Научная статья на тему 'Перечислительная классификация сигналов сканирующей зондовой микроскопии'

Перечислительная классификация сигналов сканирующей зондовой микроскопии Текст научной статьи по специальности «Математика»

CC BY
154
41
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КЛАССИФИКАЦИЯ ДАННЫХ СКАНИРУЮЩЕЙ ЗОНДОВОЙ МИКРОСКОПИИ / CLASSIFICATION OF SCANNING PROBE MICROSCOPY DATA / ПОЛИНОМЫ МОРСА / MORSE POLYNOMIALS / ПЕРЕСТАНОВКИ / PERMUTATIONS

Аннотация научной статьи по математике, автор научной работы — Мусалимов Виктор Михайлович, Коваленко Павел Павлович, Перепелкина Светлана Юрьевна

Предложен новый метод классификации данных, полученных с помощью сканирующей зондовой микроскопии, на основе полиномов Морса и возможностей перечислительной комбинаторики.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Мусалимов Виктор Михайлович, Коваленко Павел Павлович, Перепелкина Светлана Юрьевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Enumerative classification of scanning probe microscopy data

A new method for enumerative classification of scanning probe microscopy data is proposed. The method is based on Morse polynomials and capabilities of enumerative combinatorial analysis.

Текст научной работы на тему «Перечислительная классификация сигналов сканирующей зондовой микроскопии»

УДК 004.932

В. М. Мусалимов, П. П. Коваленко, С. Ю. Перепелкина

ПЕРЕЧИСЛИТЕЛЬНАЯ КЛАССИФИКАЦИЯ СИГНАЛОВ СКАНИРУЮЩЕЙ ЗОНДОВОЙ МИКРОСКОПИИ

Предложен новый метод классификации данных, полученных с помощью сканирующей зондовой микроскопии, на основе полиномов Морса и возможностей перечислительной комбинаторики.

Ключевые слова: классификация данных сканирующей зондовой микроскопии, полиномы Морса, перестановки.

Введение. Известно, что данные, получаемые с помощью сканирующей зондовой микроскопии (СЗМ), обрабатываются различными программами, в частности, FemtoScan Online, Gwyddion, SPIP и WSxM. Перечисленные программы применяют к получаемым данным СЗМ различные методы обработки сигналов и позволяют визуализировать их в том или ином виде. Существующие программы обработки данных направлены только на анализ сигналов и, как показали наши исследования, не позволяют решать задачу классификации технологических поверхностей. Международные системы классификации качества поверхностей, основанные на определении параметров шероховатости поверхности Ra и Rz, применимы только для микроизмерений и не позволяют однозначно классифицировать результаты измерений на нано-уровне, так как определяются не характеристики поверхности, а некоторая потенциальная функция, описывающая межатомное взаимодействие поверхности и зонда. Целью настоящей статьи является разработка методов анализа и классификации сигналов, получаемых при использовании систем мониторинга качества технологических поверхностей, включая средства сканирующей зондовой микроскопии, на основе достижений и возможностей перечислительной комбинаторики с использованием логики паттернов [1, 2].

Настоящая работа посвящена развитию топологического метода классификации информации, поступающей со средств мониторинга качества поверхностей, основанного на использовании полиномов Морса и возможностей перечислительной комбинаторики [3, 4].

Полиномы Морса можно описать следующей функцией:

P(х) = a0хи+1 + aixn + a2xn-1 +... + an, a, x e R .

Многочлен степени n +1 имеет n критических точек и n критических значений. Рассмотрим многочлены вида:

P (х) = xn+1 + a1 xn + a2 xn-1 +... + an, где ao = 1 — старший коэффициент.

Точка Xo называется критической для многочлена P (х) , если она является корнем его производной, P' (xo ) = 0. В критической точке касательная к графику многочлена горизонтальна. Значение многочлена в критической точке P (Xo) называется критическим. Многочлен P (х) называется морсовским, если все его:

— критические точки вещественны и различны;

— критические значения различны.

Каждому полиному Морса соответствует определенная числовая последовательность (перестановка) критических значений многочлена от наименьшего критического (номер 1) до наибольшего, номер которого зависит от количества критических точек и, следовательно, от

степени полинома. Перестановки, соответствующие полиномам Морса (пилообразные), называют типами этих полиномов [5].

Типом полинома Морса может являться только такая перестановка, последнее критическое значение которой меньше предыдущего. Таким образом, для полиномов с нечетной степенью п первый элемент перестановки должен быть меньше последующего, с четной п — больше. Исходя из вышеуказанного правила полиномы Морса можно разделить на две группы:

— если п нечетное (п = 1, 3, 5, 7 ...), то такие полиномы называются нечетными;

— если п четное (п = 2, 4, 6 ...), то такие полиномы называются четными.

Распределения порядковых номеров критических значений в перестановках. Рассмотрим полиномы Морса п = 5, они имеют три локальных минимума (Уь V2, V?) и два локальных максимума (Л1, Л2), чередующихся между собой.

Известно, что данный класс полиномов включает 16 возможных перестановок номеров экстремумов, определяемых по их положению на позиции того или иного локального минимума или максимума (табл. 1).

Таблица 1

Распределение порядковых номеров критических значений

Порядковый номер экстремума

Локальный минимум или максимум

Распределения номеров критических значений

Перестановки

VI

13254 14352 15342 14253 15243

24153 23154 24351 25143 25341

34152 35241 35142 34251

45132 45231

Л1

II

13254 23154

14253 14352 24153 24351 34152 34251

15243 15342 25143 25341 35142 35241 45132 45231

У2

III

ч/Л/47

24153 23154 25143 34152 35142 45132

13254 14253 15243 35241 34251 45231

14352 15342 24351 25341

Л,

IV

ч/ХЛ7

45132 45231

15342 15243 25143 25341 35241 35142

13254 14352 14253 23154 24153 24351 34152 34251

У3

V

\Z\7V

24351 25341 35241 34251 45231

34152 35142 45132 14352 15342

14253 15243 24153 25143

13254 23154

I

Можно заметить, что полученные распределения несимметричны, при этом экстремумы I и V обладают одинаковыми распределениями. В свою очередь, распределения для экстре-

мумов II и IV идентичны. Отсюда можно сделать вывод, что распределения порядковых номеров в перестановках для нечетных полиномов симметричны относительно центрального экстремума.

Рассмотрим использование полиномов Морса п=5 в качестве базы перечислительной классификации данных, получаемых со средств мониторинга качества поверхностей.

На рис. 1 представлена основа перечислительной классификации данных с использованием полиномов Морса с пятью критическими точками (п=5): V1 — первый; V2 — второй; Vз — третий; Л1 — четвертый; Л2 — пятый подкласс. Для каждого подкласса указаны перестановки, которые могут входить в него. В рамках предлагаемой классификации эти перестановки будем называть типом. Каждый тип может принадлежать двум подклассам в зависимости от того, как он классифицируется — по положению наибольшего максимума (экстремума с порядковым номером 5) или минимума (экстремума 1). Для этого вычисляется среднее арифметическое всех значений (рис. 1, пунктир), составляющих классифицируемые данные. После этого определяются отклонения вершин и впадин от среднего значения, если отклонение впадины превышает отклонение выступа, классификация осуществляется по положению главной впадины, т.е. экстремума 1. Здесь возможны три варианта: экстремум 1 находится на позиции первой впадины V1, тогда он относится к первому подклассу; если экстремум находится на позиции второй впадины V то ко второму; в случае нахождения экстремума 1 на позиции Уз — к третьему.

VI® , Уз(У)

Рис. 1

Если отклонение вершины больше отклонения впадины, то выбор подкласса осуществляется по вершине, т.е. по положению экстремума 5: если он находится на позиции первого выступа Л1, имеет место четвертый подкласс, если на позиции Л2 — пятый.

Аналогичным образом формируются четыре подкласса четвертого класса, в котором имеются два выступа и две впадины.

Рассмотрим полиномы Морса с шестью критическими точками (п=6). Для данного класса имеется 61 перестановка. Каждый такой полином обладает тремя локальными минимумами VI, V2, Vз и тремя максимумами Л1, Л2, Л3. Аналогично полиномам пятого класса классификация производится по положению локального минимума (экстремума 1) или локального максимума (экстремума 6).

На рис. 2 представлены полиномы Морса, соответствующие полученным подклассам: VI — первый; V2 — второй; V3 — третий; Л1 — четвертый; Л2 — пятый; Л3 — шестой. В табл. 2 приведены подклассы с соответствующими им перестановками.

Таблица 2

Подклассы шестого класса

Первый Второй Третий Четвертый Пятый Шестой

214365 324165 325461 613254 216354 214365

215364 325164 326451 614253 216453 215364

215463 326154 425361 614352 316254 215463

216354 423165 426351 615243 316452 314265

216453 425163 435261 615342 326154 315264

314265 426153 436251 623154 326451 315462

315264 435162 524361 624153 416253 324165

315462 436152 526341 624351 416352 325461

316254 523164 534261 625143 426153 325164

316452 524163 536241 625341 426351 413265

413265 526143 546231 634152 436152 415263

415263 534162 624351 634251 436251 415362

415362 536142 625341 635142 516243 423165

416253 546132 634251 635241 516342 425361

416352 623154 635241 645132 526341 425163

513264 624153 645231 645231 526143 435261

514263 625143 536142 435162

514362 634152 536241 513264

516243 635142 546231 514263

516342 645132 546132 514362

613254 523164

614253 524163

614352 524361

615243 534162

615342 534261

Примеры перечислительной классификации сигналов в системах мониторинга качества поверхностей. Для решения задачи классификации сигналов в системах мониторинга качества поверхностей предлагается осуществлять пространственные преобразования сигналов и изображений, связанные с переходами от одномерного сигнала к набору его двумерных представлений и суммированием последних в единый образ. Данные преобразования выполняются по алгоритмам, описанным в работе [2]. В качестве классификаторов для полученных образов предлагается использовать полиномы Морса.

Составим перечислительную классификацию нанотопографии, полученной при сканировании поверхности твердого тела из золота (рис. 3, а—рис. 6, а) на установке „Капоеёиса1;ог".

Произведем кумулятивное суммирование по строкам и столбцам матрицы данных измерений. При суммировании по столбцам дальнейшая работа осуществляется с последней строкой полученной кумулятивной матрицы, а при суммировании по строкам анализируется ее последний столбец, так как эти строка и столбец содержат все строки и столбцы исходной матрицы.

а) б) в)

600 400 200 0

-200 -400

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

%

100

60

ух 10 , нм

20

хх 10 , нм

а)

г, нм 400 0

-400 300

300

ух 10 , нм

хх10 , нм

а)

г, нм

100 0

ух 10 , нм

100

40 2

20 хх 10 , нм

класс 5 подкласс 5

тип перестановки 24153 Рис. 3 б)

®

класс 4 подкласс 1

тип перестановки 4132

в)

класс 6 подкласс 3

тип перестановки 215463 Рис. 4

класс 5 подкласс 1

тип перестановки 14352

класс 6 подкласс 4

тип перестановки 62534

класс 5 подкласс 2

тип перестановки 24153

Рис. 5

г, нм

0

0

0

На рис. 3, б—рис. 6, б представлена аппроксимированная кумулятивная сумма элементов в столбцах матрицы исходных данных. Экстремумы полученной функции пронумерованы в порядке возрастания критических значений, определен тип перестановки. Такая же операция осуществлена в отношении кумулятивной суммы по строкам исходной матрицы (рис. 3, в—рис. 6, в).

а)

г, нм 4000

0

-4000

-8000 100

80

60

2 40 20■ yx 102, нм 20

0

20

40

60

80

100

xx 10 , нм

®

класс 5 подкласс 1

тип перестановки 15342

класс 5 подкласс 4

тип перестановки 25341

Рис. 6

Аналогичным образом классифицируются другие имеющиеся нанотопографии, полученные при сканировании поверхностей твердых тел из различных материалов с использованием СЗМ.

Заключение. В работе предложен метод перечислительной классификации информации, получаемой при сканировании поверхностей твердых тел с использованием средств сканирующей зондовой микроскопии. Исследованы перечислительные особенности полиномов Морса, на которых базируется предлагаемый метод. Приведены примеры классификации данных СЗМ с использованием разработанного метода. На основе перечислительного метода могут быть написаны подпрограммы к существующим программам обработки данных СЗМ, допускающим использование пользовательских модулей.

список литературы

1. Коваленко П. П. Перечислительные методы и цифровые технологии классификации сигналов в системах мониторинга качества поверхностей. Автореф. дис. ... канд. техн. наук. СПб, 2011.

2. Коваленко П. П., Мусалимов В. М. Прямая и обратная задачи паттернизации сигналов и изображений // Изв. вузов. Приборостроение. 2011. № 1. С. 38—45.

3. Мусалимов В. М., Хамидуллина Л. Т., Коваленко П. П. Прикладные задачи перечислительной комбинаторики: Учеб. пособие. СПб: СПбГУ ИТМО, 2011. 69 с.

4. Гульден Я., Джексон Д. Перечислительная комбинаторика / Пер. с англ.; под ред. В. Е. Тараканова. М.: Наука, 1990. 504 с.

5. Ландо С. К. Лекции о производящих функциях. М.: МЦМНО, 2004. 144 с.

Виктор Михайлович Мусалимов —

Павел Павлович Коваленко

Светлана Юрьевна Перепелкина

Рекомендована кафедрой мехатроники

Сведения об авторах д-р техн. наук, профессор; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра мехатроники; E-mail: [email protected] канд. техн. наук; Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра мехатроники; E-mail: [email protected] Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, кафедра мехатро-ники; старший преподаватель; E-mail: [email protected]

Поступила в редакцию 29.02.12 г.

i Надоели баннеры? Вы всегда можете отключить рекламу.