Научная статья на тему 'PHASE-EQUILIBRIUM IN THE SYSTEM K, СА // SO4, CO3, F-H2O AT 25 ОC'

PHASE-EQUILIBRIUM IN THE SYSTEM K, СА // SO4, CO3, F-H2O AT 25 ОC Текст научной статьи по специальности «Химические науки»

CC BY
41
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ДИВАРИАНТНОЕ ПОЛЕ / МЕТОД ТРАНСЛЯЦИИ / МОНОВАРИАНТНАЯ КРИВАЯ / НОНВАРИАНТНАЯ ТОЧКА / ФАЗОВАЯ ДИАГРАММА / ФАЗОВЫЕ РАВНОВЕСИЯ / CONSTITUTIONAL DIAGRAM / DIVARIANT FIELDS / MONOVARIANT CURVE / MULTICOMPONENT SYSTEM / NONVARIANT POINT / PHASE COMPOSITION / PHASE IDENTIFICATION / SOLIDS / TRANSLATION METHOD

Аннотация научной статьи по химическим наукам, автор научной работы — Soliev L., Borisov I.M., Nabiev A.A., Musodzhonova Dzh.M., Dzhaborov I.I.

The analysis of existing methods of research of multicomponent systems and their comparison with the translation method shows that the translation method is the most optimal for these purposes. The translation method follows from the principle of compatibility of structural elements n and n +1 of component systems in one diagram. This makes it possible to predict phase equilibria in the n +1 component system on the basis of data on phase equilibria in the n component systems and to plot their phase diagram. It is found that the system under study at 25 оC is characterized by the presence of 5 nonvariant points, 16 monovariant curves and 18 divariant fields.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ K,СА//SO4,CO3,F-H2O ПРИ 25 ОС

Рассматриваются результаты определения фазовых равновесий на геометрических образах приведенной системы с последующим построением ее фазовой диаграммы методом трансляции. Метод перевода следует из принципа совместимости структурных элементов n и n +1 компонентных систем на одной диаграмме. Это позволяет прогнозировать фазовые равновесия в n +1-компонентной системе на основе данных о фазовых равновесиях в n -компонентных системах и строить их фазовую диаграмму. Установлено, что исследуемая система при 25 оС характеризуется наличием 5 нонвариантных точек, 16 моновариантных кривых и 18 дивариантных полей.

Текст научной работы на тему «PHASE-EQUILIBRIUM IN THE SYSTEM K, СА // SO4, CO3, F-H2O AT 25 ОC»

Раздел 02.00.01

Нерганическая химия

УДК 544.014 DOI: 10.17122/bcj-2019-4-78-83

Л. Солиев (д.х.н., проф.) И. М. Борисов (д.х.н., проф., зав. каф.) 2, А. А. Набиев (асп.) 2, Дж. М. Мусоджонова (к.х.н., доц.) И. И. Джаборов (асс.) 1

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ К,Са//804,С03,Е-И20 ПРИ 25 оС

Таджикский государственный педагогический университет им. С. Айни, кафедра общей и неорганической химии 733740, Республика Таджикистан, г. Душанбе, пр. Рудаки 21, тел. 992 (37) 2241383, e-mail: soliev.lutfullo@yandex.com, musojonova-j@mail.ru Башкирский государственный педагогический университет им. М. Акмуллы, кафедра химии 450000, г. Уфа, ул. Октябрьской революции, 3-а, тел. (347) 2729034, e-mail: borisovIM@yandex.ru,

azamjon. 94@inbox.ru

L. Soliev I. M. Borisov 2, A. A. Nabiev 2, Dzh.M. Musodzhonova I. I. Dzhaborov 1

PHASE-EQUILIBRIUM IN THE SYSTEM K, Ca // SO4, CO3, F-H2O AT 25 °C

Tajik State Pedagogical University named S. Aini 121, Prospekt Rudaki Str., 733740, Dushanbe, Republic of Tajikistan, e-mail: soliev.lutfullo@yandex.com, musojonova-j@mail.ru Bashkir State Pedagogical University n. a. M. Akmulla 3a, Oktyabrskoi Revolyutsii Str, 450008, Ufa, Russia, e-mail: borisovIM@yandex.ru, azamjon.94@inbox.ru

Рассматриваются результаты определения фазовых равновесий на геометрических образах приведенной системы с последующим построением ее фазовой диаграммы методом трансляции. Метод перевода следует из принципа совместимости структурных элементов n и n+1 компонентных систем на одной диаграмме. Это позволяет прогнозировать фазовые равновесия в n+1-компонентной системе на основе данных о фазовых равновесиях в n-компонентных системах и строить их фазовую диаграмму. Установлено, что исследуемая система при 25 оС характеризуется наличием 5 нонвариантных точек, 16 моновариантных кривых и 18 дивариантных полей.

Key words: дивариантное поле; метод трансляции; моновариантная кривая; нонвариантная точка; фазовая диаграмма; фазовые равновесия.

The analysis of existing methods of research of multicomponent systems and their comparison with the translation method shows that the translation method is the most optimal for these purposes. The translation method follows from the principle of compatibility of structural elements n and n+1 of component systems in one diagram. This makes it possible to predict phase equilibria in the n+1 component system on the basis of data on phase equilibria in the n component systems and to plot their phase diagram. It is found that the system under study at 25 0C is characterized by the presence of 5 nonvariant points, 16 monovariant curves and 18 divariant fields.

Key words: constitutional diagram; divariant fields; monovariant curve; multicomponent system;, nonvariant point, phase composition; phase identification; solids, translation method.

Realization of technological processes of obtaining inorganic salts from natural mineral raw materials or purification of industrial effluents from salts is associated with the implementation of physical and chemical processes in multicomponent systems 1.

Дата поступления 01.08.19

As a rule, in such systems, the influence of salts on mutual solubility is possible, phase equilibria become diverse, the composition of the precipitating solid phase changes.

The most frequently experimentally studied three-component systems containing a solvent and different salt. The research of systems with the number of components more than three of

them meet with additional difficulties (identification of equilibrium solid phases, construction of diagrams of the state, high material costs and time resources) of the experiment.

The work 2-4 describes in more detail the difficulties of visualization of phase equilibria in multicomponent systems, the component content of which is higher than three. Therefore, most researchers study systems with no more than four components.

In this paper, using the translation method 5-8 for the first time studied this particular five-component system, which is a necessary step for further study of six-component systems. Like this work has peculiarity and scientific novelty, as it serves as a theoretical basis for the technology of processing of multicomponent real objects in the form of sulfates, carbonates and fluorides of potassium and calcium.

Research methods

In this article firstly research dealt a five-component system K,Ca//SO4,CO3,F-H2O at 25 0C. For the theoretical study of this system, the method of translation is applied, the essence of which is as follows:

The studied five-component system is presented as a combination of such four-component systems as K2SO4-K2CO3-KF-H2O; CaSO4-CaCO3-CaF2-H2O; K,Ca //SO4,F-H2O; K,Ca//SO4,CO3-H2O and K,Ca//CO3,F-H2O, which are described in articles 9.

In turn, the description of these four-component systems is based on the experimental data of the corresponding three-component systems 10,11. During the use of translation method, the principle of compatibility of structural elements of n and n+1-component systems in one diagram [8.9] is realized. Than on the base predicting phase equilibria in n+1 component system and plotting its phase diagram basis of data on phase equilibria in n component systems. The translation method was used as an effective method in 12'13.

Results and its discussion

Physico-chemical properties of the studied five component system K,Ca//SO4,CO3,F-H2O are obtained by the corresponding translation of data on phase equilibria at non-invariant points of the following four component systems: K2SO4-K2CO3-KF-H2O; CaSO4-CaCO3-CaF2-

H2O; K,Ca //SO4,F-H2O; K,Ca //SO4,CO3-H2O and K,Ca //CO3,F-H2O 9.

Figure 1 shows the «Disclosure» of the salt part of the phase equilibrium diagram of the five-component system K,Ca//SO4,CO3,F-H2O at 25 0C at the level of the four-component composition. In the fig. 1 positions of geometrical images of the diagram (points, curves, fields) are schematically plotted 14,15, without linking them to the coordinate skeleton. However, at the same time, sufficient information content of the constructed diagram is preserved: the total number of geometric images and their mutual arrangement, according to the basic principles of physical and chemical analysis and the Gibbs phase rule.

Fig. 1. Schematic diagram of the phase equilibrium of the system K,Ca//SO4,CO3,F-H2O at 25 °C at the level of the four-component composition as a «Disclosure» of the prism, built by translation.

In figure 1, and below in the text are taken following meaningful symbols 10, 11:

Ar — Arcanite K2SO4;

Kb - carobiitis KF; K-1.5-K2CO3-1.5H2O;

Cs — Calcite CaCO3;

Fo — Fluorite CaF2; K-Ca-K2CO3-CaCO3;

Sn — syngenite K2SO4-CaSO4-H2O;

Gp — gypsum CaSO4-2H2O.

The letter E denotes a non-invariant point, the upper index of which denotes the multiplicity (component) of the system, and the lower index the ordinal number of the point.

In order to use the constructed diagram as a basis (matrix) for drawing on it the elements of the structure of the system under study at the level of five-component composition (according to the principle of compatibility 8), which are formed during the translation of geometric

images of the level of four-component composition, it is necessary to combine identical crystallization fields. After completion of this operation, we obtain a schematic diagram 14 15 of the isotherm at 25 0C for the system K,Ca// SO4,CO3,F-H2O, which is shown in fig. 2.

Ез^+Е^Ез^

Е8 +Е10 ^Е4 =

Kb + Fo + K-Ca + Sn; K-1.5 + K-Ca + Kb + Sn;

Е94+Е114^Е55= Cs + K-Ca + Fo + Sn.

As you can see, of the five nonvariant points level pathcomponents composition of two (E35-E55) formed by a triangular cross-cutting and three (Et5-E25) as a result of bilateral pass-through broadcast 14. On the basis of the data obtained, in compliance with the basic principles of physical and chemical analysis and the Gibbs phase rule, a schematic 15 phase diagram of the

system K,Ca//SO4,CO3,F-H2O at 25 oC, which is shown in fig. 3.

Ft

Е4-

■УЕ1

-F 4

-F

F4-

F

F

Fl*-F

F

■F4

44

F

F 4

F3

F

Фо

F4

F4

4 2

Fig. 2. The salt part of the schematic diagram of phase equilibria in the system K,Ca//SO4, CO3, F-H2O at 25 °C at the level of four-component composition.

This schematic diagram shows that the translation of non-invariant points from the level of three-component composition to the level of four-component composition produces 12 non-invariant points, 22 monovariant curves, 8 divariant fields, which differ in the chemical nature of the components and phases involved in equilibrium processes (specific compounds are shown in fig. 2).

Stream nonvariant points-level four-part composition on the level pathcomponents composition gives the following nonvariant point of this level component with the set of equilibrium solid phases:

Е14+Е44 +Е64^Е15= Kb + Ar + K-1.5 + Sn; Е24+Е54 +Е74^Е25 = Gp + Fo + Cs + Sn;

Fig. 3. The salt part of the schematic diagram of phase equilibria in the K,Ca//SO4,CO3,F-H2O at 25 °C at the level of a five-component composition.

The analysis of the constructed diagram shows that the system under study at 25 oC is characterized by the presence of 5 non-invariant points (equilibrium of three phases), 16 monovariant curves (equilibrium of two phases) and 18 divariant fields (one phase). From 16-and monovariant curves 12 are formed as a result of translation of nonvariant points of level of five -component structure (on the diagram they are designated by dashed lines, and directions of translation-point lines). The phase composition of precipitation characteristic of these monovariant curves is identical to the phase composition of the corresponding translatable Quad nonvariant points (tab.1).

Four monovariant curves are between nonvariant points level pathcomponents composition. They are marked by thick solid lines and are characterized by the following phase composition of precipitation:

Е15 Е25

Ез5 Ез5

Е45 = Kb + K-1.5 + Sn; Е55 =Cs + Fo + Sn; Е45 =Kb+K-Ca + Sn; Е55 =Fo+K-Ca + Sn.

Divariant fields are formed as a result of translation of monovariant curves of the level of four-component composition. Their list and contours on the diagram are given in the tab. 2.

4

4

4

F4

94

Table 1

Phase composition of the nonvariant points of the system K,Са//SO4,CO3,F-H2O at 25 °C at the level of the four-component composition

Nonvariant po i nts Phase composition of precipitation Nonvariant points Phase composition of precipitation

System l<2SO4- К2СО3- КР-НЬО System K,Ca //SO4,CO3-H2O

Ei4 Kb + Ar + К-1.5 Es4 Ar + К-1.5 + Sn

System CaSO4-CaCO3- CaF2-H2O Ey4 Gp + Cs + Sn

E24 Gp + Cs + Fo Ев4 K-1.5 + К-Ca + Sn

System K,Ca //SO4, F-H 2O E94 К-Ca + Cs + Sn

Ез4 Kb + Fo + Sn System K,Ca //CO3,F-H2O

E44 Kb + Ar + Sn с 4 Ei 0 K-1.5 + Kb + К-Ca

E54 Fo + Gp + Sn с 4 Ei 1 К Cs + Fo + К-Ca

Ei24 Kb + Fo + К-Ca

The list and contours of the divariant fields of the system K,Ca//SO4,CO3,F-H2O at 25 °C, found by the translation method

Table 2

Solid phases of divariant fields

The contou rs of the fields in the diagram (Fig .3)

Solid phases of divariant fields

The contours of the fields in the diagram (Fig.3)

А r+Kb

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

4

Е4

Е5 Е1

К-1.5+ Sn

Е

Е4

А r+ К-1.5

Е4

Е4

Е15

Sn +Cs

Е4

Е 5

42

е5

К-1.5+К b

Е14

Е

10

Е5

К-1.5+К Ca

Е

10

Е45

Е 4

Е

Gp+Fo

Е24

Е54

Е25

К- Са+ Sn

Е4

4

Е04-----Е5

Gp+Cs

Е24

Е14

Е2

КСа+Cs

Е4

11

-Е;

Fo+ Cs

Е24

Е

11

1

Е55

К- Са+ КЬ

Е4 10

Е4 12

Е5

Е;

Sn + Fo

е4............

КСа+Fo

Е

5----1

Е25

Е4 11

Е55

Е

12

'4

Е;5

Fo + Sn

Е44

TT5 1

А r+ Sn

Е44

Е4

;

Е;5

Е15

4

4

4

4

4

4

4

4

4

6

The analysis of the constructed diagram of phase equilibria of the system K,Ca// SO4,CO3,F-H2O at 25 0C shows that in the formation of its geometric images, from 8 individual equilibrium phases, the most part is taken by the syngenite (Sn) K2S04-CaS04-H20. This indicates that the field of its crystallization, under the given conditions, occupies a significant part of the studied system. Figure 4 shows a fragment of the constructed diagram of phase equilibria in the region of syngenite paragenesis with other equilibrium solid phases.

Кб+ Сн

Et-

Fig. 4. Fragment of schematic diagram of phase equilibria of system K,Ca//S04,C03,F-H20 at 25 °C in the region of syngenite paragenesis (K2S04CaS04H20) with other phases.

In total, the system K,Ca//SO4,CO3,F-H2O at 25 0C is characterized by the following number of geometric images (divariant fields, monovariant curves, non-invariant points) at the levels of four-component (A) and five-component (B) composition:

Geometric sort

Divariant fields Monovariant curves Non-invariant points

The functionality of the system А В

8 18 18 16 12 5

On the base of given, we can concluded that the above factors should be taken into account in the development of modern technologies for the production of individual salts from minerals, as well as in the treatment of multi-component industrial salt-con.

Литература

1. Мазунин С. А., Чечулин В. Л. Высаливание как физико-химическая основа малоотходных способов получения фосфатов калия и аммония.-Пермь.: Изд-во Перм. гос. нац. исслед. ун-та, 2012.- 114 с.

2. Мазунин С.А., Чечулин В.Л. О плоскости составов нонвариантных и моновариантных растворов, их показателя преломления в многокомпонентных водно-солевых системах // Изв. вузов. Химия и хим. технология.- 2015.- Т. 58, №3.- С.42-44.

3. Чечулин В.Л., Мазунин С.А. О плоскостности моно- и нонвариантных равновесий как колли-гативном свойстве многократно насыщенных водных растворов // ЖОХ.- 2012.- Т.82, №2.- С.202-204.

4. Мазунин С. А. Основы физико-химического анализа. Часть 2. Многокомпонентные вводно-солевые системы.- Пермь.: Изд-во ПГУ, 2000.- 252 с.

5. Азизов Б.С., Сафиев Х. С., Рузиев Д. Р. Комплексная переработка отходов производства алюминия.- Душанбе: Изд. «Эр-Граф», 2005.- 149 с.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

6. Солиев Л., Джумаев М.Т., Икбол Г., Джаббо-ров Б.Б. Растворимость в системе Ыа,Са// С03,НС03-Н20 при 25 оС // Журнал неорганической химии.- 2017.- Т.62, №9.- С.1254-1259.

References

1. Mazunin S. A., Chechulin V. L. Vysalivaniye kak fiziko-khimicheskaya osnova malootkhodnykh sposobov polucheniya fosfatov kaliya i ammoniya [Salting out as the physicochemical basis of low-waste methods for producing potassium and ammonium phosphates]. Perm, Publishing House Perm. state nat. researched University, 2012, 114 p.

2. Mazunin S.A., Chechulin V.L. O ploskosti sostavov nonvariantnykh i monovariantnykh rast-vorov, ikh pokazatelya prelomleniya v mnogoko-mponentnykh vodno-solevykh sistemakh [On the plane of compositions of invariant and monovariant solutions, their refractive index in multicomponent water-salt systems]. Izvestiya vysshikh uchebnykh zavedeniy. Seriya Khimiya i khimicheskaya tekhnologiya [News of higher educational institutions. Series Chemistry and Chemical Technology], 2015, vol.58, no.3, pp.42-44.

3. Chechulin V.L., Mazunin S.A. [Planarity of mono- and non-variant equilibria as the colligative property of multicomponent saturated water solutions]. Russian Journal of General Chemistry, 2012, vol.82, no.2, pp.199-201.

4. Mazunin S. A. Osnovy fiziko-khimicheskogo analiza. Chast' 2. Mnogokomponentnyye vvodno-solevyye sistemy [Fundamentals of physico-chemical analysis. Part 2. Multicomponent salt-water systems]. Perm, Publishing House of PSU, 2000, 252 p.

7. Солиев Л. Прогнозирование фазовых равновесий в многокомпонентной системе морского типа методом трансляции (кн. 2).— Душанбе: Шучоиён, 2011.- 247 с.

8. Солиев Л., Худоёрбекова З.П., Низомов И.М. Фазовые равновесия системы K2SO4-K2CO3-KHCO3-H2O при 25 оС // Доклады Академии наук Республики Таджикистан.- 2016.- Т.59, №5-6.- С.236-240.

9. Солиев Л., Худоёрбекова З.П., Набиев А. А. Фазовые равновесия системы K,CA//SO4,CO3-H2O при 25 оС // Вестник Педагогического университета.- 2015.- №2-1 (63).- С.23-27.

10. Здановский А.Б. и др. Справочник экспериментальных данных по растворимости многокомпонентных водно-солевых систем. Том 1. Трех-компонентные системы.- М.-Л.: ГНТИХЛ, 1953.- 672 с.

11. Здановский А.Б. и др. Справочник экспериментальных данных по растворимости многокомпонентных водно-солевых систем. Том 2. Четы-рехкомпонентные и более сложные системы.-М.-Л.: ГНТИХЛ, 1954.- 595 с.

12. Tursunbadalov S., Soliev L. Crystallization and dissolution in multicomponent water-salt systems // Journal of Chemical and Engineering Data.-2017.- Т.62, №10.- С.3053-3063.

13. Tursunbadalov S., Soliev L. Phase equilibria in the quinary Nil, K//SO4, CO3, HCO3-H2O system at 75 °C // Journal of Solution Chemistry.- 2015.- Т.44, №8.- С.1626-1639.

14. Солиев Л. Фазовые равновесия в системе Na,K,Mg,Ca//SO4,Cl-H2O при 50 ^ в области кристаллизации астраханита // Журнал неорганической химии.- 2013.- Т.58, №5.- С.663-667.

15. Авлоев Ш.Х., Солиев Л. Фазовые равновесия в системе Na, K//SO4, CO3, F-H2O при 25 °C// Журнал неорганической химии.- 2007.- Т.52, №10.- С. 1714-1718.

5. Azizov B.S., Safiev H.S., Ruziev D.R. Komplek-snaya pererabotka otkhodov proizvodstva alyumi-niya [Integrated processing of aluminum production wastes]. Dushanbe, Er-Graf Publ., 2005, 149 p.

6. Soliev L., Dzhumaev M.T., Ikbol G., Dzhabborov B.B. [Solubility in the Na,Ca//CO3,HCO3-H2O system at 25 0C]. Russian Journal of Inorganic Chemistry, 2017, vol.62, no.9, pp.1245-1251.

7. Soliev L. Prognozirovaniye fazovykh ravnovesiy v mnogokomponentnoy sisteme morskogo tipa metodom translyatsii (kniga 2) [Prediction of phase equilibria in a multicomponent system of the marine type by the translation method (book 2)]. Dushanbe, Shuchoyen Publ., 2011, 247 p.

8. Soliev L., Khudoyorbekova Z.P., Nizomov I.M. Fazovyye ravnovesiya sistemy K2SO4-K2CO3-KHCO3-H2O pri 25 oC [Phase equilibria of the K2SO4-K2CO3-KHCO3-H2O system at 25 0C]. Doklady Akademii nauk Respubliki Tadzhikistan [Reports of the Academy of Sciences of the Republic of Tajikistan], 2016, vol.59, no.5-6, pp.236-240.

9. Soliev L., Khudoyorbekova Z.P., Nabiev A.A. Fazovyye ravnovesiya sistemy K,CA//SO4,CO3-H2O pri 25 oC [Phase equilibria of the K,CA// SO4,CO3-H2O system at 25 0C]. Vestnik Pedagogi-cheskogo universiteta [Bulletin of the Pedagogical University], 2015, no.2-1(63), pp.23-27.

10. Zdanovsky A.B. et al. Spravochnik eksperimental'-nykh dannykh po rastvorimosti mnogokomponent-nykh vodno-solevykh sistem. Tom 1. Trekhkompo-nentnyye sistemy [ Handbook of experimental data on the solubility of multicomponent water-salt systems. Volume 1. Three-component systems]. Moscow-Leningrad, GNTIHL Publ., 1953, 672 p.

11. Zdanovsky A.B. et al. Spravochnik eksperimental'-nykh dannykh po rastvorimosti mnogokomponen-tnykh vodno-solevykh sistem. Tom 2. Chetyrekh-komponentnyye i boleye slozhnyye sistemy [Handbook of experimental data on the solubility of multicomponent water-salt systems. Volume 2. Four-component and more complex systems]. Moscow-Leningrad, GNTIHL Publ., 1954, 595 p.

12. Tursunbadalov S., Soliev L. [Crystallization and dissolution in multicomponent water-salt systems]. Journal of Chemical and Engineering Data, 2017, vol.62, no.10, pp.3053-3063.

13. Tursunbadalov S., Soliev L. [Phase equilibria in the quinary Na, K//SO4, CO3, HCO3-H2O system at 75 0C]. Journal of Solution Chemistry, 2015, vol.44, no.8, pp.1626-1639.

14. Soliev L. [Phase equilibria in the Na,K,Mg,Ca// SO4,Cl-H2O system at 50 0C in the astrakhanite crystallization region]. Russian Journal of Inorganic Chemistry, 2013, vol.58, no.5, pp.585-589.

15. Avloev Sh.Kh., Soliev L. [Phase equilibria in the Na, K//SO4, CO3, F-H2O system at 25 0C]. Russian Journal of Inorganic Chemistry, 2007, vol.52, no.10, pp.1612-1616.

i Надоели баннеры? Вы всегда можете отключить рекламу.