58_CHEMICAL PROBLEMS 2019 no. 1 (17) ISSN 2221-8688_
UDC 546 (72.681.682.22)
PHASE DIAGRAMS OF THE FeGa2S4- FeIn2S4 AND FeS- FeGaInS4 SYSTEMS
12 3 1
F.M. Mammadov, I.R. Amiraslanov, N.N. Efendiyeva, S.Z. Imamaliyeva
1Acad. M. Nagiyev Institute of Catalysis and Inorganic Chemistry, ANAS 113 H.Javid.ave., AZ-H43, Baku, Azerbaijan
2Institute of Physics, ANAS 113H.Javid. ave., AZ-1143, Baku, Azerbaijan
3Azerbaijan State Pedagogical University 68, U.Hajibayli, AZ1000, Baku, Azerbaijan
Received 06.02.2019
The phase equilibriums in the FeGa2S4- FeIn2S4 and FeS- FeIn2S4 systems were experimentally investigated by means of differential thermal and X-ray diffraction analyses. It found that they are quasi-binary and characterized by limited mutual solubility of starting compounds. The phase with composition FeGaInS4 crystallizes in the FeGa2S4-type structure, melts at 1375 K without decomposition, and can be characterized as a congruently melting compound by its behavior in the phase diagram.
Keywords: FeGa2S4, FeIn2S4, FeGaInS4, phase diagram, solid solutions Doi.org/10.32737/2221-8688-2019-1-58-65
INTRODUCTION
Of special interest are valuable functional materials with complex metal chalcogenidesand-based phases characterized by thermoelectric, photoelectric, optical, magnetic, topological insulator and other properties [1-6] and AB2X4 magnetic compounds (A-Mn, Fe, Co, Ni, B-p1-p3 elements, X-chalcogen). They are promising materials for the production of wide-gap converters of optical radiations, light modulators, photo-detectors, as well as spintronic and other magnetic-field-controllable functional devices [7-11].
The development and optimization of processes for the preparation of new complex phases are based on phase equilibriums data and thermodynamic characteristics of the corresponding system [12, 13]. At the same time, systems formed by structural or formuleanaloges are of particular interest, since it can expect the formation of wide areas of solid solutions in them [14, 15].
This work is part of a complex physicochemical study of the FeS-Ga2S3-In2S3 quasi-ternary system and is devoted to the investigation of phase relations in the
FeGa2S4- FeIn2S4 and 2FeS-FeGaInS4polythermal sections.
The initial compounds of these systems are studied in detail.
FeS melts congruently at 1461 K and undergoes polymorphic transitions at 411 and 588 K [16]. The high-temperature modification of FeS crystallizes in the tetragonal structure (Sp.gr.P4/nmm) with lattice parameters a = 0.3768 nm, c = 0.5039 nm [17] or a = 0.36735 nm, c = 0.50328 nm [18], while low-temperature modification has hexagonal structure: a = 0.34436(1) nm, c = 0.57262(2) nm [19].
The FeGa2S4 and FeIn2S4ternary compounds melt congruently at 1418 [20] K and 1398 K [21] respectively. According to
[22], FeGa2S4 is formed by the peritectic reaction at 1343 K and undergoes a polymorphic transformation at 1283 K.
FeGa2S4crystallizes in the rhombic structure of the ZnAl2S4 type and with lattice parameters a=1.289 nm; b=0.751; c=0.609 nm
[23]. According to [24] this compound has two crystalline modifications: low-temperature has trigonal [Sp.gr. P3ml;a=0.3654(2) nm;
c=1.2056 nm], and high-temperature -rhombic (a=1.289; 6=0.751; c=0.609 nm) structure. The FeIn2S4 compound crystallizes in a spinel structure (Sp.gr.Fd-3m) with a lattice period a=1.0598 [23] or a=1.053 nm
[21].
The FeGaInS4 compound has a trigonal structure of the ZnAl2S4 (Sp.gr.P-3w1) type with parameters: a=0.37765, c=1.22257 nm [25, 26].
EXPERIMENTAL PART
2.1. Materials and syntheses
FeS, FeGa2S4, FeIn2S4, and FeGaInS4 were synthesized through the use of high purity iron (99.995%), indium (99.999%), gallium (99.999%), and sulfur (99.99%) purchased from Alfa Aesaras starting materials. Stoichiometric mixtures of elements were sealed in an evacuated quartz tube (15 cm in length and 1.5 cm in diameter) with a residual pressure of -10" Pa. The sealed tubes were then placed in a two-zone furnace for 2/3 of their length. The lower "hot zone" was slowly heated at a room temperature to ~ 3050 K above the melting point of the synthesized compounds and outside part of the ampoule was quenched with water ("cold zone"). The interaction of components occurs in the "hot zone" and in the cold zone the chalcogen condenses and returns to the interaction zone. As a result of the reaction in the cold zone the mass of the chalcogen decreases and within 1-2 hours it is spent almost. Thereafter, the ampoule completely placed in a furnace and kept at the pointed temperature for 1-2 hours. The obtained samples were subjected to heat treatment at 800 K for 100 h. in order to increase the degree of crystallinity.
All investigated samples were prepared from pre-synthesized compounds in evacuated quartz tubes. The samples were annealed first at 1000 K (200 h), and then at 700 K (300 h) in order to reach the state closest to equilibrium. Some alloys after annealing were quenched in cold water.
RESULTS AND
FeGa2S4- FeIn2S4section (Table 1, Fig.1) is quasi-binary to pertain to the eutectic type with the formation of wide areas of solid
2.2. Analysis
Differential thermal analysis (DTA) and X-ray powder diffraction (XRD) were used to analyze the samples. DTA was carried out using a NETZSCH 404 F1 Pegasus system at a room temperature and ~1450 K depending on the composition of the alloys at a heating rate of 10 K- min-1. Temperatures of thermal effects were taken mainly from the heating curves. The accuracy of the temperature measurements was ±2 K.
Powder X-ray diffraction (PXRD) data were collected on a Bruker D2 Phaser diffractometer using Cu Ka1 (X=1.54056 A) radiation at a room temperature. The unit cell parameters of initial compounds and intermediate alloys were calculated by indexing of powder patterns using Topas V3.0 software.
According to DTA, synthesized compounds melt at 1460 K (FeS), 1420 K (FeGa2S4),and 1415 K (FeIn2S4).First two data are consistent with literature data [16,20], and the last isslightly higher (17 K) than indicated in [21].
The XRD powder patterns of synthesized compounds indicated the formation of singlephase materials. The calculated lattice constants of hexagonal FeS (a = 0.34440 nm and c = 0.57260 nm), trigonalFeGa2S4 (a=0.36543; c=1.20558nm) and cubic FeIn2S4 (a = 1.0607 nm) were in good agreement with the literature data [19, 22, 23].
DISCUSSION
solutions based on the initial ternary compounds. The eutectic has a composition of 70 mol% FeIn2S4 and crystallizes at 1340 K.
Table 1. Experimental data of the DTA for the FeGa2S4- FeIn2S4 and FeS- FeGaInS4 systems
System Composition Thermal effects, K
mol% FeIn2S4
0 (FeGa2S4) 1327; 1420
5 1415
10 1415
20 1390-1410
GO 30 1383-1400
IN c HH 40 1385
<U 45 1380
&o 50 1375
<3 o 55 1355-1370
(U PH 60 1340-1363
65 1338-1350
70 1340
80 1355-1380
90 1390-1400
95 1410
100 1415
mol% FeGaInS4
0 (FeS) 1460
10 1370-1435
GO c 20 1308-1412
HH CÖ Ü (U PH GO <o PH (N 40 1310-1378
50 1312-1355
60 1310
70 1310-1328
80 1312-1348
90 1308-1360
100 1375
L+fj' y ].
IK Ii
II ip ¡K. r* FF L+ß V Ve/ / L+7
« "1327 Ii L+ß / 1340 \ T
ß+7
FeGa,Sj 20 40 60 80 Fein,S mo!% FeIn,S,
Fig.1. Phase diagram of the FeGa2S4- FeIn2S4 system
The thermal effect at 1327 K relating to the polymorphic transformation of FeGa2S4 was not found in the alloys of this section. Taking into account the X-ray data on the crystal structure of the FeGa2S4-based P -solid solutions, we assume that the formation of the P-phase leads to a sharp increase in the temperature of this phase transition and the establishment of peritectoid equilibrium (point p*).
From the DTA data (Table 1), it follows that the melting of the P-phase with a composition of 50 mol% FeIn2S4 is an isothermal process (point K) while solid solutions with other compositions melt in the temperature range. This allows us to characterize the alloy FeGaInS4 as a chemical compound with congruent melting.
The evtectic horizontal is extended from ~ 58 to 75mol% FeIn2S4. Thus, at an eutectic temperature (1340 K) the FeGa2S4-based
solubility is ~ 58mol% FeIn2S4(P-phase), and FeIn2S4 is ~ 25 mol% (y-phase).
The XRD results of the powdered samples of the system (Fig.2) are in accordance with the phase diagram. According to Fig.2, the diffraction patterns of the alloys in the 0-50 mol% FeIn2S4 range of compositions are qualitatively similar to those of pure FeGa2S4with a slight reflection lines shift which is typical for substitutional solid solutions. The powder X-ray diffraction pattern of the alloy with 80 mol% FeIn2S4 compositions is identical to pure FeIn2S4 while the 60 mol% FeIn2S4 alloy contains and Pandy-phase reflections.
Table 2 presents the types and parameters of the crystal lattices of solid solutions of the FeGa2S4-FeIn2S4 system.The accuracy of the crystal lattice parameters is shown in parentheses.
2-Theta Scale
Fig.2. XRD powder patterns of some alloys of the FeGa2S4- FeIn2S4 system
The mutual solubility of the components at a room temperature was determined by us from the graph of the concentration dependence of the lattice parameters of the P-
and y- solid solutions and is 52 and 20mol%, respectively.
2FeS-FeGaInS4 section (Fig.3) has a phase diagram of the eutectic type with limited
mutual solubility of the components in the solid state. The compositions of three phases in eutectic equilibrium Lo-a+Pat 1310 K are determined by the construction of the Tamman triangle. The eutectic point has a composition
T,K 1450
1400 1350 1300
of ~ 63 mol% FeGaInS4, and two ends of the eutectic horizontal corresponding to the mutually saturated compositions of the a- and P-phases have the compositions 13 and 91 mol% FeGaInS4, respectively.
1460
\ L
L+a \
a . 1310, T y L+ß ß
- T T
------ a+ß t
1375
2 FeS 20 40 60 80 FeGaInS4 mol % FeGalnS,
Fig.3. Phase diagram of the 2FeS-FeGaInS4 section
Table 2.Phase compositions and crystallographic parameters of the phases
in the FeGa2S4-FeIn2S4 system
Composition, mol % FeIn2S4 Phase Type and parameters of the crystal lattice, nm
FeGa2S4 ß Trigonal, P-3m1, a=0.36543(3); c=1.20558(8)
20 ß "-", a=0,369503(3); c=1.211243(7)
40 ß "-", a=0,379503(2); c=1.216903(6)
50 ß Trigonal, P-3m1, a=0.37765(1), c=1.22257(3)
80 Y Cubic, a = 1.05152(8)
100 Y Cubic, Fd-3m,a = 1.0607(7)
CONCLUSION
The character of phase equilibriums in the FeGa2S4- FeIn2S4 and FeS- FeGaInS4 sections of the FeS-Ga2S3-In2S3 quasi-ternary system was revealed. They are quasi-binary and characterized by wide areas of solid solutions based on starting compounds. The alloy with composition FeGaInS4 can be characterized as
a congruently melting compound.
Experimental results obtained can be used to select the composition of solution -melt in the growth of high-quality crystals of intermediate phases which are of interest as magnetic semiconductors.
A cknowledgment
This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan - Grant № EIF/MQM/Elm-Tehsil-1-2016-1(26)-71/01/4-M-33.
REFERENCES
1. Ahluwalia G.K. (Ed.). Applications of Chalcogenides: S, Se, and Te, Springer, 2016.
2. Shevelkov A.V. Chemical aspects of thermoelectric materials engineering. Russ. Chem. Rev. 2008, vol. 77, pp. 1-19.
3. Gao M-R., Xu Y-F., Jiang J. and YuS-H. Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chemical Society Reviews. 2013, vol. 42, pp. 2986-3017.
4. Xia C., Li J. Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides. Journal of Semiconductors. 2016, vol. 37, pp. 051001-1 051001-9.
5. Pacile D., Eremeev S., Caputo V., Pisarra M., De Luca O., Grimaldi I., Fujii J., Aliev Z.S., Babanly M.B., Vobornik I., Agostino R.G., Goldoni A., Chulkov E.V., and Papagno M. Deep insight into the electronic structure of ternary topological insulators: A comparative study of PbBi4Te7 and PbBi6Te10. Physica status solidi (RRL) - Rapid Research Letters, p.1800341-8
6. Papagno M., Eremeev S., Fujii J., Aliev Z.S., Babanly M.B., Mahatha S. Vobornik I., Mamedov N., Pacile D.,Chulkov E. Multiple Coexisting Dirac Surface States in Three-Dimensional Topological Insulator PbBi6Te10. ACSNano, 2016, vol. 10, pp. 3518-3524.
7. Ranmohotti K.G.S., Djieutedjeu H., Lopez J., Page A., Haldolaarachchige N., Chi H., Sahoo P., Uher C., Young D., Poudeu P.F.P. Coexistence of High-Tc Ferromagnetism and n-Type Electrical Conductivity in FeBi2Se4. J. of the American Chemical Society. 2015, vol.137, no. 2, pp.691-698. DOI: 10.1021/ja5084255
8. Djieutedjeu H, Makongo J.P.A., Rotaru A., Palasyuk A., Takas N.J, Zhou X, Ranmohotti K.G.S., Spinu L., Uher C.,
Poudeu P.F.P. Crystal Structure, Charge Transport, and Magnetic Properties of MnSb2Se4. European Journal of Inorganic Chemistry. 2011, vol. 26, pp. 3969-3977. DOI: 10.1002/ejic.201100364
9. Karthikeyan N., Aravindsamy G., Balamurugan P. & Sivakumar K. Thermoelectric properties of layered type FeIn2Se4 chalcogenide compound. Materials Research Innovations, 2017, pp. 278-281.
10. Niftiyev N.N., F. M. Mamedov, Quseynov V.I., Kurbanov S. Sh. AC Electrical Conductivity of FeIn2Se4 Single Crystals. Semiconductors. 2018, vol.
52, issue 6, pp. 683-685.
11. Niftiev N.N., Tagiev O.B., Muradov M.B., Mamedov F.M. AC electrical properties of FeIn2S4. Technical Physics. 2012, vol. 57, issue 4, pp. 572-574.
12. Zlomanov V.P., Khoviv A.M. and Zavrazhnov A.Yu. Physicochemical Analysis and Synthesis of Nonstoichiometric Solids. In: InTech. Materials Science - Advanced Topics. 2013, pp.103-128.
13. Babanly M.B., Chulkov E.V., Aliev Z. S., Shevel'kov A.V. and Amiraslanov I. R. Phase diagrams in materials science of topological insulators based on metal chalkogenides. Russ. J. Inorg. Chem., 2017, vol. 62, no. 13, pp. 1703-1729.
14. Babanly D.M., Tagiyev D.B. Physicochemical aspects of ternary and complex phases development based on thallium chalcohalides. Chemical Problems. 2018, no. 2 (16), pp. 153-177.
15. Imamaliyeva S.Z., Alakbarzade G.I., Salimov Z.E., Izzatli S.B., Jafarov Ya.I., Babanly MB. The TUPbTe3-Tl9GdTe6-Tl9BiTe6 isopleth section of the Tl-Pb-Bi-Gd-Te system. Chemical Problems. 2018, no. 4, pp. 75-81.
16. Binary alloy phase diagrams, Ed. T.B. Massalski, second edition. ASM
International, Materials park, Ohio, 1990, 3875 p.
17. Bertaut E.F., Burlet P. and Chappert J. On the absence of magnetic order in tetragonal FeS. Sol. State Comm., 1965, vol. 3, pp. 335-338.
18. Lennie A.R., Redfern S.A., Schofield P.F. and Vaughan D. J. Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineralo-gicalMagazine.1995, vol. 59, p. 677.
19. Kuhn S.J., Kidder M.K., Parker D.S., McGuire M.A., Chance W.M., Sefat A.S. Structure and property correlations in FeS. Physica C: Superconductivity and Its Applications, 2017. vol. 534, pp. 29-36.
20. Allazov MR. The system of FeS-GaS-S. Bulletin of Baku State University. 2009, No. 2, pp. 42-47.
21. Rustamov P.Q., Babaeva B.K., Allazov M R. State diagram of FeS-In2S3. J. of Inorganic Chemistry. 1979, vol. 24, pp. 2208-2211.
22. Dogguy-Smiri L., Nguyen Huy D., Pardo M.P. Structure crystalline du polytype FeGa2S4. Mater. Res. Bull. 1980, vol. 15, no 7, pp. 861-866.
23. Hahn H., Klingler W. Unter such ungen uber ternare chalkogenide. I. Uber die, kristall structure iniger ternaerer sulfide, die sichvom In2S3 ableiten. Zeitschrift fur Anorganische und Allgemeine Chemie. 1950, vol. 263, pp. 177-190.
24. Dogguy-Smiri L., Pardo M.P. Etude cristallographique du systèmeFeS-Ga2S3. Compt. Rend. Acad. Sci. 1978, vol. 287, pp. 415-418.
25. Mammadov F.M., Niftiyev N.N. Synthesis and crystal structure of the FeGaInS4 compound. Azerbaycan Chemical Journal. 2017, no. 2, pp.135-138.
26. Mammadov F.M., Niftiyev N.N. Dielectric properties of layered FeGaInS4 single crystals in an alternating electric field. Semiconductors. 2016, vol. 50, issue 9, pp. 1203-1207.
FeGa2S4-FeIn2S4 vs FeS-FeGaInS4 SiSTEMLdRINiNFAZA DiAQRAMLARI
1 2 * 3 1
F.M. Msmmsdov, i.R. dmiraslanov, N.N. dfsndiyeva, S.Z. Imamsliyeva
1AMEA Kataliz vs Qeyri-üzvi Kimya institutu H.Cavid pr. 113. AZ-1143, Baki, Azsrbaycan
2AMEA Fizika institutu H.Cavid pr. 113. AZ-1143, Baki, Azsrbaycan 3 Azsrbaycan Dövlst Pedaqoji Universiteti Üzeyir Hacibsyli küg.68, AZ1000, Baki
FeGa2S4-FeIn2S4 vs FeS-FeGaInS4 sistemlsrinds faza tarazliqlari differensial termiki analiz vs rentgenfaza analizi üsullari ils tsdqiq edilmi§dir. Müsyysn edilmi§dir ki, hsr iki sistem kvazibinardir vs ba§langic komponentlsr ssasinda mshdud bsrk mshlul sahslsri smsls gslmssi ils ssciyyslsnir. FeGaInS4 tsrkibli nümuns FeGa2S4 qurulu§ tipinds kristalla^ir, pargalanmadan 1375 K-ds sriyir vs konqruent sriysn birls§ms hesab edils bilsr. Agar sözlsr: FeGa2S4, FeIn2S4, FeGaInS4, fazadiaqrami, bsrk mshlullar
ФАЗОВЫЕ ДИАГРАММЫ СИСТЕМ FeGa2S4-FeIn2S4 И FeS-FeGaInS4
1 2 3 1
Ф.М. Мамедов, И.Р. Амирасланов, Н.Р. Эфендиева, С.З. Имамалиева
1 Институт Катализа и Неорганической Химии им. акад.М. Нагиева Национальной АН Азербайджана Баку, пр. Г.Джавида, 113, AZ-1143 Баку Институт Физики Национальной АН Азербайджана
Баку, пр. Г.Джавида, 131, Л1-1143 Баку Азербайджанский государственный педагогический университет Ул. Узеира Гаджибейли 68, AZ-1000, Баку
Фазовые равновесия в системах FeGa2S4-FeIn2S4 и FeS-FeGaInS4 экспериментально исследованы методами дифференциального термического и рентгенофазового анализов. Установлено, что они являются квазибинарными и характеризуются ограниченной взаимной растворимостью исходных соединений. Фаза состава FeGaInS4 кристаллизуется в структуре типа FeGa2S4, плавится при 1375 К без разложения и по его поведению на фазовой диаграмме может характеризоваться как конгруэнтно плавящееся соединение.
Ключевые слова: FeGa2S4, FeIn2S4, FeGaInS4, фазовая диаграмма, твердые растворы