УДК 532.5.011
Поведение графеновых и алмазных наночастиц в ЭМГД-модели перистальтического течения с учетом энтропии
V. Sridhar, K. Ramesh
Университет Симбиозис Интернешнел, Пуна, 412115, Индия
Алмазные и графеновые углеродные наночастицы находят особое применение в медицине для лечения рака и целевой доставки лекарств. В статье исследовано течение наножидкости с моментными напряжениями (кровь - графеновые/алмазные наночастицы) в асимметричном канале с учетом вязкой диссипации, электромагнитной гидродинамики (ЭМГД), джоулева нагрева, скорости скольжения и конвективных граничных условий. Получено аналитическое решение математической модели в предположении большой длины волны и малого числа Рейнольдса. Показано влияние различных параметров на скорость, температуру, коэффициент теплопередачи, градиент давления, образование ловушки, напряжение сдвига и производство энтропии. Согласно полученным результатам, наножидкость на основе алмаза имеет более высокую скорость по сравнению с наножидкостью на основе графена, число Бежана увеличивается с увеличением числа Бринкмана за счет производства энтропии, а рост мо-ментных напряжений приводит к уменьшению размера болюса.
Ключевые слова: наножидкость с моментными напряжениями, электроосмос, производство энтропии, графен, магнитное поле, алмаз
DOI 10.24412/1683-805X-2021-6-86-89
Performance of graphene and diamond nanoparticles on EMHD peristaltic flow model with entropy generation analysis
V. Sridhar and K. Ramesh
Department of Mathematics, Symbiosis Institute of Technology, Symbiosis International (Deemed University),
Lavale, Pune, 412115, Maharashtra, India
Diamond and graphene are carbide nanoparticles that have valuable biomedical applications in cancer therapy and drug delivery. The aim of this study is to analyze the couple stress nanofluid (blood - gra-phene/diamond) flow in an asymmetric channel with the effect of viscous dissipation, electromagnetohydro-dynamics (EMHD), Joule heating, velocity slip and convective boundary conditions. The mathematical model is solved analytically under the assumptions of long wavelength and low Reynolds number. The impact of various parameters on velocity, temperature, heat transfer coefficient, pressure gradient, trapping, shear stress, and entropy generation are depicted pictorially. The results obtained indicate that diamond-based nanofluid has higher velocity than grapheme-based nanofluid, Bejan number enhances with increasing Brink-man number through entropy generation, and an increase in the couple stress parameter reduces the bolus size.
Keywords: couple stress nanofluid, electroosmosis, entropy generation, graphene, magnetic field, diamond
1. Introduction
Peristalsis is the mechanism of fluid transport by expansion and contraction of muscles due to the pro© Sridhar V., Ramesh K., 2021
pagation of waves along the channel. Peristalsis is the process of propelling and mixing of fluid in an anterograde direction of wave propagation. It has
wide range of applications in industry, environmental and bioengineering fields. To be more specific, peristaltic concept is useful in physiological phenomena like blood flow in vessels, chyme motion in the gastrointestinal tract, urine transport from kidney to bladder through the ureter, sperm pumping in ducts, swallowing of food through esophagus, and heart-lung machine. Latham [1] in 1966 experimentally introduced the peristaltic pumping mechanism. After initiation of this concept many researchers discussed peristaltic propulsion in various geometries. Tripathi and Beg [2] studied peristaltic motion in a symmetric channel. Reddy and Makinde [3] discussed peristaltic propulsion in an asymmetric channel. Nadeem et al. [4] considered peristaltic flow through eccentric cylinders. Ali et al. [5] theoretically observed peristaltic flow in a curved channel. Akbar and Butt [6] investigated peristaltic propulsion through a radially symmetric plumb duct.
In the last few decades researchers have been focusing on the study of nanofluid due to the vast applications of nanofluids in biomedical sciences like vivo therapy, photodynamic therapy, protein engineering, and drug delivery. Nanofluid means merging of nanoscale particles into conventional fluid. This term was initially introduced by Choi [7]. Generally, nanoparticles are composed of metals, carbides, and oxides. Among nanoparticles, graphene nanoparticles have the advantageous properties like high thermal conductivity, good electrical conduction, and reduced clogging. Graphene was discovered by the experimental work of Novoselov et al. [8] in 2004. Gra-phene is a carbon-based nanomaterial. It is widely used in biomedicine as an anticancer agent, water purifier, a sensor for blood sugar, blood pressure levels, for prosthesis and dental implants. Feng and Liu [9] discussed various biomedical applications of gra-phene nanoparticles. Sandeep and Malvandi [10] investigated the flow of graphene nanoparticles suspended with non-Newtonian fluids (Jeffrey, Maxwell and Oldroyd-B fluids) and concluded that their outcomes can be helpful in designing heat exchanger devices. Shit and Mukherjee [11] studied the graphene-polydimethylsiloxane (PDMS) nanofluid flow and revealed that their observations have applications in biomedical engineering and powder technology. Khan et al. [12] theoretically studied the Carreau na-nofluid flow consisting of graphene nanoparticles and determined that their results are helpful for thermal conductivity and design of coating processes.
Aman et al. [13] defined graphene/water nanofluid as another source of solar energy in thermal engineering. Rashid et al. [14] discussed the heat transfer flow of water/graphene nanofluid with distinct nanoparticle shapes. Wang et al. [15] experimentally explored that the thermal conductivity of graphene-based nanofluid is higher than that of the base fluid water. Diamond nanoparticles belong to carbon-family materials. They were initially found in the 1960s by detonation in the USSR [16]. Diamond nanoparticles are utilized in bioapplications such as anti-bacterial and anti-viral treatments, drug delivery vehicles, and therapeutic agents for diagnostic probes [17]. Sani et al. [18] studied the diamond/graphite-ethylene glycol nanofluid flow and their results are applicable in solar energy. Xie et al. [19] discussed the diamond-based nanofluid flow and concluded that the thermal conductivity of nanofluid increases with the volume fraction of diamond nanoparticles. A few more researchers discussed the diamond-based nanofluid flow [20, 21].
Magnetohydrodynamics (MHD) defines the movement of any conducting fluid with an external/induced magnetic field. Magnetic nanofluid has many applications in metallurgy, polymer industry, and medical engineering. MHD nanofluid is of great importance in biomedical area like wound treatment, targeted gene delivery, and magnetic resonance imaging. Akbar et al. [22] discussed the Jeffrey nano-fluid flow with the effect of magnetohydrodynamics using the homotopy perturbation method (HPM) and their findings are helpful in nanobiomedicine. Ko-thandapani and Prakash [23] investigated the Carreau nanofluid flow under a magnetic field using the regular perturbation method and specified that their findings may assist in cancer therapy. Krishna and Chamka [24] investigated the water-Cu/TiO2 nano-fluid flow with the effect of magnetohydrodynamics using perturbation approximation; their outcomes contribute to biomedical applications aimed at destroying cancer cells. Mosayebidorcheh and Hatami [25] analyzed an incompressible nanofluid flow with the impact of magnetohydrodynamics by the analytical least square method using Maple mathematical software. Nisar et al. [26] illustrated the magnetic Eyring-Powell nanofluid flow using the NDSolve tool from Mathematica.
Industries and academics alike may benefit the mesomechanical aspects of computational modeling for various established theories known in the field of mechanics.
References
1. Latham T. W. Fluid Motion in a Peristaltic Pump // MS Thesis, MIT, USA, 1966. - https://dspace.mit.edu/handle/1721. 1/17282
2. Tripathi D., Beg O.A. A study on peristaltic flow of nano-fluids: Application in drug delivery systems // Int. J. Heat Mass Transfer. - 2014. - V. 70. - P. 61-70. - https://doi. org/10.1016/j.ijheatmasstransfer.2013.10.044
3. Reddy M.G., Makinde O.D. Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel // J. Molec. Liq. - 2016. - V. 223. - P. 1242-1248. - https:// doi.org/10.1016/j.molliq.2016.09.080
4. Nadeem S., Riaz A., Ellahi R., Akbar N.S. Effects of heat and mass transfer on peristaltic flow of a nanofluid between eccentric cylinders // Appl. Nanosci. - 2014. - V. 49. -P. 521-534. - https://doi.org/10.1007/s13204-013-0225-x
5. Ali N., SajidM., Javed T., Abbas Z. Heat transfer analysis of peristaltic flow in a curved channel // Int. J. Heat Mass Transfer. - 2010. - V. 53. - P. 3319-3325. - https://doi.org/ 10.1016/j.ijheatmasstransfer.2010.02.036
6. Akbar N.S., Butt A.W. Ferromagnetic nano model study for the peristaltic flow in a plumb duct with permeable walls // Microsyst. Technol. - 2019. - V. 25. - P. 1227-1234. -https://doi.org/10.1007/s00542-018-4045-5
7. Choi S.U.S., Eastman J.A. Enhancing thermal conductivity of fluids with nanoparticles, developments and applications of non-Newtonian flows // ASME. - 1995. - V. 66. - P. 99-105.
8. Novoselov K.S., Geim A.K., Morozov S.V. et al. Electric field effect in atomically thin carbon films // Science. - 2004. -V. 306. - P. 666-669. - https://doi.org/10.1126/science. 1102896
9. Feng L., Liu Z. Graphene in biomedicine: Opportunities and challenges // Nanomedicine. - 2011. - V. 6. - P. 317-324. -https://doi.org/10.2217/nnm.10.158
10. Sandeep N., Malvandi A. Enhanced heat transfer in liquid thin film flow of non-Newtonian nanofluids embedded with graphene nanoparticles // Adv. Powder Technol. - 2016. -V. 6. - P. 2448-2456. - https://doi.org/10.1016/j.apt.2016. 08.023
11. Shit G.C., Mukherjee S. MHD graphene-polydimethylsilo-xane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects // Appl. Math. Mech. - 2019. -V. 40. - P. 1269-1284. - https://doi.org/10.1007/s10483-019-2517-9
12. Khan N.S., Gul T., Kumam P., Shah Z., Islam S., Khan W., Zuhra S., Sohail A. Influence of inclined magnetic field on Carreau nanoliquid thin film flow and heat transfer with graphene nanoparticles // Energies. - 2019. - V. 12. - P. 120. - https://doi.org/10.3390/en12081459
13. Aman S., Khan I., Ismail Z., Salleh M.Z., Tlili I. A new Ca-puto time fractional model for heat transfer enhancement of water-based graphene nanofluid: An application to solar energy // Res. Phys. - 2018. -V. 9. - P. 1352-1362. -https://doi.org/10.1016/j.rinp.2018.04.007
14. Rashid U., Baleanu D., Liang H., Abbas M., Iqbal A., Rahman J.U. Marangoni boundary layer flow and heat transfer of graphene-water nanofluid with particle shape effects // Processes. - 2020. - V. 8. - P. 1120. - https://doi.org/10. 3390/pr8091120
15. Wang Y., Al-Saaidi H.A.I., KongM., Alvarado J.L. Thermo-physical performance of graphene based aqueous nanofluids // Int. J. Heat Mass Transfer. - 2018. - V. 119. - P. 408-
417. - https://doi.org/10.1016/j .ijheatmasstransfer.2017.11. 019
16. Danilenko V.V. On the history of the discovery of nano diamond synthesis // Phys. Solid State. - 2004. - V. 46. -P. 595-599. - https://doi.org/10.1134/1.1711431
17. Schrand A.M., Hens S.A.C., Shenderova O.A. Nanodiamond particles: Properties and perspectives for bioapplications // Crit. Rev. Solid State Mater. Sci. - 2009. - V. 34. - P. 1874. - https://doi.org/10.1080/10408430902831987
18. Sani E., Papi N., Mercatelli L., Zyla G. Graphite/diamond ethylene glycol-nanofluids for solar energy applications // Renewable Energy. - 2018. - V. 126. - P. 692-698. -https://doi.org/10.1016Zj.renene.2018.03.078
19. Xie H., Yu W., Li Y. Thermal performance enhancement in nanofluids containing diamond nanoparticles // J. Phys. D. Appl. Phys. - 2019. - V. 42. - P. 095413. - https://doi.org/ 10.1088/0022-3727/42/9/095413
20. Alklaibi A.M., SundarL.S., Sousa A.C.M. Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector // Int. Commun. Heat Mass Transfer. - 2021. -V. 120. - P. 105057. - https://doi.org/10.1016/jicheatmass transfer.2020.105057
21. Sundar L.S., Hortiguela M.J., Singh M.K., SousaA.C.M. Thermal conductivity and viscosity of water based nanodia-mond (ND) nanofluids: An experimental study // Int. Commun. Heat Mass Transfer. - 2016. - V. 76. - P. 245-255. -https://doi.org/10.1016/jicheatmasstransfer.2016.05.025
22. Akbar N.S., Nadeem S., Noor N.F.M. Free convective MHD peristaltic flow of a Jeffrey nanofluid with convective Surface boundary condition: A biomedicine-nano model // Current Nanosci. - 2014. - V. 10. - P. 432-440. - https://doi. org/10.2174/15734137113096660125
23. Kothandapani M., Prakash J. The peristaltic transport of Carreau nanofluids under effect of a magnetic field in a tapered asymmetric channel: Application of the cancer therapy // J. Mech. Med. Biol. - 2015. - V. 3. - P. 1550030. -https://doi.org/10.1142/S021951941550030X
24. KrishnaM.V., ChamkhaA.J. Hall and ion slip effects on unsteady MHD convective rotating flow of nanofluids—Application in biomedical engineering // J. Egypt. Math. Soc. -2020. - V. 28. - https://doi.org/10.1186/s42787-019-0065-2
25. Mosayebidorcheh S., Hatami M. Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel. Part II: Divergent channel // Int. J. Heat Mass Transfer. - 2018. - V. 126. - P. 800-808. -https://doi.org/10.1016/) .ijheatmasstransfer.2018.05.077
26. Nisara Z., Hayat T., Alsaedi A., Ahmad B. Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid // Int. Commun. Heat Mass Transfer. -2020. - V. 116. - P. 104655. - https://doi.org/10.1016/]. icheatmasstransfer.2020.104655
27. Dong Q., Wang K., Kong S., Wang Y. Flow Field and Heat Transfer in Chaotic-Advector Fins // Particle and Continuum Aspects of Mesomechanics. - 2007. - P. 761-768. - https:// doi.org/10.1002/9780470610794.ch78
28. Chen K.C. On the macroscopic-mesoscopic mixture of a mag-netorheological fluid // Proc. Roy. Soc. A. - 2006. - V. 462. -P. 1123-1144. - https://doi.org/10.1098/rspa.2005.1609
29. Rudyak V.Ya., Minakov A.V., Krasnolutskii S.L. Physics and mechanics of heat exchange processes in nanofluid flows // Phys. Mesomech. - 2016. - V. 19. - No. 3. - P. 298-306. -https://doi.org/10.1134/S1029959916030085
31.
32.
33.
34.
35.
36.
Ramesh K., Devakar M. Magnetohydrodynamic peristaltic transport of couple stress fluid through porous medium in an inclined asymmetric channel with heat transfer // J. Magnetism Magnetic Mater. - 2015. - V. 394. - P. 335-348. -https://doi.org/10.1016/jjmmm.2015.06.052 Tripathi D., Prakash J., Reddy M.G., Misra J.C. Numerical simulation of double diffusive convection and electroosmo-sis during peristaltic transport of a micropolar nanofluid on an asymmetric microchannel // J. Therm. Analys. Calorim. -2021. - V. 143. - P. 2499-2514. - https://doi.org/10.1007/ s10973-020-10214-y
Ranjit N.K., Shit G.C., Tripathi D. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic // Microvasc. Res. - 2018. - V. 117. - P. 74-89. - https://doi.org/10.1016/ j.mvr.2017.12.004
Hayat T., Rafiq M., Ahmad B., Asghar S. Entropy generation analysis for peristaltic flow of nanoparticles in a rotating frame // Int. J. Heat Mass Transfer. - 2017. - V. 108. -P. 1775-1786. - https://doi.org/10.1016/j.ijheatmasstransfer. 2017.01.038
Gireesha A.J., Sindhu S. Entropy generation analysis of na-noliquid flow through microchannel considering heat source and different shapes of nanoparticle // Int. J. Numer. Meth. Heat Fluid Flow. - 2020. - V. 30. - P. 1457-1477. - https:// doi.org/10.1108/HFF-06-2019-0472
Prakash J., Sharma A., Tripathi D. Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel // J. Molec. Liq. -2018. - V. 249. - P. 843-855. - https://doi.org/10.1016/). molliq.2017.11.064
Ramesh K., Akbar N.S., Usman M. Biomechanically driven flow of a magnetohydrodynamic bio-fluid in a micro-vessel with slip and convective boundary conditions // Microsyst. Technol. - 2019. - V. 25. - P. 151-173. - https://doi. org/10.1007/s00542-018-3945-8
37. RanjitN.K., Shit G.C. Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment // Energy. - 2017. - V. 128. - P. 649-660. -https://doi.org/10.10167j.energy.2017.04.035.
38. Khan U., Adnan, Alkanhal T.A., Ahmed N., Khan I., Mo-hyud-Din S.T. Stimulations of thermophysical characteristics of nano-diamond and silver nanoparticles for nonlinear radiative curved surface flow // IEEE Access. - 2019. -V. 7. - P. 55509-55517. - https://doi.org/10.1109/ACCESS. 2019.2907304
39. Eid M.R., Al-Hossainy A.F., Zoromba M.S. FEM for blood-based SWCNTs slow through a circular cylinder in a porous medium with electromagnetic radiation // Commun. Theor. Phys. - 2019. - V. 71. - P. 1425-1434. - http://doi.org/10. 1088/0253-6102/71/12/1425
40. Almeida F., Gireesha B.J., Venkatesh P., Ramesh G.K. Intrinsic irreversibility of Al2Ü3 nanofluid Poiseuille flow with variable viscosity and convective cooling // Int. J. Numer. Meth. Heat Fluid Flow. - 2020. - https://doi.org/10.1108/ hff-09-2020-0575
41. Sinha A., Shit G.C., Ranjit N.K. Peristaltic transport of MHD flow and heat transfer in an asymmetric channel: Effects of variable viscosity, velocity-slip and temperature jump // Ale-xandr. Eng. J. - V. 54. - P. 691-704. - https://doi.org/10. 1016/j.aej.2015.03.030
42. Hayat T., Shafique M., Tanveer A., Alsaedi A. Magnetohydro-dynamic effects on peristaltic flow of hyperbolic tangent na-nofluid with slip conditions and Joule heating in an inclined channel // Int. J. Heat Mass Transfer. - 2016. - V. 102. - P. 5463. - https://doi.org/10.1016/jijheatmasstransfer.2016.05.105
43. Ali A., Shah Z., Mumraiz S., Kumam P., Awais M. Entropy generation on MHD peristaltic flow of Cu-water nanofluid with slip conditions // Heat Transfer-Asian Res. - 2019. -V. 48. - P. 4301-4319. - https://doi.org/10.1002/htj.21593
Received 30.03.2021, revised 13.07.2021, accepted 14.07.2021
This is an excerpt of the article "Performance of Graphene and Diamond Nanoparticles on EMHD Peristaltic Flow Model with Entropy Generation Analysis". Full text of the paper is published in Physical Mesomechanics Journal. DOI: 10.1134/S1029959922020084
Сведения об авторах
Vemulawada Sridhar, Symbiosis Institute of Technology, Symbiosis International (Deemed University), India, [email protected]
Dr. Katta Ramesh, Symbiosis Institute of Technology, Symbiosis International (Deemed University), India, [email protected]