Научная статья на тему 'Persistence of oncolytic Coxsackie virus A7 in subcutaneous human glioblastoma xenografts in mice in the context of experimental therapy'

Persistence of oncolytic Coxsackie virus A7 in subcutaneous human glioblastoma xenografts in mice in the context of experimental therapy Текст научной статьи по специальности «Биотехнологии в медицине»

CC BY
188
84
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GLIOBLASTOMA MULTIFORME / COXSACKIE A7 VIRUS / VIRAL ONCOLYSIS / MICE MODELS / TUMOR XENOGRAFTS / EXPERIMENTAL THERAPY / ONCOLYTIC VIRUSES

Аннотация научной статьи по биотехнологиям в медицине, автор научной работы — Sidorenko A.S., Zheltukhin A.O., Le T.H., Soboleva A.V., Lipatova A.V.

Natural non-pathogenic and vaccine strains of human enteroviruses are currently considered as promising agents capable of treating various kinds of cancer, including glioblastoma multiforme, the most aggressive brain tumor with so far no effective therapy. Enteroviruses can selectively replicate in cancer cells and cause tumor lysis. However, the ability of enteroviruses to persist in tumor tissue for a long period of time and to replicate in several successive cycles while spreading from cell to cell remains largely unclear. This study aimed to determine the possibility of completely destroying subcutaneous mouse xenografts of human glioblastomas through a single intravenous administration of virus-carrying peripheral blood leukocytes, as well as to find out the duration of persistence of the virus in the body of experimental animals in the context of viral therapy. Neurospheres were formed in vitro by incubating fragments of patients-derived glioblastomas and used to initiate subcutaneous tumors in immunodeficient mice. It was established that human peripheral blood leukocytes infected in vitro can effectively deliver Coxsackie A7 virus to the tumor cells. A single injection of 2 × 104 virus-infected leukocytes led to a gradual regression of tumors, while the virus presence was constantly detectable in the blood of mice, up to the complete regression of the tumors. The study allows to make the conclusion that blood leukocytes can effectively deliver Coxsackie A7 virus to the tumor. In the absence of a full-fledged immune response in mice, the viruses persist in tumors leading to their complete destruction.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по биотехнологиям в медицине , автор научной работы — Sidorenko A.S., Zheltukhin A.O., Le T.H., Soboleva A.V., Lipatova A.V.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Persistence of oncolytic Coxsackie virus A7 in subcutaneous human glioblastoma xenografts in mice in the context of experimental therapy»

PERSISTENCE OF ONCOLYTIC COXSACKIE VIRUS A7 IN SUBCUTANEOUS HUMAN GLIOBLASTOMA XENOGRAFTS IN MICE IN THE CONTEXT OF EXPERIMENTAL THERAPY

Sidorenko AS1, Zheltukhin AO1, Le TH1, Soboleva AV1-2, Lipatova AV1, Golbin DA3, Chumakov PM1'2^

1 Engelhardt Institute of Molecular Biology, Moscow

2 Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow

3 Burdenko National Medical Research Center of Neurosurgery, Moscow

Natural non-pathogenic and vaccine strains of human enteroviruses are currently considered as promising agents capable of treating various kinds of cancer, including glioblastoma multiforme, the most aggressive brain tumor with so far no effective therapy. Enteroviruses can selectively replicate in cancer cells and cause tumor lysis. However, the ability of enteroviruses to persist in tumor tissue for a long period of time and to replicate in several successive cycles while spreading from cell to cell remains largely unclear. This study aimed to determine the possibility of completely destroying subcutaneous mouse xenografts of human glioblastomas through a single intravenous administration of virus-carrying peripheral blood leukocytes, as well as to find out the duration of persistence of the virus in the body of experimental animals in the context of viral therapy. Neurospheres were formed in vitro by incubating fragments of patients-derived glioblastomas and used to initiate subcutaneous tumors in immunodeficient mice. It was established that human peripheral blood leukocytes infected in vitro can effectively deliver Coxsackie A7 virus to the tumor cells. A single injection of 2 x 104 virus-infected leukocytes led to a gradual regression of tumors, while the virus presence was constantly detectable in the blood of mice, up to the complete regression of the tumors. The study allows to make the conclusion that blood leukocytes can effectively deliver Coxsackie A7 virus to the tumor. In the absence of a full-fledged immune response in mice, the viruses persist in tumors leading to their complete destruction.

Keywords: glioblastoma multiforme, Coxsackie A7 virus, viral oncolysis, mice models, tumor xenografts, experimental therapy, oncolytic viruses

Funding: the study was supported by the Ministry of Education and Science of the Russian Federation; project code RFMEFI60714X0014.

gg Correspondence should be addressed: Peter M. Chumakov Vavilova 32, Moscow, 119991; chumakovpm@yahoo.com

Received: 13.07.2018 Accepted: 16.07.2018

DOI: 10.24075/brsmu.2018.032

ПЕРСИСТИРОВАНИЕ ОНКОЛИТИЧЕСКОГО ЭНТЕРОВИРУСА КОКСАКИ А7 В ПОДКОЖНЫХ МЫШИНЫХ КСЕНОТРАНСПЛАНТАТАХ ГЛИОБЛАСТОМ ЧЕЛОВЕКА ПРИ ЭКСПЕРИМЕНТАЛЬНОЙ ТЕРАПИИ

А. С. Сидоренко1, А. О. Желтухин1, Т. Х. Ле1, А. В. Соболева1,2, А. В. Липатова1, Д. А. Гольбин3, П. М. Чумаков1,2 153

1 Институт молекулярной биологии имени В. А. Энгельгардта, Москва

2 Федеральный научный центр исследований и разработки иммунобиологических препаратов имени М. П. Чумакова, Москва

3 Национальный медицинский исследовательский центр нейрохирургии имени Н. Н. Бурденко, Москва

Природные непатогенные и вакцинные штаммы энтеровирусов человека в настоящее время рассмариваются в качестве перспективных средств для лечения онкологических заболеваний, в том числе мультиформной глиобластомы — наиболее агрессивной опухоли головного мозга, для которой не существует эффективных средств терапии. Энтеровирусы могут избирательно реплицироваться в клетках опухоли, вызывая их лизис. Однако способность энтеровирусов длительно присутствовать в опухолевой ткани и совершать несколько последовательных циклов репликации с распространением от клетки к клетке плохо изучена. Целью исследования было установление возможности полного уничтожения подкожных ксенотрансплантатов глиобластом человека при однократном введении вируса внутривенной доставкой с помощью лейкоцитов периферической крови, а также длительность присутствия (персистирования) вируса в организме экспериментальных животных в процессе вирусной терапии. В качестве опухолевых клеток использовали нейросферы, полученные in vitro путем инкубации фрагментов удаленных у пациентов опухолей. Установлено, что лейкоциты периферическойкрови человека, инфицированные in vitro, способны осуществлять эффективную доставку в клетки опухоли вируса Коксаки А7. Однократное введение 2 x 104 зараженных вирусом лейкоцитов приводило к постепенной регрессии опухолей при постоянно определяющемся присутствии вируса в крови мыши. По результатам исследования сделан вывод, что доставка энтеровируса Коксаки А7 в опухоль может быть эффективно осуществлена с помощью лейкоцитов крови. В отсутствие полноценного иммунного ответа в опухолях у мышей наблюдается персистирование вирусов, заканчивающееся их полным уничтожением.

Ключевые слова: мультиформная глиобластома, вирус Коксаки А7, вирусный онколиз, мышиные модели, ксенотрансплантаты опухолей, экспериментальная терапия, онколитические вирусы

Финансирование: работа выполнена при финансовой поддержке Министерства образования и науки РФ, уникальный код проекта RFMEFI60714X0014.

[23 Для корреспонденции: Петр Михайлович Чумаков

ул. Вавилова, д. 32, г. Москва, 119991; chumakovpm@yahoo.com

Статья получена: 13.07.2018 Статья принята к печати: 16.07.2018

DOI: 10.24075/vrgmu.2018.032

Therapy of brain tumors, especially of glioblastoma multiforme (GBM) still remains an unresolved problem [1, 2]. The search for new alternative approaches to their treatment is of particular importance. The main problem lies in the resistance of tumor-initiating stem cells to therapy, which inevitably leads to relapses. Many oncolytic viruses can effectively destroy glioblastoma stem cells and prevent the relapses [3-8]. As the tumor develops, its cells acquire a number of characteristic properties that can serve as specific targets for therapy [9]. Besides, they lose many specific functions the cells serve in a multicellular organism [10-12]. One of those functions is protection from viruses [13-15]. Infected with viruses, tumor cells generally neither are capable of inducing type 1 interferons, nor acquire immunity to reinfection with viruses after interferon treatment [16-20]. This is why tumor cells display the increased sensitivity to infection by many different viruses, and justify the development of oncolytic viruses for cancer therapy [21-24]. Oncolytic viruses not only selectively infect and destroy cancer cells but also significantly activate antitumor immunity and modify tumor microenvironment. They stimulate both innate and adaptive immunity, which results in an extended antitumor effect even after the virus is no longer present in the tumor [25-28]. Various oncolytic viruses make use of the above mechanisms in their own way. It is convenient to study direct viral oncolysis caused by direct replication of viruses in a model of tumor xenografts implanted either to immune deficient athymic mice [29] or to mice with severe combined immunodeficiency (SCID) [30]. These models also allow refining virus delivery approaches. Virus administration should result in the successful infection of some tumor cells with subsequent initiation of viral replication cycles, release of virus progeny and further expansion of viral infection to remaining tumor cells located in the same or distant tumor nodes. The process is easily launched once the virus is directly injected to the virus-sensitive tumor. However, in most cases of metastatic cancer tumor sites are not accessible to such injections. Systemic administration of the virus through intravenous or intramuscular injections is also often ineffective, as the virus quickly leaves the circulation being absorbed by endothelial cells, or destroyed by some nonspecific protective factors in the blood. A promising alternative to such systemic delivery is the use of virus-sensitive carrier cells, infected in vitro and introduced to the bloodstream [31-33]. In such cells, the virus replicates as they circulate through the body, and then the virus particles are released in distant parts of the body, including tumors. In this study, we used the model of subcutaneous human glioblastoma tumor xenografts. Immune deficient mice were injected with cultured neurospheres derived from glioblastoma tumors of two patients. Neurospheres are dense clusters of cells developed through the culturing of tumor explants under conditions preventing the attachment of cells to culture plates. The culturing takes place in a special medium containing epidermal growth factor and fibroblast growth factor (EGF, bFGF, respectively) [34, 35]. Like other spheroids derived from human tumors, neurospheres are rich in tumor-initiating stem cells [36] and therefore have increased tumorigenisity [37, 38]. This study aimed to refine the delivery of oncolytic enteroviruses with the help of peripheral blood leukocytes in the model of subcutaneous tumor xenografts in mice, as well as to establish the duration of persistence of the virus in the body of experimental animals in the context of viral therapy.

METHODS

Cells culture for viruses titration

The Vero cell culture (immortalized kidney cells of the African green monkey) was grown in DMEM medium (PanEco, Russia)

supplemented with 10% fetal bovine serum (FBS), 100 mg/ml penicillin and 100 mg/ml streptomycin. The cells were grown in 10 cm plastic culture dishes in a humidified atmosphere containing 5% CO2 at a temperature of 37 °C; then, they were dispersed every 3 days in the ratio of 1:4-1:6.

Neurospheric tumor-forming glioblastoma cell cultures

Obtaining cell cultures from patients with glioblastoma (GM-3564 and GM-3876) has been described previously [39]. To boost tumor development, we used SCID/Beige immunodeficient mice as experimental animals (obtained from the Novosibirsk SPF vivarium and maintained in the laboratory); the mice received subcutaneous administration of neurospheres. The glioblastoma neurospheres used were only passed twice and kept at the nitrogen liquification temperature. They were defrosted immediately before the start of the experiments. The medium they were plated on was DMEM + F12 medium (PanEco, Russia) containing 20 ng/ml EGF and 10 ng/ml bFGF, and placed in an incubator with 5% CO2 at 37 °C. When the neurospheres developed (in 7-10 days), they were washed twice with PBS, counted, carefully pipetted until the disappearance of large cell aggregates and injected subcutaneously into SCID/ Beige mice, 500 spheroids per insertion point. The tumors appeared in 3 weeks. The tumors about 10 mm in diameter were excised, dispersed through a sterile nylon mesh with a pore diameter of 50 pm, treated with collagenase (PanEco, Moscow) to obtain a cell suspension, washed twice with PBS; the resulting suspension was subcutaneously administered to SCID/Beige mice in the amount of 2 x 105 cells per injection point, the goal being to obtain tumors to test the oncolytic activity of the virus. Preliminary adaptation of the neurospheres to growth as tumors in mice resulted in boosted tumorigenicity and an increase in the number of tumors developed after repeated administration.

Oncolytic virus strain

We used the LEV8 strain of Coxsackie A7 enterovirus [40, 41] that can effectively replicate in GM-3564 and GM-3876 cells [39]. Titration of the infectious activity of viral preparations was done with the help of the final dilution method and Vero cell culture using 96-well plates.

Delivering the virus with peripheral blood leukocytes

The peripheral blood leukocyte fraction was obtained from the freshly harvested heparinized human blood by centrifugation in a Ficoll-Paque solution (PanEco, Russia) following the standard protocol [42]. The leukocytes, washed twice in DMEM medium, were counted and a suspension with a density of 106 cells/ml prepared. The suspension was incubated with Coxsackie A7 virus (10 infectious units per cell) at 37 °C for 1 hour. Then the leukocytes were washed 3 times with 10 ml of PSB (0.14 M NaCl) and centrifuged at 800 g for 5 min. The infected leukocytes (2 x 104 cells) were injected into the the tail vein of SCID/Beige mice in a volume of 0.1 ml; they bore about 400-600 pl to the tumor. The tumor size was measured every third day. To register presence of the virus in the mice's blood, we took a drop of it from the tail vein and titrated on Vero cells applying the final serial dilutions method and using 96-well plates.

RESULTS

Earlier, we found that GM-3564 and GM-3876 cell cultures obtained from the tumor material of two glioblastoma patients

are highly sensitive to the Coxsackie A7 virus [39]. In the context of this study, we used this strain to find out if it is possible to deliver it to the tumor with the help of a cell carrier, as well as to determine if the virus can persist for a long period of time and thus make the oncolytic effect stable. To achieve the goals set, we implanted GM-3564 and GM-3876 neurospheric cultures xenografts subcutaneously to SCID/Beige mice. After subcutaneous administration of the neurospheres, the tumors grew to 400-600 pl in 10 days. We divided the mice into 2 groups of 10 animals each for our experiments, one for each type of tumor cells (total of 4 groups): one group received virus-infected leukocytes injections (tail vein), another — non-infected leukocytes (control). Figure 1 shows the dynamics of the tumor size changes (in mm3); the measurements were taken on every third day for 27 days. In the control group, which had non-infected leukocytes injected to the tail vein, the tumors continued to grow; the mice were euthanized when the tumors in them reached the size of 1500 mm3. Generally, it happened sometime between days 9 and 15 after injection of the leukocytes. In the treatment groups, where the mice received leukocytes infected with Coxsackie A7 virus (injected into the tail vein), the tumors continued to grow for 3 more days and then rapidly collapsed. The effect was the same for both GM-3564 and GM-3876 cells. In 18-21 days after the injections, it was already impossible to measure the tumors; only a subtle subcutaneous scar tissue was found in their place. At the same time, the virus titer was detected in the mice's blood every three days (Table).

The first encounter of the virus in the blood of mice occurred on the 3rd day after the injection; on the 6th day, its quantity peaked and then began to decrease, same as the size of the tumor. From days 18-21 and on, the virus could not be registered anymore and the mice were practically free from tumors.

DISCUSSION

We used the human glioblastoma xenografts model in SCID/ Beige line mice and found that it is possible to deliver the

1200

1000

oncolytic Coxsacki A7 virus to the tumor in human peripheral blood leukocytes infected in vitro and injected into the tail vein. This method of administration made the virus detectable in blood on the 3rd day and ensured its presence there until the tumors disappeared. Thus, the virus persisted in mice as long as there were virus-sensitive tumor cells. Destruction of such cells lead to disappearance of the virus. Previously, we have observed extended persistence of type 1 poliovirus in mice with A172 glioblastoma xenografts; in that experiment, tumors and virus disappeared from the mice's organisms simultaneously [43]. However, in contrast to the present study that research implied injecting mice intravenously with large doses of free virus. The Coxsackie A7 virus enters cells with the help of LIMP-2 protein encoded by SCARB2 gene [44]. LIMP-2 expresses on the surface of many types of human cells, including leukocytes; it seems that the protein contributes to the spread of virus throughout the body and participates in the expansion of enterovirus infections caused by some pathogenic strains of Coxsackie A. The virus delivery method we applied has a number of advantages over systemic administration of free virions: being inside the cell, the virus is protected from antibodies and other factors that can inactivate it. We presume that the virus is capable of a limited replication within leukocytes, which accounts for its appearance in the remote areas of the body, including tumors. Also, the delivery with leukocytes allows significant reduction of the initial amount of virus needed for therapy. Further studies should be aimed at finding out the applicability of this method to treatment of cancer patients.

CONCLUSIONS

We have found that intravenous injection of leukocytes carrying an oncolytic strain of the Coxsackie A7 virus to immunodeficient SCID/Beige line mice leads to a rapid collapse and subsequent disappearance of subcutaneous tumor xenografts obtained from glioblastoma cells of two different patients. The virus actively multiplied in mice while there were virus-sensitive tumor

800

■S 600

400

200

12 15 Days

18

21

24

27

Fig. 1. Size of the GM-3564 and GM-3876 glioblastoma subcutaneous tumor xenografts: dynamics of change, control (uninfected human leukocytes) and treatment (leukocytes carrying Coxsackie A7 virus) groups. A — leukocytes injected to mice with GM-3564 tumors; ▲ — infected leukocytes injected to mice with GM-3564 tumors ; O — leukocytes injected to mice with GM-3876 tumors; • — infected leukocytes injected to mice with GM-3876 tumors

Table. Coxsackie A7 virus titers found in the blood of the treatment group mice 0-27 days after the Injection of virus-infected leukocytes

Days 0 3 6 9 12 15 18 21 24 27

GM-3564 n. 1.5 x 102 1.7 x 104 3.2 x 103 2.6 x 103 6 x 102 1.9 x 102 n. n. n.

GM-3876 n. n. 1.0 x 102 5.2 x 103 5 x 103 1.2 x 103 2.6 x 102 n. n. n.

Note: n. — virus not detected.

0

0

3

6

9

cells in their bodies. The results of this study show that even in the absence of T-cell immunity, oncolytic enterovirus can destroy glioblastoma tumors in athymic mice through direct

cytolytic action. Also, we have found that using leukocytes as virus carriers is an effective method of delivering the latter to tumors.

References

1. Sosnovtceva AO, Grinenko NF, Lipatova AV, Chumakov PM, Chekhonin VP. Onkoliticheskie virusy v terapii zlorfchestvennyh gliom. Biomeditsinskaia khimiia. 2016; 62 (4): 376-90. Epub 2016/08/27. DOI: 10.18097/pbmc20166204376. PubMed PMID: 27562991.

2. Gubanova NV, Gaytan AS, Razumov IA, Mordvinov VA, Krivoshapkin AL, Netesov SV, i dr. Onkoliticheskie virusy v terapii gliom. Molecularnaja Biologija. 2012; 46 (6): 726-38.

3. Wakimoto H, Kesari S, Farrell CJ, Curry WT, Jr, Zaupa C, Aghi M, et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res. 2009; 69 (8): 3472-81.

4. Alonso MM, Jiang H, Gomez-Manzano C, Fueyo J. Targeting brain tumor stem cells with oncolytic adenoviruses. Methods Mol Biol. 2012; 797: 111-25.

5. Cheema TA, Wakimoto H, Fecci PE, Ning J, Kuroda T, Jeyaretna DS, et al. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci USA. 2013; 110 (29): 12006-11. Epub 2013/06/12. DOI: 10.1073/pnas.1307935110. PubMed PMID: 23754388; PubMed Central PMCID: PMCPMC3718117.

6. van den Hengel SK, Balvers RK, Dautzenberg IJ, van den Wollenberg DJ, Kloezeman JJ, Lamfers ML, et al. Heterogeneous reovirus susceptibility in human glioblastoma stem-like cell cultures. Cancer Gene Ther. 2013; 20 (9): 507-13. Epub 2013/08/03. DOI: 10.1038/cgt.2013.47. PubMed PMID: 23907517.

7. Zhu Z, Gorman MJ, McKenzie LD, Chai JN, Hubert CG, Prager BC, et al. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med. 2017; 214 (10): 2843-57. Epub 2017/09/07. DOI: 10.1084/jem.20171093. PubMed PMID: 28874392; PubMed Central PMCID: PMCPMC5626408.

8. Csatary LK, Bakacs T. Use of Newcastle disease virus vaccine (MTH-68/H) in a patient with high-grade glioblastoma. JAMA. 1999; 281 (17): 588-9.

9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646-74.

10. Zheltukhin AO, Chumakov PM. Povstdnevnye i induziuemye funkzii gena p53. Uspehi biologicheskoj chimii. 2010; 50: 447516.

11. Chumakov PM. Function of the p53 gene: choice between life and death. Biochemistry Biokhimiiä. 2000; 65 (1): 28-40.

12. Chumakov PM. Versatile functions of p53 protein in multicellular organisms. Biochemistry (Mosc). 2007; 72 (13): 1399-421. Epub 2008/02/20. DOI: BCM72131399 [pii]. PubMed PMID: 18282133; PubMed Central PMCID: PMC2709848.

13. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014; 14 (1): 36-49. Epub 2013/12/24. DOI: 10.1038/nri3581. PubMed PMID: 24362405; PubMed Central PMCID: PMCPMC4084561.

14. Stark GR, Darnell JE, Jr. The JAK-STAT pathway at twenty. Immunity. 2012; 36 (4): 503-14. Epub 2012/04/24. DOI: 10.1016/j.immuni.2012.03.013. PubMed PMID: 22520844; PubMed Central PMCID: PMCPMC3909993.

15. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015; 15 (7): 405-14. Epub 2015/06/02. DOI: 10.1038/nri3845. PubMed PMID: 26027717.

16. Groner B, von Manstein V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017; 451: 1-14. Epub 2017/06/04. DOI: 10.1016/j.mce.2017.05.033. PubMed PMID: 28576744.

17. Heiber JF, Barber GN. Evaluation of innate immune signaling pathways in transformed cells. Methods Mol Biol. 2012; 797: 217-38.

18. Li Q, Tainsky MA. Epigenetic silencing of IRF7 and/or IRF5 in

lung cancer cells leads to increased sensitivity to oncolytic viruses. PLoS One. 2011; 6 (12): e28683. Epub 2011/12/24. DOI: 10.1371/journal.pone.0028683. PubMed PMID: 22194884; PubMed Central PMCID: PMCPMC3237484.

19. Pikor LA, Bell JC, Diallo J-S. Oncolytic viruses: exploiting cancer's deal with the Devil. Trends in Cancer. 2015; 1 (4): 266-77.

20. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000; 6 (7): 821-5.

21. Bell JC, McFadden G. Editorial overview: Oncolytic viruses-replicating virus therapeutics for the treatment of cancer. Curr Opin Virol. 2015; 13: viii-ix. Epub 2015/08/12. DOI: 10.1016/j. coviro.2015.07.005. PubMed PMID: 26260227.

22. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016; 107 (10): 1373-9. Epub 2016/10/30. DOI: 10.1111/cas.13027. PubMed PMID: 27486853; PubMed Central PMCID: PMCPMC5084676.

23. Naik S, Russell SJ. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin Biol Ther. 2009; 9 (9): 1163-76.

24. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012; 30 (7): 658-70.

25. Keller BA, Bell JC. Oncolytic viruses-immunotherapeutics on the rise. J Mol Med (Berl). 2016; 94 (9): 979-91. Epub 2016/08/06. DOI: 10.1007/s00109-016-1453-9. PubMed PMID: 27492706.

26. Miao D, Van Allen EM. Genomic determinants of cancer immunotherapy. Curr Opin Immunol. 2016; 41: 32-8. Epub 2016/06/03. DOI: 10.1016/j.coi.2016.05.010. PubMed PMID: 27254251.

27. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Annals of translational medicine. 2016; 4 (14): 261. Epub 2016/08/27. DOI: 10.21037/atm.2016.04.01. PubMed PMID: 27563648; PubMed Central PMCID: PMCPMC4971375.

28. Shen W, Patnaik MM, Ruiz A, Russell SJ, Peng KW. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood. 2016; 127 (11): 1449-58. Epub 2015/12/30. DOI: 10.1182/blood-2015-06-652503. PubMed PMID: 26712908; PubMed Central PMCID: PMCPMC4797021.

29. Liston A, Farr AG, Chen Z, Benoist C, Mathis D, Manley NR, et al. Lack of Foxp3 function and expression in the thymic epithelium. J Exp Med. 2007; 204 (3): 475-80. Epub 2007/03/14. DOI: 10.1084/jem.20062465. PubMed PMID: 17353370; PubMed Central PMCID: PMCPMC2137899.

30. Parney IF, Petruk KC, Zhang C, Farr-Jones M, Sykes DB, Chang LJ. Granulocyte-macrophage colony-stimulating factor and B7-2 combination immunogene therapy in an allogeneic Hu-PBL-SCID/ beige mouse-human glioblastoma multiforme model. Hum Gene Ther. 1997; 8 (9): 1073-85. Epub 1997/06/10. DOI: 10.1089/ hum.1997.8.9-1073. PubMed PMID: 9189765.

31. Willmon C, Harrington K, Kottke T, Prestwich R, Melcher A, Vile R. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol Ther. 2009; 17 (10): 1667-76.

32. Collet G, Grillon C, Nadim M, Kieda C. Trojan horse at cellular level for tumor gene therapies. Gene. 2013; 525 (2): 208-16. Epub 2013/04/02. DOI: 10.1016/j.gene.2013.03.057. PubMed PMID: 23542073.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

33. Pan PY, Chen HM, Chen SH. Myeloid-derived suppressor cells as a Trojan horse: A cellular vehicle for the delivery of oncolytic viruses. Oncoimmunology. 2013; 2 (8): e25083. Epub 2013/10/02. DOI: 10.4161/onci.25083. PubMed PMID: 24083075; PubMed Central PMCID: PMCPMC3782526.

34. Kim SS, Pirollo KF, Chang EH. Isolation and Culturing of Glioma

Cancer Stem Cells. Current protocols in cell biology. 2015; 67: 23.10.1-10. Epub 2015/06/11. DOI: 10.1002/0471143030. cb2310s67. PubMed PMID: 26061242; PubMed Central PMCID: PMCPmc4471477.

35. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015; 29 (12): 1203-17. Epub 2015/06/26. DOI: 10.1101/gad.261982.115. PubMed PMID: 26109046; PubMed Central PMCID: PMCPMC4495393.

36. Shaheen S, Ahmed M, Lorenzi F, Nateri AS. Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer. Stem Cell Rev. 2016; 12 (4): 492-9. Epub 2016/05/22. DOI: 10.1007/s12015-016-9664-6. PubMed PMID: 27207017.

37. Dashzeveg NK, Taftaf R, Ramos EK, Torre-Healy L, Chumakova A, Silver DJ, et al. New Advances and Challenges of Targeting Cancer Stem Cells. Cancer Res. 2017; 77 (19): 5222-7. Epub 2017/09/21. DOI: 10.1158/0008-5472.can-17-0054. PubMed PMID: 28928129.

38. Natsume A, Kato T, Kinjo S, Enomoto A, Toda H, Shimato S, et al. Girdin maintains the stemness of glioblastoma stem cells. Oncogene. 2012; 31 (22): 2715-24. Epub 2011/10/25. DOI: 10.1038/onc.2011.466. PubMed PMID: 22020337.

39. Zheltukhin AO, Soboleva AV Sosnovtseva AO, Le TH, Ilyinskaya GV

Kochetkov DV, et al. Human enteroviruses exhibit selective oncolytic activity in the model of human glioblastoma multiforme xenografts in immunodeficient mice. Vestn RSMU. 2018; 2: 42-49

40. Chumakov PM, Moosova VV, Babkin IV, Baykov IK, Netesov CV, Tikunova NV. Onkoliticheskie enterovirusy. Molekuljarnaja biologija. 2012; 46 (6): 712-25.

41. Voroshilova MK. Interferon-producing enterovirus vaccines. (Live enterovirus vaccines, their interfering and interferonogenic activity and their use for prophylaxis of enteroviral and respiratory infections). Crit Rev Clin Lab Sci. 1970: 117-8.

42. Bayum A, Scand. J. Isolation of mononuclear cells and gr anulocytes from human blood. (Paper IV). Clin Lab Invest. 1968; 97 (21 Suppl.): 77-89.

43. Zheltukhin AO, Sidorenko AS, Kriukova KK, Golbin DA, Tereshkova AV. Persistent virus presence during experimental oncolytic virus therapy in the model of subcutaneous mouse xenografts of human gliobolastoma multiforme. J Pharm Sci Res. 2017; 9 (11): 2224-6.

44. Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, et al. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol. 2012; 86 (10): 5686-96. Epub 2012/03/23. DOI: 10.1128/ jvi.00020-12. PubMed PMID: 22438546; PubMed Central PMCID: PMCPMC3347270.

Литература

1. Сосновцева А. О., Гриненко Н. Ф., Липатова А. В., Чумаков П. М., Чехонин В. П. Онколитические вирусы в терапии злокачественных глиом. Биомедицинская химия. 2016; 62 (4): 376-90.

2. Губанова Н. В., Гайтан А. С., Разумов И. А., Мордвинов В. А., Кривошапкин А. Л., Нетесов С. В. и др. Онколитические вирусы в терапии глиом. Молекулярная биология. 2012; 46(6): 726-38.

3. Wakimoto H, Kesari S, Farrell CJ, Curry WT, Jr, Zaupa C, Aghi M, et al. Human glioblastoma-derived cancer stem cells: establishment of invasive glioma models and treatment with oncolytic herpes simplex virus vectors. Cancer Res. 2009; 69 (8): 3472-81.

4. Alonso MM, Jiang H, Gomez-Manzano C, Fueyo J. Targeting brain tumor stem cells with oncolytic adenoviruses. Methods Mol Biol. 2012; 797: 111-25.

5. Cheema TA, Wakimoto H, Fecci PE, Ning J, Kuroda T, Jeyaretna DS, et al. Multifaceted oncolytic virus therapy for glioblastoma in an immunocompetent cancer stem cell model. Proc Natl Acad Sci USA. 2013; 110 (29): 12006-11. Epub 2013/06/12. DOI: 10.1073/pnas.1307935110. PubMed PMID: 23754388; PubMed Central PMCID: PMCPMC3718117.

6. van den Hengel SK, Balvers RK, Dautzenberg IJ, van den Wollenberg DJ, Kloezeman JJ, Lamfers ML, et al. Heterogeneous reovirus susceptibility in human glioblastoma stem-like cell cultures. Cancer Gene Ther. 2013; 20 (9): 507-13. Epub 2013/08/03. DOI: 10.1038/cgt.2013.47. PubMed PMID: 23907517.

7. Zhu Z, Gorman MJ, McKenzie LD, Chai JN, Hubert CG, Prager BC, et al. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med. 2017; 214 (10): 2843-57. Epub 2017/09/07. DOI: 10.1084/jem.20171093. PubMed PMID: 28874392; PubMed Central PMCID: PMCPMC5626408.

8. Csatary LK, Bakacs T. Use of Newcastle disease virus vaccine (MTH-68/H) in a patient with high-grade glioblastoma. JAMA. 1999; 281 (17): 588-9.

9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144 (5): 646-74.

10. Желтухин А. О., Чумаков П. М. Повседневные и индуцируемые функции гена р53. Успехи биологической химии. 2010; 50: 447-516.

11. Чумаков П. М. Функция гена р53: выбор между жизнью и смертью. Биохимия. 2000; 65 (1): 28-40. PubMed PMID: 10702638.

12. Чумаков П. М. Белок р53 и его универсальные функции в многоклеточном организме. Биохимия. 2007; 72 (13):

1399-421. PubMed PMID: 18282133; PubMed Central PMCID: PMC2709848.

13. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014; 14 (1): 36-49. Epub 2013/12/24. DOI: 10.1038/nri3581. PubMed PMID: 24362405; PubMed Central PMCID: PMCPMC4084561.

14. Stark GR, Darnell JE, Jr. The JAK-STAT pathway at twenty. Immunity. 2012; 36 (4): 503-14. Epub 2012/04/24. DOI: 10.1016/j.immuni.2012.03.013. PubMed PMID: 22520844; PubMed Central PMCID: PMCPMC3909993.

15. Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015; 15 (7): 405-14. Epub 2015/06/02. DOI: 10.1038/nri3845. PubMed PMID: 26027717.

16. Groner B, von Manstein V. Jak Stat signaling and cancer: Opportunities, benefits and side effects of targeted inhibition. Mol Cell Endocrinol. 2017; 451: 1-14. Epub 2017/06/04. DOI: 10.1016/j.mce.2017.05.033. PubMed PMID: 28576744.

17. Heiber JF, Barber GN. Evaluation of innate immune signaling pathways in transformed cells. Methods Mol Biol. 2012; 797: 217-38.

18. Li Q, Tainsky MA. Epigenetic silencing of IRF7 and/or IRF5 in lung cancer cells leads to increased sensitivity to oncolytic viruses. PLoS One. 2011; 6 (12): e28683. Epub 2011/12/24. DOI: 10.1371/journal.pone.0028683. PubMed PMID: 22194884; PubMed Central PMCID: PMCPMC3237484.

19. Pikor LA, Bell JC, Diallo J-S. Oncolytic viruses: exploiting cancer's deal with the Devil. Trends in Cancer. 2015; 1 (4): 266-77.

20. Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, et al. Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med. 2000; 6 (7): 821-5.

21. Bell JC, McFadden G. Editorial overview: Oncolytic viruses-replicating virus therapeutics for the treatment of cancer. Curr Opin Virol. 2015; 13: viii-ix. Epub 2015/08/12. DOI: 10.1016/j. coviro.2015.07.005. PubMed PMID: 26260227.

22. Fukuhara H, Ino Y, Todo T. Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Sci. 2016; 107 (10): 1373-9. Epub 2016/10/30. DOI: 10.1111/cas.13027. PubMed PMID: 27486853; PubMed Central PMCID: PMCPMC5084676.

23. Naik S, Russell SJ. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin Biol Ther. 2009; 9 (9): 1163-76.

24. Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol. 2012; 30 (7): 658-70.

25. Keller BA, Bell JC. Oncolytic viruses-immunotherapeutics on the rise. J Mol Med (Berl). 2016; 94 (9): 979-91. Epub 2016/08/06. DOI: 10.1007/s00109-016-1453-9. PubMed PMID: 27492706.

26. Miao D, Van Allen EM. Genomic determinants of cancer immunotherapy. Curr Opin Immunol. 2016; 41: 32-8. Epub 2016/06/03. DOI: 10.1016/j.coi.2016.05.010. PubMed PMID: 27254251.

27. Papaioannou NE, Beniata OV, Vitsos P, Tsitsilonis O, Samara P. Harnessing the immune system to improve cancer therapy. Annals of translational medicine. 2016; 4 (14): 261. Epub 2016/08/27. DOI: 10.21037/atm.2016.04.01. PubMed PMID: 27563648; PubMed Central PMCID: PMCPMC4971375.

28. Shen W, Patnaik MM, Ruiz A, Russell SJ, Peng KW. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood. 2016; 127 (11): 1449-58. Epub 2015/12/30. DOI: 10.1182/blood-2015-06-652503. PubMed PMID: 26712908; PubMed Central PMCID: PMCPMC4797021.

29. Liston A, Farr AG, Chen Z, Benoist C, Mathis D, Manley NR, et al. Lack of Foxp3 function and expression in the thymic epithelium. J Exp Med. 2007; 204 (3): 475-80. Epub 2007/03/14. DOI: 10.1084/jem.20062465. PubMed PMID: 17353370; PubMed Central PMCID: PMCPMC2137899.

30. Parney IF, Petruk KC, Zhang C, Farr-Jones M, Sykes DB, Chang LJ. Granulocyte-macrophage colony-stimulating factor and B7-2 combination immunogene therapy in an allogeneic Hu-PBL-SCID/ beige mouse-human glioblastoma multiforme model. Hum Gene Ther. 1997; 8 (9): 1073-85. Epub 1997/06/10. DOI: 10.1089/ hum.1997.8.9-1073. PubMed PMID: 9189765.

31. Willmon C, Harrington K, Kottke T, Prestwich R, Melcher A, Vile R. Cell carriers for oncolytic viruses: Fed Ex for cancer therapy. Mol Ther. 2009; 17 (10): 1667-76.

32. Collet G, Grillon C, Nadim M, Kieda C. Trojan horse at cellular level for tumor gene therapies. Gene. 2013; 525 (2): 208-16. Epub 2013/04/02. DOI: 10.1016/j.gene.2013.03.057. PubMed PMID: 23542073.

33. Pan PY, Chen HM, Chen SH. Myeloid-derived suppressor cells as a Trojan horse: A cellular vehicle for the delivery of oncolytic viruses. Oncoimmunology. 2013; 2 (8): e25083. Epub 2013/10/02. DOI: 10.4161/onci.25083. PubMed PMID: 24083075; PubMed Central PMCID: PMCPMC3782526.

34. Kim SS, Pirollo KF, Chang EH. Isolation and Culturing of Glioma Cancer Stem Cells. Current protocols in cell biology. 2015; 67: 23.10.1-10. Epub 2015/06/11. DOI: 10.1002/0471143030. cb2310s67. PubMed PMID: 26061242; PubMed Central PMCID: PMCPmc4471477.

35. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN. Cancer stem cells in glioblastoma. Genes Dev. 2015; 29 (12): 1203-17. Epub 2015/06/26. DOI: 10.1101/gad.261982.115. PubMed PMID: 26109046; PubMed Central PMCID: PMCPMC4495393.

36. Shaheen S, Ahmed M, Lorenzi F, Nateri AS. Spheroid-Formation (Colonosphere) Assay for in Vitro Assessment and Expansion of Stem Cells in Colon Cancer. Stem Cell Rev. 2016; 12 (4): 492-9. Epub 2016/05/22. DOI: 10.1007/s12015-016-9664-6. PubMed PMID: 27207017.

37. Dashzeveg NK, Taftaf R, Ramos EK, Torre-Healy L, Chumakova A, Silver DJ, et al. New Advances and Challenges of Targeting Cancer Stem Cells. Cancer Res. 2017; 77 (19): 5222-7. Epub 2017/09/21. DOI: 10.1158/0008-5472.can-17-0054. PubMed PMID: 28928129.

38. Natsume A, Kato T, Kinjo S, Enomoto A, Toda H, Shimato S, et al. Girdin maintains the stemness of glioblastoma stem cells. Oncogene. 2012; 31 (22): 2715-24. Epub 2011/10/25. DOI: 10.1038/onc.2011.466. PubMed PMID: 22020337.

39. Желтухин А. О., Соболева А. В., Сосновцева А. О., Ле Т. Х., Ильинская Г. В., Кочетков Д. В., и др. Энтеровирусы человека проявляют избирательную онколитическую активность на модели ксенотрансплантатов мультиформной глиобластомы человека в иммунодефицитных мышах. Вестник РГМУ. 2018; 2: 45-52.

40. Чумаков П. М., Морозова В. В., Бабкин И. В., Байков И. К., Нетесов С. В., Тикунова Н. В. Онколитические энтеровирусы. Молекулярная биология. 2012; 46 (6): 712-25.

41. Voroshilova MK. Interferon-producing enterovirus vaccines. (Live enterovirus vaccines, their interfering and interferonogenic activity and their use for prophylaxis of enteroviral and respiratory infections). Crit Rev Clin Lab Sci. 1970: 117-8.

42. Bayum A, Scand. J. Isolation of mononuclear cells and gr anulocytes from human blood. (Paper IV). Clin Lab Invest. 1968; 97 (21 Suppl.): 77-89.

43. Zheltukhin AO, Sidorenko AS, Kriukova KK, Golbin DA, Tereshkova AV Persistent virus presence during experimental oncolytic virus therapy in the model of subcutaneous mouse xenografts of human gliobolastoma multiforme. J Pharm Sci Res. 2017; 9 (11): 2224-6.

44. Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K, Okamoto M, et al. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J Virol. 2012; 86 (10): 5686-96. Epub 2012/03/23. DOI: 10.1128/ jvi.00020-12. PubMed PMID: 22438546; PubMed Central PMCID: PMCPMC3347270.

i Надоели баннеры? Вы всегда можете отключить рекламу.