Chelyabinsk Physical and Mathematical Journal. 2021. Vol. 6, iss. 4- P. 506-511.
DOI: 10.47475/2500-0101-2021-16410
PHASE TRANSFORMATIONS
AND RELATED PROPERTIES IN MULTIFUNCTIONAL CERAMIC MATERIALS (Pb,La)(Zr,Ti)O3
D.D. Kuznetsov1", A. Pelaiz-Barranco2b, G.A. Shandryuk3c, V.S. Kalashnikov1d, A.V. Nesolenov1e, V.V. Koledov1f, V.G. Shavrov19, M.S. Bybik1h
1 Kotelnikov Institute of Radio-engineering and Electronics of RAS, Moscow, Russia
2 University of Havana, La Habana, Cuba
3A.V. Topchiev Institute of Petrochemical Synthesis of RAS, Moscow, Russia [email protected], [email protected], [email protected], [email protected], [email protected], f [email protected], [email protected], [email protected]
The work is devoted to the search for functional properties in multifunctional ferroelectric material (Pb,La)(Zr,Ti)O3. Phase transformations have been studied in ferroelectric ceramic samples based on Pb, La, Ti and Zr (PLZT) by the standard method of differential scanning calorimetry, thermomechanical analysis (TMA) and by the method of three-point bending at a constant load in the temperature range 40-240 °C. No anomalies associated with the martensitic transformation were found. The weakly pronounced hysteresis according to the TMA data and the monotonic almost linear dependence of the deformation on the temperature at a constant load indicate, if not the complete absence of the shape memory effect (SME), then very soapy changes in the shape as a result of the phase transition (PT). Further research will be aimed at studying the effect of thermomechanical treatment on the structure of the material, identifying elastocaloric and electrocaloric effects, as well as searching for materials and treatments for detecting electrically controlled SME.
Keywords: ferroelectrics materials, phase transformation, differential scanning calorimetry, thermomechanical analysis, shape memory effect, three-point bending.
Introduction
Many papers have been devoted to the study of the electrical and dielectric properties of ferroelectric ceramic materials. Ceramics can demonstrate a number of extremely attractive properties, such as: ferroelasticity, a high coefficient of electromechanical coupling, and they also assume the presence of elastocaloric, electrocaloric effects etc. connected with phase transitions. These properties of ferroelectric and antiferroelectric materials attract much interest from the points of view of fundamental research and various applications (optical, pyro- and piezoelectric, etc.) [1-6]. Currently the ceramic materials are recognized as very attractive not only for their electrical and dielectric properties, but also as functional materials with the shape memory effect (SME), controlled by the thermal and/or electric field. The SME in ceramic materials is of great interest for creating temperature and electric field controlled micro- and
The work was done in the framework of the state task of Kotelnikov IRE RAS and was partially supported by RFBR, grant no. 18-57-34002.
nanomanipulators and other micro- and nanosystem devices. For example, the authors of [3] have shown that the reversible deformation providing SME in (Pb,La)(Zr,Ti)O3 antiferroelectric tetragonal single crystals can reach 0.7%.
The purpose of the present work is to study experimentally the multifunctional ferroelectric-antiferroelectic (FE-AFE) materials (Pb1-xLax)(Zr0.90Ti0.10)1-y/4O3 (PLZT) by the differential scanning calorimetry (DSC), thermomechanical analysis (TMA) and by the method of three-point bending at a constant load in the temperature range of 40-240 °C.
1. Samples and Methods
In this work four ceramic compositions prepared by different methods were studied:
N1 and N2: the ceramic samples were prepared by the method described in [7] from the nominal composition (Pb1-xLax)(Zr0.90Ti0.10)1-x/4O3, where x = 4 (N1) and x = 5 (N2) at% La. The stoichiometric mixture of powders (PbO, ZrO2, TiO2, La2O3) was preferred at 800 °C in air for 1 hour. The calcined powders were milled and conformed as thick disks by cold-pressing and sintering in air at 1250 °C for 1 hour, in a well-covered platinum crucible in order to minimize the evaporation of reagents.
N3: the ceramic samples were obtained by using the method described in [2] with a nominal composition given by the expression: (Pb1-xLax)(Zr0.65Ti0 35)1-x/4O3, x = 5 at%. High purity powders were blended and milled during 2 hours, heated up to 800 °C for 1 hour and again milled. The powders were pressed with 2 ton/cm2 in a hydraulic press and the sintering was made at 1200 °C for 1 hour in air conditions.
N4: PLZT ceramics were prepared near the morphotropic boundary phase (Zr/Ti=53/47) varying the lanthanum content according to the formula Pb1-3xLa2x(Zr0 53Ti047)O3, x = 8 at%, by using the method described in [7]. The high purity reagents (PbCO3, ZrO2, TiO2, La2O3) were milled for 2 hours and then pre-firing at 900 °C for 1 hour in air atmosphere. They were milled again for 1 hour, pressed at 2 ton/cm2 and sintered at 1250 °C for 1 hour in air.
DSC measurements of all four compositions were carried out by METTLER TOLEDO DSC3+ in the temperature range from -100 °C to 300 °C. The thermomechanical analysis was carried out by METTLER TOLEDO SDTA 2+ also in the temperature range from -100 °C to 300 °C with load 0.05 MPa. Based on DSC and TMA data, the temperature range from 40 °C to 240 °C was selected for the three point bending test, a detailed description of the installation is done in [8].
2. Results and Discussion
Using DSC method, Table 1
we demonstrate that Temperatures of the beginning (Ts) and the end (Tf),
latent heat of the PT upon heating and cooling obtained by DSC.
compositions N3 and N4 do not undergo a first-order structural phase transition (PT) in the investigated temperature range. However, the other two samples (N1 and N2) undergo a first order PT, which agrees with data presented in [7]. The characteristic temperatures of the beginning (Ts) and the end (Tf) of PT with the latent heat (qh, qc) upon heating and cooling are given in Tab. 1. The results of DSC measurements are presented in Fig. 1 (a, c).
Sample Heating Cooling
Ts, °C Tf, °C Qh, J/g T8, °C Tf, °C Qh, J/g
N1 185 195 1.62 189 180 1.49
N2 178 195 1.15 190 160 1.17
- 0,1 WgA-1 2 heat N4 PLZT, 89,040 Omg
Jk cool N4 PLZT, 89,( MOOmg
1 heat N4 PLZT, 89,04 00 mg
-100 -50 0 50 100 150 200 250 DC
a
■100 -50 0 50 100 150 200 250 °C
b
WgA-1 cool N5 PLZT,29, 0200 mg ^2talN5Pl2r,aj0 Xmg
- --i 1 heat N5 PLZT, 29,02001 mg
-100 -50 0 50 100 150 200 250 DC
c
2 1A1 heat N5 PLZT, 2,2558 mr NSPLZTcool, 2^556 mm n
|jm N5 PLZT2heat,2,2560mm
0 50 100 150 200 DC
d
Fig. 1. The DSC (a, c) and TMA (b, d) results of samples N1 and N2 respectively (black and red lines — heating, blue lines — cooling)
The authors of the work [7] report note, that X-ray diffraction spectra of the sintered PLZT N1 and N2 show a pure PLZT perovskite phase structure with no additional secondary phases observed for all the studied samples. A coexistence of the ferroelectric-rombohedral phase (R3m) and antiferroelectric-orthorhombic phases (Pbam) was obtained, which is in agreement with the phase diagram for the PLZT system. Thus, the structural analysis has showed the contribution of two phases in the studied compositions, a ferroelectric-rombohedral phase and an antiferroelectric-orthorhombic phase, with a lot of antiferroelectric-orthorhombic phase at the room temperature [7]. TMA data also demonstrate a good agreement with DSC data. PT detected by TMA in samples N1 and N2 is less pronounced, as shown in Tab. 2 and Fig. 1 (b, d).
The authors of [7] have found that the dielectric permittivity for the compositions N1 and N2 does not depend on the frequency and obtained the paraelectric — ferroelectric PT temperatures, 190 °C and 189 °C respectively. In [7] it was not found the frequency dependence on the temperature for the composite x = 4 and x = 5 (186 °C for both), which corresponds to the maximum value of the loss coefficient. All this data is in a good agreement with DSC data demonstrated in this paper.
Processing the data obtained after the three-point bending test at a constant load value in the temperature range from 40 to 240 °C, we didn't revealed any effects which can be interpreted as a martensitic thermoelastic PT and the associated SME. Load value was 2-70 MPa (without a destruction). A linear dependence of the deformation on the temperature is observed for all tested static loads.
Based on the data obtained in Ref. [1; 7] and the DSC data, we can unambiguously judge the presence of a first-order structural PT in the materials under study, the presence and characteristics of which depend on the composition. A close examination of the TMA data shows that the hysteresis is not as pronounced as according to the DSC data, and the absence of the effect at three-point bending makes it difficult to unambiguously judge the presence of an SME.
Conclusion
The presence of the structural first order PT in PLZT ceramics of various compositions was demonstrated, and it was shown that an increase in the fraction of lanthanum in zirconium-enriched ceramics leads to a broadening of the PT hysteresis and a decrease in the latent heat of the PT. Despite the change in the degree of symmetry of the crystal lattice as a result of PT, it is difficult to unambiguously judge the presence of an SME from the results obtained. One could assume that the observed phase transition is a diffusion phase transition, rather then thermoelastic one, which excludes the SME. Further studies will be directed to the investigation of the effect of thermomechanical treatment on the structure and properties of PT and to the study of the structure by the electron and ion microscopy, X-ray analysis, thermomechanical tests with a load until destruction. This will hopefully make it possible to unambiguously judge the presence of an SME and the factors influencing it. In addition, a study of the electrical properties is planned to detect the alleged electrocaloric effect and electrically controlled SME.
Table 2
Data obtained by TMA._
Sample Heating Cooling
Ts, 0C Tf, 0C Ts, 0C Tf, 0C
N1 182 196 191 181
N2 167 198 193 178
References
1. Peláiz Barranco A., Calderón Piñar F., de los Santos Guerra J., Pérez Martinez O. Properties of grain-oriented in ternary system based on lead titanate zirconate ceramics. Ferroelectrics, 1998, vol. 211, pp. 249-257.
2. Peláiz Barranco A., Mendez-González Y., Guerra J. D. S., WangX., YangT.
Switching and energy-storage characteristics in PLZT 2/95/5 antiferroelectric ceramic system Journal of Advanced Dielectrics, 2016, vol. 6, no. 4, p. 1620003.
3. MonserratB., Bennett J. W., RabeK.M., VanderbiltD. Antiferroelectric topological insulators in orthorhombic AMgBi compounds (A=Li, Na, K). Physical Review Letters, 2017, vol. 119, p. 036802.
4. ZhaoL., LiuQ., GaoX. J., Zhang S. J., LiJ.-F. Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Advanced Materials, 2017, vol. 29, p. 1701824.
5. Mendez-Gonzalez Y., Pelaiz-Barranco A., Tongqing Yang, Guerra J. D. S.
Enhanced electrocaloric effect in La-based PZT antiferroelectric ceramics. Applied Physics Letters, 2018, vol. 112, p. 122904.
6. ZhuoF., DamjanovicD., LiQ., ZhouY., JiY., YanQ., ZhangY., ZhouaY., Chuc X. Giant shape memory and domain memory effects in antiferroelectric single crystals. Materials Horizons, 2019, iss. 8, pp. 1529-1750.
7. Peláiz-Barranco A., Guerra J. D. S., Garcia-Zaldivar O., Calderon-Pinar F., AraujoE.B., Hall D. A., Mendoza M.E., Eiras J. A. A. Effects of lanthanum modification on dielectric properties of Pb(Zr0.90,Ti0.10)O3 ceramics: enhanced antiferroelectric stability. Journal of Materials Science, 2008, vol. 43, pp. 6087-6093.
8. Kalashnikov V. S., KoledovV.V., KuchinD.S., PetrovA.V., ShavrovV. G. A three-point bending test machine for studying the thermomechanical properties of shape memory alloys. Laboratory Techiques, 2018, vol. 61, pp. 306-312.
Accepted article received 03.10.2020. Corrections received 10.10.2021.
Челябинский физико-математический журнал. 2021. Т. 6, вып. 4- С. 506-511.
УДК 538.913 Б01: 10.47475/2500-0101-2021-16410
ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И СВЯЗАННЫЕ С НИМИ СВОЙСТВА МНОГОФУНКЦИОНАЛЬНОГО КЕРАМИЧЕСКОГО МАТЕРИАЛА (Pb,La)(Zr,Ti)Oз
Д. Д. Кузнецов1", А. Пелаиз-Барранко2'6, Г. А. Шандрюк3с, В. С. Калашников1^, А. В. Несоленов1'6, В. В. Коледов1^, В. Г. Шавров19, М. С. Быбик1^
1 Институт радиотехники и электроники им. В. А. Котельникова РАН, Москва, Россия
2 Университет Гаваны, Гавана, Куба
3Институт нефтехимического синтеза им. А. В. Топчиева РАН, Москва, Россия "[email protected], [email protected].вп, с[email protected], Л[email protected], [email protected], [email protected], [email protected], н[email protected]
Работа выполнена в рамках Государственного задания ИРЭ им. В. А. Котельникова РАН и частично поддержана РФФИ, грант 18-57-34002.
Работа посвящена поиску функциональных свойств многофункционального сегне-тоэлектрического материала (Pb,La)(Zr,Ti)O3. Исследованы фазовые превращения в сегнетоэлектрической керамике на основе образцов Pb, La, Ti и Zr, полученных стандартным керамическим методом дифференциальной сканирующей калориметрии, термомеханического анализа (ТМА) и методом трёхточечного изгиба при постоянной нагрузке в диапазоне температур 40-240 ° C. Никаких аномалий, связанных с мартенситным превращением, обнаружено не было. Слабо выраженный гистерезис по данным TMA и монотонная, почти линейная зависимость деформации от температуры при постоянной нагрузке указывают если не на полное отсутствие эффекта памяти формы (ЭПФ), то на очень мыльные изменения формы в результате фазового превращения (ФП). Дальнейшие исследования будут направлены на изучение влияния термомеханической обработки на структуру материала ФП, выявление эластокалорических и электрокалорических эффектов, а также поиск материалов и методов обработки для обнаружения электрически управляемых ЭПФ.
Keywords: сегнетоэлектрические материалы, фазовое преобразование, дифференциальная сканирующая калориметрия, термомеханический анализ, эффект памяти формы, трёхточеч-ный изгиб.
Поступила в 'редакцию 03.10.2020. После переработки 10.10.2021.
Сведения об авторах
Кузнецов Дмитрий Дмитриевич, инженер лаборатории магнитных явлений в микроэлектронике, Институт радиотехники и электроники им. В. А. Котельникова РАН, Москва, Россия; e-mail: [email protected].
Пелаиз-Барранко Аиме, профессор физического факультета, Университет Гаваны, Гавана, Куба; e-mail: [email protected].
Ш^андрюк Георгий Александрович, старший научный сотрудник лаборатории № 21 «Модификации полимеров» им. Н. А. Платэ, Институт нефтехимического синтеза им. А. В. Топчиева РАН, Москва; e-mail: [email protected].
Калашников Владимир Сергеевич, младший научный сотрудник лаборатории магнитных явлений в микроэлектронике, Институт радиотехники и электроники им. В. А. Котельникова РАН, Москва, Россия; e-mail: [email protected]. Несолёнов Антон Викторович, аспирант лаборатории магнитных явлений в микроэлектронике, Институт радиотехники и электроники им. В. А. Котельникова РАН, Москва, Россия; e-mail: [email protected].
Коледов Виктор Викторович, доктор физико-математических наук, ведущий научный сотрудник лаборатории магнитных явлений в микроэлектронике Института радиотехники и электроники им. В. А. Котельникова РАН, Москва, Россия; e-mail: [email protected].
ШШавров Владимир Григорьевич, доктор физико-математических наук, профессор, заведующий лаборатории магнитных явлений в микроэлектронике, Институт радиотехники и электроники им. В. А. Котельникова РАН, Москва, Россия; e-mail: [email protected]. Быбик Мария Сергеевна, инженер лаборатории магнитных явлений в микроэлектронике, Институт радиотехники и электроники им. В. А. Котельникова РАН, Москва, Россия; e-mail: [email protected].