. Биоминералогия мочевых, желчных, зубных и слюнных камней из организма человека: Дисс... д-ра геол.-минер. наук. - СПб, 2007. - 333 с.

8. Сокол Э.В., Нигматулина Е.Н., Максимова Н.В. Сферолиты оксалата кальция в почечных камнях: морфология и условия образования // Химия в интересах устойчивого развития. 2003. № 11. - С. 547-558.

9. Зузук Ф.В. Минералогия уролитов: Монография, в 3-х т. Т.1: Распространение мочекаменной болезни среди населения мира (на укр. языке). - Луцк: Изд-во «Вежа» Волынского гос. ун-та, 2002. - 408 с.

10. Мак-Коннелл Д. Биоминералогия фосфатов и физиологическая минерализация. Фосфор в окружающей среде // М.: Мир, 1977. - С. 462-481.

11. Lowenstam H.A. Minerals formed by organisms // Science. - 1981. - Vol. 211, № 4487. - P. 1126-1131.

12. Lowenstam H.A., Weiner Sh. On the biomineralization. N.Y. // Oxford Univ. press. 1989. - Р. 324.

13. Полиенко А.К. Ритмичность - общая закономерность развития живого и косного вещества // Сб.: Тезисы 1-й Межгосударственной конф. «Биоминералогия-92» (выездная сессия Украинского минералогического общества 12-13 мая 1992, Луцк). - 1992. - С. 21-22.

14. Полиенко А.К., Севостьянова О.А., Орлов А.А. Симбиоз живого и косного вещества в уролитах // Известия Томского политехнического университета - 2010. -Т. 317. - № 1. - С. 10-15

15. Полиенко А.К., Бощенко В.С., Севостьянова О.А. Взаимосвязь органических и неорганических веществ при формировании мочевых камней // Бюллетень сибирской медицины. - 2012 - Т. 11.- № 2. - C. 52-58.

16. Севостьянова О.А. Минералого-геохимические особенности уролитов Томского района и их связь с факторами природной среды и техногенного воздействия. Автореф. дис. канд. геол.-минер.наук. - Томск, 2012. - 20 с.

References

1. Yushkin N.P. Biomineral interactions. From biomineralogy to a vitamineralogiya//Mineralogy and life: biomineral interactions: Materials II of the international seminar. Syktyvkar, 1996. - P. 7.

2. Korago A.A. Introduction to biomineralogy//St. Petersburg: Subsoil, 1992. - 280 p.

3. Srebrodolsky B.I. Biological mineralogy. - Kiev: Naukova thought, 1983. - 102 p.

4. Rakin V.I., Katkova V.I., Makeev B.A. Nonequilibrium crystallisation of the oxalate calcium in the water solutions. «Messenger», Komi scientific center of the Ural Office of the Russian Academy of Sciences, November, 2005, No. 11. P. 5-9.

5. Katkova V.I. Uric stones: mineralogy and genesis//Syktyvkar: Komi scientific center of the Ural Office of the Russian Academy of Sciences, 1996. - 88 p.

6. Katkova V.I., Rakin V.I. Epigenetic crystallization in the uroliths//Organic mineralogy: Materials IV of the Russian meeting with the international participation. Chernogolovka: IPHF Russian Academy of Sciences. 2013. Page 11-13.

7. Golovanova O.A. Biomineralogy of urinary, biliary, dental and salivary stones from a human body. Theses. doctors of geologic and mineralogy sciences. St. Petersburg, 2007. - 333 p.

8. Sokol E.V., Nigmatullina E.N. falcon., Maksimova N.V. Sferolith of calcium oxalate in nephroliths: morphology and conditions of education//Chemistry in interests of a sustainable development. 2003. No. 11. - P. 547-558.

9. Zuzuk F.V. Mineralogy of urolithes: The monograph, in 3 t. T.1: Distribution of an urolithic illness among a world's population (in Ukrain).-Lutsk: Publishing house of "Vezha" of the Volynsk state university, 2002. - V 1. - 408 p.

10. Mac-Connell D. Biomineralogy of the phosphates and physiological mineralization. Phosphorus in environment//M.: World, 1977. - P. 462-481.

11. Lowenstam H.A. Minerals formed by organisms // Science. - 1981. - Vol. 211, № 4487. - P. 1126-1131.

12. Lowenstam H.A., Weiner Sh. On the biomineralization. N.Y. // Oxford Univ. press. 1989. - Р. 324.

13. Poliyenko A.K. Rhythm is the general regularity of development of live and inert substance. Theses of 1st Interstate "Biomineralogy-92" conference (visiting session of the Ukrainian mineralogical society on May 12-13, 1992), Lutzk, 1992. - 21-22 pp.

14. Poliyenko A.K., Sevostyanova O.A., Orlov A.A. Symbiosis of live and inert substance in urolithes //News of Tomsk polytechnic university, 2010, V.317, № 1, 10-15 pp.

15. Polienko A.K., Boshchenko V.S., Sevostyanova O.A. The relationship of organic and inorganic substances in the formation of urinary stones //Bulletin of the Siberian medicine. - 2012, V.1. - № 2. - 52-58 pp.

16. Sevostyanova O. A. Mineralogo-geokhimistry peculiarities of the uroliths of the Tomsk region and their communication with the factors of environment and technogenic influence. Theses. candidate of geologic and mineralogy sciences. - Tomsk, 2012. - 20 p.

Spasovski O.1 Spasovski D.2

'Faculty of Natural and Technical Sciences, “Goce Delcev” University, Goce Delcev 89, MK-2000, Stip, Republic of Macedonia 2 Netcetera DOOEL, Skopje, [email protected], [email protected] PHYSICAL-MECHANICAL AND MINERALOGICAL-PETROGRAPHICAL CHARACTERISTICS OF THE GRANODIORITE OF “LOZJANSKA REKA”, VILLAGE OF KRUSEVICA (WESTERN MACEDONIA)

Abstract

The granodiorite of the Lozjanska Reka, western Macedonia, has been examined in order to determine the possibility to be used as an architectural stone. The samples were taken from the surface parts, and the results from their physical and mechanical examination have shown that rock mass itself satisfies all requirements form the use as architectural stone according to the state standards of R. Macedonia. Also the quality of the stone is greater in the deeper parts of the terrain where the influences from the outside have a very small effect. This stone does not have highly decorative features but it has a very fine grained structure which has a positive effect for the technical characteristics and for the being a subject for processing.

Keywords: granodiorite; Lozjanska Reka; architectural stone; mineralogic-petrographic composition; physical-mechanical

characteristics

INTRODUCTION

The granodiorite of Lozjanska Reka is located about 6.0 km north-west from the Caniste village and about 0.5 km south-east from the village of Krusevica, in the series of gneisses which has been broken through with granite and granodiorite as part of the metamorphic complex of the Pelagon (Fig. 1). This area is geographically close to Selecka Mountain. The largest water artery in this part of the terrain is Caniska Reka which has Lozjanska Reka, Krusevicka Reka and Kosovska Reka as its confluents. In the past period, up to now, in search of good quality granite, many other regions have been researched on many occasions in the area of Mariovo, but no significant results have been received. Stojanov (1958, 1960, 1968 and 1974) has researched these terrains and distinguished many varieties of gneisses, mica schists, amphibolite and granitoid rocks. Some of the scientists stated some conclusions which concern the entire Pelagon and believes that in

91

the beginning of the Algonquian orogenic movements a progressive metamorphosis has been done in the lower Precambrian complex and towards the end of the orogenic movements, granodiorit-adamelite masses have taken root.

Fig. 1. Map of the R. Macedonia with position the locality “Lozjanska Reka”

In the period of making the Basic Geologic Map of SFRY the authors of the leave Vitoliste (Dumurdzanov, Hristov, 1976a, 1976b) and Prilep (Rakicevic, Stojanov, Arsovski, 1965a, 1965b) processed the leave content of the rocks of the leave Vitoliste where the granodiorite Lozjanska Reka belongs.

Dumurdzanov (1985) explores the granitoids in details and concludes that they are mainly represented with granodiorite (70%) and quartzdiorite (20%), and less with quartz monocytes and granites.

METHODOLOGY

The location Lozjanska River is explored using terrain and laboratorical explorations. The terrain explorations have provided the distinguished insight of the terrain, familiarization with its geological and structural-techtonic characteristics, as well as the collecting of representative samples from the granodiorite for defining their chemical and mineralogical composition, structural-textural and physical-mechanical characteristics.

The mineralogic-petrographic research have been done at the Faculty of Natural and Technical Sciences in Stip, while the chemical content of the granodiorite of the determined in the chemical laboratory of the Faculty of Natural and Technical Sciences with the instrument AES-ICP. The research of the physical-chemical characteristics was performed in the laboratory at the Faculty of Civil Engineering in Skopje. The examinations were performed during 2010. Because the rock masses are not well disposed, the samples were taken from the surface of the terrain. As a consequence, in the samples are some cracks that result from the great influence of the atmosphere. However, the examinations of the samples have shown credible values of their physical-mechanical characteristics. It is certain that the samples from the greater depths would give much better results.

GEOLOGIC FEATURES

In the geologic structure of the area that is included in our observation and research there are three types of rocks that included: muscovite gneisses, granodiorite, amphibolite and deluvial sediments (Fig. 2). The muscovite gneisses are outspread in the northern and north-eastern part of the researched area. They are characterized with grey colour with glittering radiance from the leaves of muscovite which can clearly be noticed. They are characterized with slightly distinguished parallel schistosity texture. The structure of the gneisses is grano-lepidoblastic with slightly distinguished striped texture. The main minerals in the rock are: quartz, feldspar and mica. The participation of salic and femic minerals is approximately equal in quantity, i.e. the salic are slightly more present. The quartz is found in xenomorphic crystals as well as in feldspars. The feldspar is K-feldspar - orthoclase, plagioclase. The orthoclase is fairly clayed while the plagioclase is more strongly clayed. The plagioclase is albite to intermediate plagioclase. It is rare to find some larger xenomorphic crystals of orthoclase, as porphyroblastic.

The mica is represented with muscovite and biotite. The secondary minerals are the epidote, rarely granite and mining mineral in irregular shapes. The epidote is quite common in long crystals and is regularly associated with mica lines. The apatite and the zircon are accessory minerals. Amphibolite appear as relatively sharply distinguished concordant stripes or irregular bodies. These rocks vary from light to dark-green, minisculeto largely granular, mostly schistified, rarely massive. The main minerals present with in the mare amphibol, oligoclase, andesine, less present are albite, oligoclase and epidote, while the granate, zoisite, biotite, diposide, titanite, quartz and rutile vary with their presence. They are often presenting minor quantities, locally they are present as important minerals.

92

1. deluvial sediments, 2. amphibolite, 3. granodiorite, 4. muscovite gneisses, 5. elements of foliation, 6. elements of fissures, 7. research

area.

Based on the structural-textural characteristics and the mineralogical composition, there are two basic varieties with in the granodiorites including porfirical granodiorites and massive to medium to largely granular granodiorites. Based on the microscopical exploration, significant varieties within the mineralogical composition of the grandiorites is seen, especially within the massive type. Porphyroidical grandiorites are grey, largely granular rocks with prophyric structure and massive texture.

They are comprised of plagioclases, K-feldspar, quartz and biotite as main minerals, and titanite, granite, apatite and zircone as a side minerals. As a result of the secondary changes the chlorite, epidote, zoisite, sericite, kaolin and limonite matter are present. The massive granodiorites are not completely homogenous in it’s composition and there are significant varieties regarding the presence of certain minerals. In distinguishhed partitions the K-feldspar are more present and the rocks represent quartz monocytes or granites and on some occasions when they are present less then 5% the same cross over to quartz diorite. The massive granodiorites are grey to dark-grey, medium to largely granular. They are comprised of plagioclase, caliumfeldspate, quartz and biotite as main minerals, and apatite, titanite, amphibole, zircone, granite and magnetite as a lesser frequent minerals.

Secondary there are the epidote, zoisite, sericite, albite, chlorite, kaolin and limonite matter. The deluvial sediments are largely dispersed on the Selecka Mountain in the valley of the Krusevicka Reka (Figure 2). The sediments represent the material from the granodiorite sand metamorphic rocks.

PETROGRAPHIC-MINERALOGIC CHARACTERISTICS

There were some representative samples from the locality Lozjanska Reka selected for the mineralogic-petrographic examinations. 5 petrographic samples were examined with a polarized microscope with transmitted light, brand Leitz, Wetzlar, Germany. The mineralogic-petrographic examinations were performed at the Faculty of Natural and Technical Sciences, Institute for Geology, by the author of the paper. The granodiorite is characterized with medium to large grained structure and light grey-pink colour equally present throughout the entire sample (Figs. 3 and 4). The mineral grains are most common with the size of 4 to 5 mm, but there are also grains with the size of 1 cm. On a microscope it can be seen that they have hypodiomorphic grain structure (Figs. 5 and 6). The main minerals are: quartz, plagioclase, orthoclase and biotite. The plagioclase is clearly defined and is present as hypodiomorphic and irregular crystals, lengthened and wider rectangular shapes.

The plagioclase is strongly metamorphized and the products are the epidote and the coesite, but also there is a zonal allotment and intense alterization of the plagioclase in the middle parts. The plagioclase is more present that the orthoclase and the quartz. According to the altered products and the weak zonal allotment, the plagioclase is intermediate, i.e. andesine-labradorite weakly acid. The orthoclase is xenomorphic, fresh and poorly clayed, and regularly poikilitic incorporates smaller crystals in the plagioclase and the biotite.

The orthoclase is weakly microclinised at separate crystals. The biotite is present in large square leaves and smaller rectangular leaves outspread - separate and in places grouped in small clumps. It has clear brown pleochroism. The biotite contains idiomorphic spires-microlites on the zoisite, and on the edges there are also crystals of the epidote and the apatite. The quartz is found in the interspace with smaller xenomorphic grains. It is slightly undulose darkened which points to the fact that it has slight mechanic deformations. Allanite and zircon are accessory minerals. The rock is quite strong, with slight cracks on it, i.e. with slight mechanic deformations which can be seen with the slightly distinguished darkening of the quartz as well as the slightly present micro-cracks at the orthoclase.

Quartzdiorite is characterized with dark greygreenish color, medium grained structure with a particular slightly distinguished oriented striped texture. The hard rock is with massive texture. The rock is constituted of quartz, amphibole, biotite, plagioclase and not so often K-

93

feldspar, which are the main minerals. When the quantity is concerned, the coloured minerals (amphibole, biotite and epidote) are more common than the salic minerals. Probably, the rock is additionally metasomatic feldspatized. Na-feldspar is present in large irregular crystals which include many inclusions and crystals from epidote - zoisite and amphibole. With separate albites, some polysynthetic lamellas can be seen. K-feldspar is less present and mostly in a shape of xenomorphic crystals. The quartz is present in xenomorphic grains in the interspace of the remaining minerals. It is clearly evident that the coloured minerals are present with irregular shape of the crystals with different orientation, i.e. the crystals of the amphibole and the biotite are presented vertically and sidelong with a given slightly distinguished oriented texture (Figs. 3 and 4). This points out that the rock apart from the metasomatic processes has gone under metamorphism from regional retrograde metamorphism.

Fig. 3. Medium to large grained structure of the Fig. 4. Medium to large grained structure of the

granodiorite. Crossed nicols, magnified 50*. granodiorite. Parallel nicols, magnified 50*

The amphibole is found in big square crystals and with little leave-like crystals, stretched about shapes and densely mixed with biotite and big crystals of the epidote. The amphibole is weakly alkaline hornblende. The biotite is also present in larger and smaller leaves with different orientation. The secondary minerals are the allanite, zoisite and mining mineral (oxide mineral), and the apatite and the zircon are accessory minerals.

Striped muscovite gneiss has grey color with glittering radiance from the leaves of muscovite which can clearly be noticed. They are characterized with medium grained structure with slightly distinguished parallel schistose texture. The regular pattern of minerals throughout the sample can be seen.

Fig. 5. Hypodiomorphic grain structure of the ranodiorite. Crossed nicols, magnified 50x.

Fig. 6. Hypodiomorphic grain structure of the ranodiorite. Parallel nicols, magnified 50x.

With a microscope the grano-lepidoblastic structure with slightly distinguished striped texture can be observed.

The main minerals in the rock are: quartz, feldspar and mica. The participation of salic and femic minerals is approximately equal in quantity, i.e. the salic are slightly more present.

The quartz is found in xenomorphic crystals as well as in feldspars. The feldspar is K-feldspar - orthoclase and plagioclase so the plagioclase is more present. The orthoclase is fairly clayed while the plagioclase is more strongly clayed. The plagioclase is albite to intermediate plagioclase. Rarely are find some larger xenomorphic crystals of orthoclase.

The mica is represented with muscovite and biotite and they are found in not clearly distinguished lines. It is typical for the biotite that it is bleached - barytised, so it has a fairly weak brownish interference. There is an impression that it is muscovite with separated Fe-component with thicker irregular shapes at the leaves themselves. It is possible that it is mica-phengite. The secondary minerals are the epidote, orthite, rarely granite and mining mineral in irregular shapes. The epidote is quite common in long crystals and is regularly associated with mica lines. The apatite and the zircon are accessory minerals. It is a metamorphic rock which has pointed and not well defined striped texture. he quartz is darkening while the feldspar are with cracks and altered.

CHEMICAL EXAMINATIONS

The chemical characteristics of the granitoide rocks from the Lozjanska Reka locality, Krusevica, represent a contribution to the broadening of the knowledge for this massive on the territory of the Republic of Macedonia. This massif is evidently different from the surrounding rocks by its content, structural-tectonic features, color and the manner of its origination. Basically, granodiorite is characterized with homogeneous solid to compact texture, which locally turns to porphyroide. With such

arrangement and intergrowth of the mineral components, beige to greenish basic color spotted with biotite of black color is formed in the mineral aggregate.

For more detailed presentation of the chemical content of the granodiorites from the Lozjanska Reka locality, four representative samples were taken from the granodiorites and one sample from a light grey rock with great compactness.

94

The examinations of the taken samples were performed at the Faculty of Natural and Technical Sciences with the instrument AES-ICP. The chemical content of the analyzed samples are presented in Table 1.

Table 1. Chemical composition of the granodiorites from the “Lozjanska Reka” locality (%)

Symbol of the sample__________________________________________

Components Lz/1 Lz/2 Lz/3 Lz/4 Lz/5

SiO2 65.60 66.30 65.89 65.60 68.50

Al2O2 16.25 16.42 16.85 16.24 15.03

Fe2O2 2.41 2.21 2.65 2.38 3.14

MnO 0.069 0.070 0.072 0.099 0.08

MgO 0.68 0.72 0.74 0.41 0.86

CaO 4.31 4.56 4.56 4.09 2,93

K2O 4.78 4.75 4.92 4.94 4.29

Na2O 3.70 3.71 3.75 3.58 3.99

TiO2 0.412 0.423 0.431 0.334 0.20

P2O5 0.21 0.19 0.23 0.11 0.17

LOI 1.250 0.950 0.980 0.78 0.66

Total 99.67 100.303 100.923 98.563 99.85

Ba (ppm) 650 640 631 647 642

Sr (ppm) 250 265 247 250 260

Y (ppm) 22 26 27 24 25

Sc (ppm) 7 7 7 7 7

Zr (ppm) 237 242 251 240 242

Be (ppm) 2 4 3 2 4

V (ppm) 44 41 38 45 39

From the table presented it can be stated that the analyzed samples are characterized with a constant chemical content which can be seen in the content of SiO2 which is in range of 65.60 to 68.50. From the analyzed samples it can be spotted that there is a slight increase of Al, Ca, K, Fe and Mg, but especially Al which is probably due to the additional secondary processes which the analyzed samples were influencedly. Analysis of trace elements (Table 1) indicate a significant presence of trace elements from the ranks of Ba, Sr, Zr and V.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

PHYSICAL-MECHANICAL CHARACTERISTICS

The purpose of this research is to determine the physical-mechanical characteristics of the stone and to determine the eligibility of the material for its application in the civil engineering for the production of fractioned broken stone aggregate for concrete and asphalt compositions and for other applications in the trade in accordance with MKS standards.

The performed analyses are in accordance with the valid standards: MKS, B.B2.009, MKS B.B8.003, MKS S.E9.021, MKS U.E9.028, MKS SE4.014, MKS B.B8.045. The received results for the physical-mechanical characteristics of the granodiorite are presented in Table 2.

After the performed analysis of the received results it can be concluded that for a stone material of high strength to pressure, rock breakage, high resistance to destruction and scraping, low absorption of water, compact to high transmission mass and constant to the frost exposure.

According to the determined physical-mechanical characteristics, the examined stone from the rock of the village of Krusevica locality is a eligible stone and it can be applicable in various fields as well as in civil engineering, as the following:

- production of concrete mixtures,

- production of bitumen layer,

- production of road metal.

Table 2. Results of the physical-mechanical characteristics

No Analysis Method according to Unit Symbol Results from the Conditions for quality: BET.MKS B.B2.009

MKS analysis BNS/MKS U.E9.021/028 AB/MKS U.E9.028

1 Compressive strength in dry conditions B.B8.012 MPa opmin opmax opsred 146.30 185.40 171.90 BET/min. (80;160) BHS/min (100) AB/min. (120;140;160) Buffer/min.(100;120)

2 Pressure strength in B.B8.012 MPa opmin 116.20 BET/min. (64;128)

water satiation condition opmax opsred 146.20 134.60 BHS/min (100) AB/min. (120;140;160) Buffer /min.(100;120)

3 Pressure strength after B.B8.010 MPa opmin 104.60 /

25 frost cycles opmax opsred 161.80 142.40

4 Water absorption B.B8.010 % (m/m) U 0.167 BET/min. (1.0) AB/min. (0.75;1.0) Buffer /min.(1.0)

5 Resistance to B.B8.015 cm3/50 cm2 Ab 8.40 BET/min. (35.0)

destruction and scraping AB/min. (12.0;18.0;35.0)

6 Volume capacity with cavities and cracks B.B8.032 kg/m3 Yv 2745 (2000-3000) kg/m3

7 Volume capacity without cavities and cracks B.B8.032 kg/m3 Ys 2775 (2000-3000) kg/m3

8 Degree of density B.B8.032 % (mm)/ G 98.74 /

9 Porosity B.B8.032 % (m/m) P 1.26 /

10 Consistency to ice exposure B.B8.001 Damage and loss (g) M No loss of the weight, damage and cracks BET/min. (5.0) AB/min. (5.0) Buffer /min.(10.0;12.0)

95

CONCLUSION

The samples were taken from the surface parts of the terrain where the influences from the outside are quite intense. In the deeper layers of the ground, the rock mass is found as blocks and less affected by the atmospheric influence which enables a better quality. Based on the received results from the analyses it can be concluded that it can be used as an architectural stone.

The rock mass is medium-granular which makes the granodiorite from Lozjanska Reka to give valid the physical-mechanical characteristics and eligibility for processing (cutting, polishing, etc.). The absence of pyrite enables endurance from the influences from the atmosphere.

The weaknesses of this stone are the following: it has average decorative values, heterogeneous appearance. These rocks masses are almost an easy subject to erosion in the surface parts, but they have decorative possibilities in the deeper parts.

According to the mineral-petrographic composition, structural-textural characteristics the granodiorite is quite solid and can be widely used in the civil engineering primarily as architectural stone for production of tiles for interior and exterior use for tiling walls. The remaining part after the cutting can be used as technical stone for aggregate with different granulation for the use of concrete and asphalt mixtures, as well as for other building needs.

According to the mineral-petrographic content, structural-textural characteristics the amphibolites quartz-diorite can be widely used in the civil engineering. It can be used as architectural stone, as technical stone for stone blocks and separated aggregate for asphalt and concrete mixtures, as well as for other building needs.

Due to the great quantity of phyllo-silicates - micas it is expected the striped muscovite gneiss to have low strength characteristics and for that reason it is not recommended for use as technical stone. The feldspars are also significantly clayed so the stone would have weak resistance from the atmospheric influences. Generally the striped muscovite gneiss from its mineral-petrographic aspect and structural-textural characteristics is not suitable for building purposes. It can only be found useful as electro-insulation material where the mica content is requested.

With the received values for the mineralogicpetrographic features of the granodiorite from the Lozjanska Reka locality, it can be concluded that it satisfies all criteria for an architectural-building stone, even some parameters are even higher that the requested ones.

Литература

1. Барик, Л., 1940: Извешта] о теренском раду у околини Прилепа. Год. Геол. Инст. Кр. Jyr. за 1939 год. Београд.

2. Буе, А., 1891: Геолошка скица Европске Турске. Додаток во Геолошких анала Балканског полуосторва 3. Београд.

3. Цвщик, J., 1906: Основе за географщу и геологщу Македонще и Старе Србще. Посеб. Изд. С. А. Кн. I Београд.

4. Цвщик, J., 1911:Основе за географщу и геологщу Македонща и Старе Србще, и тд. Кн>. Ш, Београд.

5. Думурцанов, Н., Христов, С., Павловски, Б., Иванова , В., 1976a: Толкувач за основна геолошка карта 1 : 100 000 за листот Витолиште - Ка]макчалан. Стр. Фонд на Геолошки завод Скоп|е. Стр. 60.

6. Думурцанов, Н., Христов, С., 1976b: Толкувач за основна геолошка карта 1 : 100 000 за листот Витолиште. Стр. Фонд на Геолошки завод Скоп|е. Стр. 65.

7. Думурцанов, Н., (1985): Петрогенетски карактеристики на високометаморфните и магматски карпи на централните и западните делови на Селечка Планина (СР. Македонща). Geologica Macedonica T II sv. 1. pp. 3-104, Штип.

8. Марик. Л., (1936): Проучаваае кристаластих стена Ка]макчелана. Изв. о раду Геол. Инст. Кр. Jyt. за 1935 год. Београд.

9. Марик, Л., (1940): Петрографска и геолошка градаа околине Прилепа и СИ од Прилепа у ]ужно] Србщи. Весн. Геол. Инст. Кр. Jyt. ка. VIII Београд.

10. Николов, Н., (1921): Цщанитот од Селечка Планина в Македонща. Труд. на Бугарското природоизпит, дружество, кн. IX Софща.

11. Николов, Н., (1924): Белешки врху петрографщата и геологщата на Селечка Планина в Македонии. Год на Софис. Унив. Физ. Мат. Факултет кн. 3. Софща.

12. Ракичевик, Т., Степанов, Р., Арсовски, М., 1965a: Основна геолошка карта 1 : 100 000 лист Прилеп. Стр. Фонд на Геолошки завод Скоп|е.

13. Ракичевик, Т., Степанов, Р., Арсовски, М., 1965b: Толкувач за Основна геолошка карта 1 : 100 000 лист Прилеп. Стр. Фонд на Геолошки завод Скоп|е. Стр. 65.

14. Stojanov, R., (1958):Претходни резултати од геолошките и петрографските истражувааа на Слечка Планина. Трудови на Геолошкит завод на Република Македонща. Св. 6. Стр. 127-180.

15. Stojanov, R., (1960): Претходни резултати од геолошките и петрографските истражувааа на високо метаморфните стени од централниот дел на Пелагонскиот масив. Трудови на Геолошкиот завод на Република Македонща. Св. 7. Стр. 147-178.

16. Степанов, Р., 1968: Фенгити на Пелагонскиот масив. Трудови на Геолошкиот завод на Република Макдеонща. Св. 13.

17. Степанов, Р.,1974: Петролошки карактеристики на магматските и метаморфните стени од пошироката околина на Прилеп. (Македонща). Посенбно издание на трудови на Геолошки завод, бр. 4. Скоп|е.

18. Тучан, Ф., (1926): Минералошко - петрографска проучавааа у кристаластом масиву измегу Прилепа и Ка]амкчалана. Гласн. Ск. Нуч. Др-ва. Кн. II, св. 1 и 2. Скоп|е.

References

1. Bank, Lj., 1940: Izvestaj o terenskom radu u okolini Prilepa. God. Geol. Inst. Kr. Jug. za 1939 god. Beograd.

2. Bue, A., 1891: Geoloska skica Evropske Turske. Dodatok vo Geoloskih anala Balkanskog poluostorva 3. Beograd.

3. Cvijik, J., 1906: Osnove za geografiju i geologiju Makedonije i Stare Srbije. Poseb. Izd. S. A. Knj. I Beograd.

4. Cvijik, J., 1911:Osnove za geografiju i geologiju Makedonija i Stare Srbije, i td. Knj. III, Beograd.

5. Dumurdzanov, N., Hristov, S., Pavlovski, B., Ivanova , V., 1976a: Tolkuvac za osnovna geoloska karta 1 : 100 000 za listot Vitoliste - Kajmakcalan. Str. Fond na Geoloski zavod Skopje. Str. 60.

6. Dumurdzanov, N., Hristov, S., 1976b: Tolkuvac za osnovna geoloska karta 1 : 100 000 za listot Vitoliste. Str. Fond na Geoloski zavod Skopje. Str. 65.

7. Dumurdzanov, N., (1985): Petrogenetski karakteristiki na visokometamorfnite i magmatski karpi na centralnite i zapadnite delovi na Selecka Planina (SR. Makedonija). Geologica Macedonica T II sv. 1. pp. 3-104, Stip.

8. Marik. Lj., (1936): Proucavanje kristalastih stena Kajmakcelana. Izv. o radu Geol. Inst. Kr. Jug. za 1935 god. Beograd.

9. Marik, L., (1940): Petrografska i geoloska gradnja okoline Prilepa i SI od Prilepa u juznoj Srbiji. Vesn. Geol. Inst. Kr. Jug. knj. VIII Beograd.

10. Nikolov, N., (1921): Cijanitot od Selecka Planina v Makedonija. Trud. na Bugarskoto prirodoizpit, druzestvo, kn. IX Sofija.

11. Nikolov, N., (1924): Beleski vrhu petrografijata i geologijata na Selecka Planina v Makedonii. God na Sofis. Univ. Fiz. Mat. Fakultet kn. 3. Sofija.

12. Rakicevik, T., Stojanov, R., Arsovski, M., 1965a: Osnovna geoloska karta 1 : 100 000 list Prilep. Str. Fond na Geoloski zavod Skopje.

13. Rakicevik, T., Stojanov, R., Arsovski, M., 1965b: Tolkuvac za Osnovna geoloska karta 1 : 100 000 list Prilep. Str. Fond na Geoloski zavod Skopje. Str. 65.

14. Stojanov, R., (1958):Prethodni rezultati od geoloskite i petrografskite istrazuvanja na Slecka Planina. Trudovi na Geoloskit zavod na Republika Makedonija. Sv. 6. Str. 127-180.

96

15. Stojanov, R., (1960): Prethodni rezultati od geoloskite i petrografskite istrazuvanja na visoko metamorfnite steni od centralniot del na Pelagonskiot masiv. Trudovi na Geoloskiot zavod na Republika Makedonija. Sv. 7. Str. 147-178.

16. Stojanov, R., 1968: Fengiti na Pelagonskiot masiv. Trudovi na Geoloskiot zavod na Republika Makdeonija. Sv. 13.

17. Stojanov, R.,1974: Petroloski karakteristiki na magmatskite i metamorfnite steni od posirokata okolina na Prilep. (Makedonija). Posenbno izdanie na trudovi na Geoloski zavod, br. 4. Skopje.

18. Tucan, F., (1926): Mineralosko - petrografska proucavanja u kristalastom masivu izmegu Prilepa i Kajamkcalana. Glasn. Sk. Nuc. Dr-va. Knj. II, sv. 1 i 2. Skopje.

СЕЛЬСКОХОЗЯЙСТВЕННЫЕ НАУКИ / AGRICULTURE

Банецкая Е.В.1, Прокопчук В.Ф.2

1 Младший научный сотрудник, Всероссийский научно-исследовательский институт сои, 2 доцент, канд. с.-х. наук, Дальневосточный государственный аграрный университет ВЛИЯНИЕ ДЛИТЕЛЬНОГО ПРИМЕНЕНИЯ УДОБРЕНИЙ НА МИКРОБОЦЕНОЗ ЛУГОВОЙ

ЧЕРНОЗЕМОВИДНОЙ почвы

Аннотация

Изучали влияние длительного применения минеральных и органических удобрений на соотношение численности физиологических групп почвенных микроорганизмов и связанный с их деятельностью процесс минерализации органических веществ.

Ключевые слова: аммонификаторы, иммобилизаторы, удобрения, коэффициент минерализации.

Banetskaya E.V.1, Prokopchuk V.F.2

1 Junior Researcher, All-Russian Research Institute of Soy, 2 Docent, Candidate Agricultural Sciences, Far Eastern State Agrarian

University

INFLUENCE OF LONG APPLICATION OF FERTILIZERS ON MICROBIOCENOSIS MEADOW CHERNOZEM SOIL

Abstract

Studied the effect of prolonged use of mineral and organic fertilizers on the ratio of the number of physiological groups of soil microorganisms and their activities related to the process of mineralization of organic substances.

Keywords: ammonifiers, immobilizers, fertilizers, mineralization rate.

Применение удобрений меняет условия обитания микроорганизмов в почве. Ее микробное сообщество выполняет функцию поддержания гомеостаза почв, поэтому быстро реагирует на изменения в среде обитания. Считается, что микроорганизмы являются хорошим биоиндикатором: они играют ведущую роль в круговороте азота, лимитирующего продуктивность большинства наземных экосистем [1]. Однако, длительное применение минеральных удобрений приводит к глубоким изменениям структуры комплекса почвенных микроорганизмов, изменению соотношения численности физиологических групп микроорганизмов, участвующих в различных микробиологических процессах и обеспечивающих плодородие почвы [2]. Увеличивается численность микроорганизмов, обеспечивающих необходимый уровень эффективного плодородия (аммонификаторы, азотфиксаторы), повышается активность ферментов, уменьшается фитотоксичность почвы, создаваемая микроорганизмами.

С целью выявления влияния длительного применения удобрений на почвенный микробоценоз были проведены исследования с луговой черноземовидной почвой длительного стационарного опыта, на опытном поле ФГБНУ «Всероссийский научноисследовательский институт сои» РАН (Амурская область). В течение 53-х лет в почву вносились удобрения под каждую из пяти культур севооборота в рекомендуемой норме. Средняя нагрузка удобрениями на 1 га севооборотной площади по вариантам опыта представлена в таблице. Из минеральных удобрений вносили двойной суперфосфат и аммиачную селитру, из органических -полуперепревший навоз. В 2014 году под пшеницу вносили аммиачную селитру во всех вариантах опыта, кроме контрольного. Варианты опыта размещали систематически в 3-кратной повторности, площадь делянки - 180 м2.

Микробиологические анализы проводили в свежих образцах почвы согласно общепринятых методик [3]. После предварительной пробоподготовки осуществляли количественный учет следующих микроорганизмов: бактерий, потребляющих органический азот - на мясопептонном агаре (МПА); бактерий, утилизирующих минеральный азот, и актиномицетов - на крахмало-аммиачном агаре (КАА). Направленность микробиологических процессов в почве определяли по коэффициенту минерализации-иммобилизации [4].

В результате определения численности микроорганизмов в 2014 году установлено, что в почве контрольного варианта, без применения удобрений, количество аммонификаторов азота снижалось от фазы кущения пшеницы к фазе полной спелости (таблица). В почве варианта с длительным применением одних только азотных удобрений количество аммонификаторов было выше контроля во все сроки наблюдения; на фоне минеральных азотно-фосфорных удобрений - только в фазу кущения пшеницы; а на фоне органо-минеральных удобрений - в фазу выхода в трубку.

Таблица 1 - Численность микроорганизмов почвы по фазам развития пшеницы

Период отбора образцов Внесено удобрений: на 1 га севооборотной площади/ под пшеницу 2014 года Микроорганизмы на средах, млн. ед. КОЕ/1 г сух. почвы Коэффици ент Мишустин а

МПА (аммонификаторы азота) КАА (иммобилизаторы азота)

Фаза кущения, 03.06.14 Контроль без удобрений 19,7 26,2 1,3

N24/N30 28,2 47,1 1,7

N24P30/N30 29,4 23,5 0,8

N24P30 + навоз 4,8 т/Л30 20,0 40,4 2,0

Фаза выхода в трубку, 23.06.14 Контроль без удобрений 16,4 40,2 2,5

N24/N30 36,5 28,9 0,8

N24P30/N30 17,9 28,1 1,6

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

N24P30 + навоз 4,8 т/Л30 38,3 24,8 0,6

Фаза полной спелости, 09.08.14 Контроль без удобрений 11,2 27,3 2,4

N24/N30 40,1 27,9 0,7

N24P30/N30 10,6 27,4 2,6

N24P30 + навоз 4,8 т/Л30 13,3 25,1 1,9

Численность иммобилизаторов азота в почве контрольного варианта была наиболее высокой в фазу выхода в трубку. Азотная и органо-минеральная системы удобрений повысили численность иммобилизаторов в фазу кущения. По всем системам удобрения в фазу выхода в трубку их численность была ниже контроля, а в фазу спелости - на уровне контрольного варианта.

Величина коэффициента Мишустина (отношение численности иммобилизаторов / аммонификаторов) в контрольном варианте во все сроки наблюдения была выше единицы, что свидетельствует о преобладании процессов закрепления азота в луговой

97

i Надоели баннеры? Вы всегда можете отключить рекламу.