Научная статья на тему 'PHASE EQUILIBRIA IN THE AG8SITE6-AG8GETE6 SYSTEM'

PHASE EQUILIBRIA IN THE AG8SITE6-AG8GETE6 SYSTEM Текст научной статьи по специальности «Химические науки»

CC BY
109
38
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
SILVER-GERMANIUM-SILICON TELLURIDES / PHASE EQUILIBRIA / SOLID SOLUTIONS / T-X-DIAGRAM

Аннотация научной статьи по химическим наукам, автор научной работы — Ashirov G.M.

Phase equilibria in the Ag8SiTe6-Ag8GeTe6 system were experimentally investigated by means of differential thermal analysis and powder X-ray diffraction techniques. It was established that continuous series of solid solutions with Si®Ge substitution are formed in the system. T-x-diagram of the title system and concentration dependence of lattice parameters of the obtained solid solutions were plotted

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PHASE EQUILIBRIA IN THE AG8SITE6-AG8GETE6 SYSTEM»

ISSN 2522-1841 (Online) AZERBAIJAN CHEMICAL JOURNAL № 1 2022 ISSN 0005-2531 (Print)

UDC 544.344:546.57'289'28/24

PHASE EQUILIBRIA IN THE Ag8SiTe6-Ag8GeTe6 SYSTEM

G.M.Ashirov

M.Nagiyev Institute of Catalysis and Inorganic Chemistry, NAS of Azerbaijan

[email protected]

Received 19.10.2021 Accepted 25.11.2021

Phase equilibria in the Ag8SiTe6-Ag8GeTe6 system were experimentally investigated by means of differential thermal analysis and powder X-ray diffraction techniques. It was established that continuous series of solid solutions with Si^Ge substitution are formed in the system. T-x-diagram of the title system and concentration dependence of lattice parameters of the obtained solid solutions were plotted.

Keywords: silver-germanium-silicon tellurides, phase equilibria, solid solutions, T-x-diagram.

doi.org/10.32737/0005-2531-2022-1-89-93

Introduction

Binary and more complex chalcogenides of copper and silver are valuable functional materials [1-3]. In particular, copper and silver chalcogenides with heavy p-elements are of interest as thermoelectric materials [4-8]. Several representatives of this class, due to their unique crystal structure, have ionic conductivity for Cu+ or Ag+ cations, which makes them very promising for use in the development of photoelectrode materials, electrochemical solar energy converters, ion-selective sensors, etc. [1, 9-13]. Recent studies [13-22] have shown that synthetic analogs of the argyrodite mineral with the general formula A8BIVX6 (where A - Cu, Ag; BIV - Si, Ge, Sn; X - S, Se, Te) have a number of valuable functional properties that are the subject of many research groups. In addition, these compounds are environmentally friendly, and their constituent components are widely distributed and low-cost [23].

It is known that the development of new multicomponent materials is based on data on the phase equilibria of the corresponding systems and the thermodynamic properties of phases formed in them. The study of phase equilibria in systems composed of synthetic analogues of ar-gyrodite showed that in a number of such systems, for example Cu8GeS6-Cu8GeSe6, Ag8SnS6-Ag8SnSe6, Ag8GeS6-Ag8GeSe6, Ag8GeS6-Ag8SnS6, Ag8GeSe6-Ag8SnSe6 and Cu8GeSe6-Ag8GeSe6, the continuous solid solutions are formed [24-30]. This is probably due to the similarity of the crystal structure and chemical nature of the starting compounds.

In the present paper phase equilibria in the Ag8SiTe6-Ag8GeTe6 system was studied since there is a possibility of the formation of a solid solution. Starting Ag8SiTe6 and Ag8GeTe6 compounds have very low thermal conductivity and high thermoelectric performance [21, 22].

The Ag8SiTe6 compound melts congru-ently at 1143 K [21], and Ag8GeTe6 melts incon-gruently at 918 K [31] (congruently at 916 K according to [1]). Both compounds crystallize in cubic crystal lattice (F.gr. F-43m) with following parameters: a = 1.1523 nm (for Ag8SiTe6) [32] and a = 1.1563 nm (for Ag8GeTe6) [33].

Experimental part

Starting compounds Ag8SiTe6 and Ag8GeTe6 were synthesized using high-purity elements (at least 99.999 wt.% purity) from the EVOCHEM ADVANCED MATERIALS GMBH (Germany). Both compounds were synthesized by fusion of simple substances in stoichiometric ratios in evacuated to ~10-2 Pa and sealed quartz ampoules (15 cm in length and 1.5 cm in diameter) at temperatures 50° higher than the melting points of the synthesized compounds. The ampoules with the obtained melts were kept at these temperatures for 3-4 hours and then cooled in the switched-off furnace to room temperature. After synthesis, both compounds were heat-treated at 800 K for 500 hours.

The individuality of all synthesized compounds was monitored by powder X-ray diffraction (PXRD) technique and differential thermal analysis (DTA).

Fig. 1. Cooling DTA curve for the Ag8GeTe6 compound

The powder diffraction patterns are fully indexed in a cubic system and calculated lattice parameters agree well with the data of [32, 33]. On DTA heating curves of compounds, one endo-effect was observed at 1141 K (Ag8SiTe6) and 917 K (Ag8GeTe6), which were close to the above literature data within the error limit (±2 K). Note that, taking into account the inconsistency of the data [1] and [31] on the nature of the melting of the Ag8GeTe6 compound we also obtained the cooling DTA curve for this compound. It turned out that two thermal effects were recorded on the cooling DTA curve (Figure 1). One of them corresponds to the liquidus temperature (931 K), and the other one (917 K) to the peritectic reaction of formation of Ag8GeTe6, which confirms the data of [31].

About 8 alloys of the Ag8SiTe6-Ag8GeTe6 system were prepared in different ratios by melting of starting ternary compounds at ~1200 K. The synthesized samples were gradually cooled down to room temperature inside the furnace and then annealed at 800K for 500 hours for the maximum achievement of a state of equilibrium. The synthesized alloys were investigated by DTA and PXRD methods.

DTA was performed on a 404 F1 PEGASUS SYSTEM differential scanning calorimeter from NETZSCH (heating rate 10 K/min, chromel-alumel thermocouples). The DTA measurement results were processed using the NETZSCH Proteus Software. The temperature measurement accuracy was within ±20.

PXRD was carried out at room temperature on a BRUKER D8 ADVANCE diffrac-

tometer with CuKa1 radiation in the range 20 = 5-650. The X-ray patterns were indexed using the Topas V3.0 Software Bruker.

Results and discussion

Figure 2 shows the powder diffraction patterns of annealed Ag8SiTe6-Ag8GeTe6 alloys. As can be seen, all intermediate alloys have qualitatively the same diffraction picture with starting compounds. This indicates the formation of continuous solid solutions in the Ag8SiTe6-Ag8GeTe6 system over the entire concentration range. Slightly shifting of diffraction lines towards small angles with Si^Ge substitution is observed. This is due to the fact that the ionic radius of germanium is larger compared to silicon.

Lattice parameters of both ternary compounds and solid solutions were calculated using T0PAS3.0 computer program. Results are given in Table 1. As can be seen, lattice parameters increase linearly with increasing Ge content (Figure 3b). I.e., the concentration dependence of the lattice parameters follows Vegard's rule.

The formation of continuous solid solutions in the Ag8SiTe6-Ag8GeTe6 system was also confirmed by the DTA results (Figure 3a). Due to the incongruent melting of the Ag8GeTe6 compound, in the >90% mole Ag8GeTe6 composition area from the liquid, the a-phase based on Ag2Te first crystallizes. The crystallization process ends with the formation of a S-phase. The relevant part of the diagram is theoretically constructed because no thermal effects are observed in this area.

Figure 2. Powder diffraction patterns of the Ag8SiTe6 - Ag8GeTe6 alloys (at room temperature). Table 1. DTA and PXRD results for the Ag8SiTe6-Ag8GeTe6 system

Composition, mol% Ag8GeTe6 Thermal effects, (K) Lattice parameters, (Â)

0 (Ag8SiTe6) 1141 11.5244

10 1115 11.5293

20 1086-1105 11.5331

40 1022-1055 11.5392

60 982-1013 11.5463

80 928-960 11.5531

90 921 11.5585

100 917 11.5612

a, A

11.58 11.54 11.50

T, K

1141

1050 950

Ag85iTe6

20

40

60

(b)

(a)

- L + S L

i i 5 i i L+a L+a+6 i

11.56

931 917

80

Ag8GeTe6

mol % Ag8GeTe6

Fig. 3. Phase diagram (a) and concentration dependence of lattice parameters (b) for the Ag8SiTe6-Ag8GeTe6 system.

Conclusion

Phase equilibria in the Ag8SiTe6-Ag8GeTe6 system were studied using DTA and PXRD techniques. It has been established that the system as a whole is nonquasibinary due to the incongruent melting of Ag8GeTe6, and is characterized by the formation of continuous solid solutions with cubic structure. The T-x-diagram of the title system was plotted. The lattice parameters of the starting ternary compounds and solid solutions were calculated by the Rietveld method. The obtained solid solutions are interesting as potential environmentally friendly thermoelectric materials.

Reference

1. Babanly M.B., Yusibov Y.A., Abishev V.T. Ternary Chalcogenides Based on Copper and Silver. BSU Publisher, 1993. 342 p.

2. Sanghoon X.L., Tengfei L.J., Zhang L.Y.H. Chalcogenides: From 3D to 2D and Beyond. Elsevier. 2019. 398 p.

3. Applications of Chalcogenides: S, Se, and Te . Ed. Ahluwalia G.K. Springer. 2016. 461 p.

4. Horichok I., Ahiska R., Freik D., Nykyruy L.S., Mudry, O., Matkivskiy, T. Semko, Phase Content and Thermoelectric Properties of Optimized Thermoelectric Structures Based on the Ag-Pb-Sb-Te System, Journal of Electronic Materials. 2016. V. 45. No 3. P. 1576-1583

5. Dahshan A., Hegazy H.H., Aly K.A., Sharma P. Semiconducting Ge-Se-Sb-Ag chalcogenides as prospective materials for thermoelectric applications. Physica B: Condensed Matter. 2017. V.526. P. 117-121.

6. Lee G.E., Pi J.H., Kim I.H. Preparation and Thermoelectric Properties of Famatinite Cu3SbS4. J. Electronic Materials. 2019. V. 49. No 5. P. 1-8.

7. Schwarzmüller S., Souchay D., Günther D., Gocke A., Dovgaliuk I., Miller S. A., Oeckler O.Argyro-dite-Type Cu8GeSe6-x Te x(0 < x < 2): Temperature-Dependent Crystal Structure and Thermoelectric Properties. Zeitschrift Für Anorganische Und Allgemeine Chemie. 2018. V. 644. No 24. P. 1915-1922.

8. Acharya S., Soni A. High thermoelectric power factor in p-type Cu8GeSe6. Dae solid state physics symposium. 2019. V. 2115. P. 1-3.

9. Solid State chemistry and its application, Anthony R. West, second edition. 2014. 864 p.

10. Boucher, F., Evain, M., Brec, R. Distribution and Ionic Diffusion Path of Silver in y-Ag8GeTe6: A Temperature Dependent Anharmonic Single Crystal Structure Study. J. Solid State Chemistry. 1993. V. 107. No 2. P. 332-346.

11. Kim K.M., Tampo H., Shibata H., Niki S. Growth and characterization of co-evaporated Cu2SnSe3 thin films for photovoltaic applications. Thin Solid Films. 2013. V. 536. P. 111-114.

12. Hull S., Berastegui P., Grippa, A. Ag+ diffusion within the rock-salt structured superionic conductor Ag4Sn3S8. J. Physics: Condensed Matter. 2005. V. 17. No 7. 1067-1084.

13. Barbara K.H., Kai W., Yasar K., Tristan D., Wolfgang Z., Ute G., Jeffrey S., Wolfgang T. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag8SiSe6. 2017. V. 29. P. 4833-4839.

14. Semkiv I., Ilchuk H., Pawlowski M., Kusnezh V. Ag8SnSe6 argyrodite synthesis and optical properties. Opto-Electronics Review. 2017. V. 25. No 1. P. 37-40.

15. Lu C.L., Zhang L., Zhang Y.W., Liu S.Y., Mei Y. Electronic, optical properties, surface energies and work functions of Ag8SnS6: First-principles method. Chinese Physics B. 2015. V. 24. No 1. P. 1-7.

16. Shen X., Yang C., Liu Y., Wang G., Tan H., Tung H., Zhou X. High-Temperature Structural and Thermoelectric Study of Argyrodite Ag8GeSe6. ACS Applied Materials and Interfaces. 2018. V. 11. No 2. P. 2168-2176.

17. Li W., Lin S., Ge B., Yang J., Zhang W., Pei Y. Low Sound Velocity Contributing to the High Thermoelectric Performance of Ag8SnSe6. Advanced Science. 2016. V. 3. No 11. P. 16001961600201.

18. Ghrib T., Otaibi A.L., Almessiere A., Assaker B., Chtourou R. High Thermoelectric Figure of Merit of Ag8SnS6 Component Prepared by Electrodepo-sition Technique. Chinese Physics Letters. 2015. V. 32. No 12. P. 127402-127409.

19. Jin M., Lin S., Li W., Chen Z., Li R., Wang X., Chen Y., Pei Y. Fabrication and Thermoelectric Properties of Single-Crystal Argyrodite Ag8SnSe6. Chemistry of Materials. 2019. V. 31. No 7. P. 2603-2610.

20. Shen X., Yang C., Liu Y., Wang G., Tan H., Tung H., Wang G., Lu X., He J., Zhou X. High-Temperature Structural and Thermoelectric Study of Argyrodite Ag8GeSe6. ACS Applied Materials and Interfaces. 2019. V. 11. No 2. P. 2168-2176.

21. Charoenphakdee A., Kurosaki K., Muta H., Uno M., Yamanaka S. Ag8SiTe6: A New Thermoelectric Material with Low Thermal Conductivity. Japanese J. Applied Physics. 2009. V. 48. No 1. P. 01160-01169.

22. Masaki F., Ken K., Hiroaki M., Shinsuke Y. Thermoelectric properties of Ag8GeTe6. J. Alloys and Compounds. 2005. V. 396. No 1. P. 280-282.

23. Qinghui J., Suwei L., Yubo L., Jiwu X., Sihui L., Wang L., Gaolei Z., Yang J. Eco-friendly Highly Robust Ag8SiSe6-Based Thermoelectric Compo-

sites with Excellent Performance Near Room Temperature. ACS publications. 2020. V. 12. No 49. P. 54653-54661.

24. Alverdiyev I.J., Aliev Z.S., Bagheri S.M., Masha-diyeva L.F., Yusibov Y.A., Babanly M.B. Study of the 2Cu2S+GeSe2o-Cu2Se+GeS2 reciprocal system and thermodynamic properties of the Cu8GeS6-XSex solid solutions. J. Alloys and Compounds. 2017. V. 691. P. 255-262.

25. Alverdiev I.J., Bagheri S.M., Aliyeva Z.M. Phase equilibria in the Ag2Se-GeSe2-SnSe2 system and thermodynamic properties of Ag8Gei-x Sn x Se6 solid solutions. Inorganic Materials. 2017. V. 53. No 8. P. 801-809.

26. Bagheri S.M., Imamaliyeva S.Z., Mashadiyeva L.F., Babanly M.B. Phase equilibria in the Ag8SnS6-Ag8SnSe6 system. International J. Advanced Science and Technology. 2014. V. 4. No 2. P. 291-296.

27. Bagheri S.M., Alverdiyev I.J., Yusibov Y.O., Babanly M.B. Ag8GeS6-Ag8GeSe6 sisteminda faza tarazliqlan va bark mahlullarin bazi xassalari. Azerb. Chem. Journ. 2014. No 3. S. 15-21.

28. Aliyeva Z.M., Bagheri S.M., Aliev Z.S., Alverdiyev I.J., Yusibov Yu.A., Babanly M.B. The

phase equilibria in the Ag2S-Ag8GeS6-Ag8SnS6 system. J. Alloys and Compounds. 2014. V. 611. P. 395-400.

29. Alieva, Z.M., Bagheri, S.M., Alverdiev, I.J. Phase equilibria in the pseudoternary system Ag2Se-Ag8GeSe6-Ag8SnSe6. Inorganic Materials. 2014. V. 50. No 10. P. 1063-1068.

30. Abbasova V.A., Alverdiyev I.J., Mashadiyeva L.F., Yusibov Y.A., Babanly M.B. Phase equilibria in the Cu8GeSe6-Ag8GeSe6 system. Azerb. Chem. Journ. 2017. No 1. P. 30-33.

31. Li J. Q., Li L. F., Song S. H., Liu F. S., Ao W. Q. High thermoelectric performance of GeTe-Ag8GeTe6 eutectic composites. J. Alloys and Compounds. 2013. V. 565. P. 144-147.

32. Boucher F., Evain M., Brec R. Single-crystal structure determination of y-Ag8SiTe6 and powder X-ray study of low-temperature a and ß phases. J. Solid State Chemistry. 1992. V. 100. No 2. P. 341-355.

33. Rysanek N., Laruelle P., Katty, A. Structure cristalline de Ag8GeTe6(y). Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 1976. V. 32. No 3. P. 692-696.

Ag8SiTe6-Ag8GeTe6 SÎSTEMÎNDO FAZA TARAZLIQLARI G.M.Oçirov

Ag8SiTe6-Ag8GeTe6 sisteminda faza tarazliqlan differensial termiki va ovuntu rentgenfaza analizi üsullan ils ôyranilmiçdir. Müayyan edilmiçdir ki, sistemda Si^Ge avazlamali fasilasiz bark mahlullar этэ1э galir. Sistemin T-x diaqrami va bark mahlullarin qafas parametrlarinin tarkibdan asliliq qrafiki qurulmuçdur.

Açar sözlar: gümüg-germanium-silisium telluridbri, faza tarazligi, Ьэгк m3hlullar, T-x diaqrami.

ФАЗОВЫЕ РАВНОВЕСИЯ В СИСТЕМЕ Ag8SiTe6-Ag8GeTe6

Г.М.Аширов

Методами дифференциального термического и рентгенофазового анализов экспериментально исследованы фазовые равновесия в системе Ag8SiTe6-Ag8GeTe6. Установлено, что в системе образуется непрерывный ряд твердых растворов с Si^Ge замещением. Построены Т-х-диаграмма исследуемой системы и график концентрационной зависимости параметров решетки полученных твердых растворов.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Ключевые слова: теллуриды серебра-германия-кремния, фазовые равновесия, твердые растворы, Т-х-диаграмма.

i Надоели баннеры? Вы всегда можете отключить рекламу.