Научная статья на тему 'Photon sources for quantum computing and communication systems'

Photon sources for quantum computing and communication systems Текст научной статьи по специальности «Медицинские технологии»

CC BY
47
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Photon sources for quantum computing and communication systems»

The 30th International Conference on Advanced Laser Technologies ALT'23

P-I-2

Photon sources for quantum computing and communication systems

A.A. Toropov

Ioffe Institute, 26 Politekhnicheskaya, St Petersburg, 194021, Russian Federation

toropov@beam. ioffe.ru

Sources of single photons are key elements of rapidly developing systems of quantum computing and quantum communications [1]. Currently, commercially available photon sources based on InAs/GaAs quantum dot (QD) microcavities operating around 920 nm provide excellent values of such critical parameters as the "purity" of single-photon radiation (more than 95%) and the degree of indistinguishability of emitted photons (more than 90%) [2]. Nevertheless, the achieved value of the third important parameter, the source brightness, defined as the probability of generating a photon per pump pulse, is still insufficient for the possibility of scaling such photonic devices to sizes of practical interest. At the same time, the functional capabilities of photon sources intended for the implementation of advanced photonic quantum computing systems should include the possibility of generating not only single indistinguishable photons, but also pairs of entangled photons and multiphoton cluster states, and the use of such devices in quantum secure communication systems is constrained by the lack of sufficiently efficient photon sources emitting in telecommunication spectral ranges.

In the Laboratory of Quantum Photonics, Ioffe Institute, a technology for manufacturing photon sources based on microcavities and nanoantennas with single QDs in the (Al, Ga, In)As system was developed to solve these problems, which made it possible to obtain single-photon sources with characteristics corresponding to the advanced world level [3-5]. In the talk, several approaches developed to increase the brightness of sources of indistinguishable photons will be presented, including the implementation of resonant coherent pumping of a trion state by a n-pulse in a QD placed in a dichroic optical microcavity and the use of quasi-resonant pumping of a QD in a microcavity by means of acoustic phonons. The prospects of manufacturing photon sources operating in telecommunication bands will be analyzed. Finally, studies of the spin dynamics of electrons and holes in a single charged QD, aimed at generation of photonic cluster states, will be presented.

This work was supported by Rosatom in the framework of the Roadmap for Quantum Computing (Contract No. 868-1.3-15/15-2021 dated 5 October 2021 and Contract No. R2152 dated 19 November 2021).

[1] C. Couteau, S. Barz, T. Durt, T. Gerrits, J. Huwer, R. Prevedel, J. Rarity, A. Shields, and G. Weihs, Applications of single photons to quantum communication and computing, Nature Rev. Phys. 5, 326 (2023).

[2] https://quandela.com

[3] M. Rakhlin, G. Klimko, S. Sorokin, M. Kulagina, Y. Zadiranov, D. Kazanov, T. Shubina, S. Ivanov, A. Toropov, Bright single-photon sources for the telecommunication O-band based on an InAs quantum dot with (In)GaAs asymmetric barriers in a photonic nanoantenna, Nanomaterials 12, 1562 (2022).

[4] M.V. Rakhlin, A.I. Galimov, I.V. Dyakonov, N.N. Skryabin, G.V. Klimko, M.M. Kulagina, Yu.M. Zadiranov, S.V. Sorokin, I.V. Sedova, Yu.A. Guseva, D.S. Berezina, Yu.M. Serov, N.A. Maleev, A.G. Kuzmenkov, S.I. Troshkov, K.V. Taratorin, A.K. Skalkin, S.S. Straupe, S.P. Kulik, T.V. Shubina, A.A. Toropov, Demultiplexed single-photon source with a quantum dot coupled to microresonator, J. Lumines. 253, 119496 (2023).

[5] A. Galimov, M. Bobrov, M. Rakhlin, Yu. Serov, D. Kazanov, A. Veretennikov, G. Klimko, S. Sorokin, I. Sedova, N. Maleev, Yu. Zadiranov, M. Kulagina, Yu. Guseva, D. Berezina, E. Nikitina, and A. Toropov, Towards bright single-photon emission in elliptical micropillars, Nanomaterials 13, 1572 (2023).

i Надоели баннеры? Вы всегда можете отключить рекламу.