Научная статья на тему 'PECULIARITIES OF SYNECOLOGICAL INTERACTION OF PLANTS PARTICULAR COMMUNITIES'

PECULIARITIES OF SYNECOLOGICAL INTERACTION OF PLANTS PARTICULAR COMMUNITIES Текст научной статьи по специальности «Биологические науки»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
The Scientific Heritage
Область наук
Ключевые слова
park communities / ornamental plants / phytogenous field / interaction / vegetation organs / growth / dynamics

Аннотация научной статьи по биологическим наукам, автор научной работы — Koba V.P., Sakhno T.M., Korenkova O.O.

The cases of mutual suppression and mutual stimulation of growth processes of vegetative organs have been revealed in the zone of intersection of phytogenous fields of different species of ornamental plants growing together as a part of park communities. It has been shown that the intensification of the growth processes in phytogenous interaction, affecting the bioenergy balance of the implementation of ontogenesis stages, can affect the change in the time scale of their processing, the reduction of adaptive capacity and resistance to negative factors, the duration of the plant existence. It is concluded that in order to increase the stability, environmental plasticity and durability of artificial plants communities, plants-antagonists optimizing the energy balance of the development of plants communities should be present in their composition, along with mutually stimulating plants.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PECULIARITIES OF SYNECOLOGICAL INTERACTION OF PLANTS PARTICULAR COMMUNITIES»

PECULIARITIES OF SYNECOLOGICAL INTERACTION OF PLANTS PARTICULAR

COMMUNITIES

Koba V.P.,

Nikitsky Botanical Gardens - National Scientific Centre, Head of the laboratory of Forest science,

Doctor of Biological Sciences, Professor Sakhno T.M.,

Nikitsky Botanical Gardens - National Scientific Centre, junior researcher of the laboratory of Forest science

Korenkova O. O.

The V.I. Vernadsky Crimean Federal University, Assistant of the Chair of Landscape and Landscape Design, Candidate of Biological Sciences

Abstract

The cases of mutual suppression and mutual stimulation of growth processes of vegetative organs have been revealed in the zone of intersection of phytogenous fields of different species of ornamental plants growing together as a part of park communities. It has been shown that the intensification of the growth processes in phy-togenous interaction, affecting the bioenergy balance of the implementation of ontogenesis stages, can affect the change in the time scale of their processing, the reduction of adaptive capacity and resistance to negative factors, the duration of the plant existence. It is concluded that in order to increase the stability, environmental plasticity and durability of artificial plants communities, plants-antagonists optimizing the energy balance of the development of plants communities should be present in their composition, along with mutually stimulating plants.

Keywords: park communities, ornamental plants, phytogenous field, interaction, vegetation organs, growth, dynamics.

The interaction of plants in park communities, as well as in natural communities, is carried out at different levels of competitive relations in connection with the influence of various factors of the natural environment, primarily the light regime, humid and trophic. In the formation of the bioecological space of individual plants, a phytogenic field that determines the multi-vector indicator of the individual's influence on the composition and structure of the local cenotic volume of the plant community is of vital importance. The influence of phytogenic fields occurs not only through active consumption of habitat resources, but also through various types of influence, among which the biochemical is currently the most studied.

Volatile chemicals released by plants - phyton-cides provide their protection from various phytopath-ogenic organisms [16]. They are one of the elements of the phytogenic field [5, 18]. In many studies, phyton-cides are described as an allelopathic factor [4, 6, 12, 14], but there are also studies that show that their effect can have a positive effect in the joint growth of some plants [8].

For park communities, the study and analysis of synecological interaction, the features of the phyto-genic field influence is important not only from the point of view of ensuring the normal development of plants, but also the realization of decorative properties, increasing the stability and longevity of garden and park compositions. The most labile signs of assessing the level of external influence on the growth and development of plants include indicators of the dynamics of biometric characteristics of vegetative organs [7]. The purpose of the research was to study the features of the growth of leaf blade and shoots in the phytogenic interaction of ornamental plants, when coexisting in park communities.

After carrying out reconnaissance works in the parks of the Southern coast of Crimea, the most fully

reflecting the diversity of park communities and the species diversity of ornamental trees and shrubs, which are of greatest interest for green building in the southern regions of our country, the Nikitsky Botanical Garden was chosen as the base object. On the basis of a detailed survey of the territory of the arboretum parks and the study of the species composition of the plantations, pilot plots were selected on which the following types of model plants were selected: Berberís soulieana Schneid., Myrtus communis L., Aucuba japonica Thunb., Sarcococca humilis Stapf., Lagerstroemia indica L., Sequoia sempervirens (D.Don) Endl., Phil-lyrea latifolia L., Laurocerasus lusitanica L., Laurus nobilis L., Pyracantha crenulata (D.Don) Roem., Ligustrum lucidum Ait., Magnolia grandiflora L., Lonicera fragrantissima Lindl. et al., Pittosporum tobira Ait., Pittosporum heterophyllum Franch., Pittosporum xylocarpus Huet Wang, Viburnum tinus L., Jasminum mesney Hance, Osmanthus fragrans Lour., Forsythia viridissima Lindl., Nerium oleander L., Taxus baccata L., Cotoneaster salicifolius French, Cotoneaster glau-cophyllus Franch., Campsis radicans (L.) Seem., Coto-neaster divaricatus Rend. Et Wils., Cerasus serrulata Lundl., Exochorda korolcovii Lav., Hibiscus syriacus L., Chaenomeles japonica (Thunb.) Lindl. ex Spach, Ilex aquifolium L., Euonymus japonicus Thunb. to study the peculiarities of synecological influence in such a way as to exclude as much as possible the possibility of their mechanical interaction: physical contact, shading, etc. The length and width of 30 leaf blades were measured, the seasonal growth of 10 shoots in parts of the crown of model plants located in the direction to each other and on the opposite sides of the crown [13]. On each curtain, the features of orographic conditions of growth were estimated, and the dendro-metric characteristics of the plants studied were described. In determining the life forms of plants, Sokolov's classification was used [2]. The quantitative

results of the observations were processed using variational statistics methods [10].

Nikitsky botanical garden is territorially located in the central part of the Southern coast of Crimea, which according to climatic conditions refers to dry subtropics [19]. A hot, dry summer, a relatively warm winter, the main volume of precipitation falls in the autumn-winter period. Most of the park area is characterized by a rel-

According to the life forms, the studied plant species in the largest volume were represented by evergreen bushes (54,8%) and evergreen trees (16,1%), in the lowest deciduous shrubs and lianas. It should be

The results of the study of the biometric parameters of the leaves and the seasonal growth of shoots made it possible to reveal a certain level of interaction of ornamental plants during joint growth in the composition of park clumps. From the part of the crowns located in the direction of the neighboring plant, there was a change in the size of the leaf blade, seasonal growth of the shoots.

atively even relief, the slope of individual sections varies from 2 to 5°, south, south-east and south-west exposure.

The studied taxa of ornamental arboreal and shrubby plants of flora-geographic origin belong to the four floristic regions of the Earth with the following distribution characteristics: East Asian (48,3%), Mediterranean (24,2%), North American (17,2%), Euro-

noted that this distribution of ornamental plants is quite typical for the parks of the Southern coast of Crimea (Figure 2).

Tables 1 and 2 show data on the average size of the leaf blade, seasonal growth of shoots of the studied plants during phytogenic interaction and in control. All the digital indicators are statistically reliable by the Student's test at 1-5% significance level.

pean-Siberian (10,3%) (Figure 1).

60 1 - East Asian

2 - Mediterranean 50 48,3 3 - North American

4 - European-Siberian

40 30 20 10 0

1234

Fig. 1. Distribution of studied ornamental plants in floristic areas

%

% 60 50 40 54,8 I 1 - Deciduous tree 2 - Deciduous Shrub 3 - Deciduous half-shrub 4 - Deciduous Liana 5. Evergreen coniferous tree 6. Evergreen deciduous tree 8. Evergreen Shrub

30

20 16,1

10 0 i 1 9,8 6,5 3,2 3,2 i ^^^ i ^^^ i ^^^ i ^^^ 6,4 ^—

8 6 5 4 3 2 1

Fig. 2. Distribution ofplant species under study in terms of life forms

Table 1

Dynamics of the dimensions of a leaf blade of plants when grown together in park communities

No. The direction of interaction of plants Dimensions of plate, mm

In the phytogenic field Control

Length Width Length Width

1 T. baccata > N. oleander N. oleander > T. baccata 106,6±2,7 18,3±0,6 116,3±2,4 20,1±0,5

18,6±0,4 1,9±0,1 18,2±0,1 2,0±0,1

2 V. tinus > T. baccata T. baccata > V. tinus 22,6±0,9 2,3±0,06 24,7±0,6 3,1±0,07

68,2±2,3 34,2±1,2 60,8±1,4 29,1±0,9

3 C. divaricatus > V. tinus V. tinus > C. divaricatus 51,9±0,2 25,9±0,9 60,9±1,5 29,1±0,9

21,0±0,7 14,4±0,5 22,8±0,4 15,1±0,3

4 C. salicifolius > C. serrulata C. serrulata > C. salicifolius 151,7±4,0 68,7±2,3 150,6±3,8 70,9±1,6

75,6±2,1 19,6±0,8 59,6±1,4 14,2±0,5

5 C. radicans > P. tobira P. tobira > C. radicans 75,3±1,6 22,9±0,7 70,2±1,4 23,1±0,4

69,2±2,8 35,6±1,8 90,3±3,6 48,9±2,4

6 C. glaucophyllus > P. tobira P. tobira > C. glaucophyllus 52,8±1,1 25,9±1,1 48,4±1,3 20,8±0,8

58,4±1,1 28,9±0,7 61,5±1,2 29,4±0,7

7 L. lucidum > J. mesney J. mesney > L. lucidum 58,6±1,1 18,0±0,5 69,1±0,8 22,1±0,4

96,2±1,6 50,8±0,9 106,4±2,1 54,8±1,4

8 E. japonicus > B. soulieana B. soulieana > E. japonicus 55,6±1,7 12,2±0,4 59,6±1,6 12,9±0,5

78,6±1,6 36,2±0,8 70,3±0,7 41,5±0,8

9 S. sempervirens > L. fragrantissima L. fragrantissima > S. sempervirens 102,4±2,9 44,9±1,2 85,1±3,1 36,4±1,2

11,4±0,2 1,3±0,04 18,5±0,2 1,8±0,03

10 H. syriacus > L. indica L. indica > H. syriacus 64,9±1,9 39,0±0,9 55,6±0,9 35,9±0,9

69,1±1,3 49,8±1,4 70,8±1,2 54,4±1,4

11 P. latifolia > E. korolcovii E. korolcovii > P. latifolia 51,5±0,8 28,3±1,1 47,7±0,8 23,9±0,6

32,9±0,8 15,0±0,4 24,9±0,7 11,6±0,3

12 L. lusitanica > P. heterophyllum P. heterophyllum > L. lusitanica 72,3±1,5 24,4±0,5 73,4±1,2 24,2±0,6

89,1±1,9 38,9±0,8 98,6±2,0 42,1±0,6

13 L. nobilis > L. lusitanica L. lusitanica > L. nobilis 100,6±1,7 41,5±0,5 90,7±2,4 41,1±0,8

58,0±2,2 28,4±0,8 80,3±2,3 29,4±0,7

14 L. nobilis > C. glaucophyllus C. glaucophyllus > L. nobilis 74,6±1,8 34,8±0,5 71,2±1,2 33,0±0,7

90,9±2,0 35,3±0,8 69,4±1,3 34,5±0,7

15 F. viridissima > P.xylocarpus P.xylocarpus > F. viridissima 86,1±2,9 38,6±1,2 75,8±3,1 32,2±1,3

70,9±1,9 27 , 9±0 ,7 79,7±3,5 33,3±1,4

16 F. viridissima > P. crenulata P. crenulata > F. viridissima 40,8±2,3 15,9±0,9 34,7±1,9 13,9±0,8

65,2±2,5 23,8±1,2 70,5±2,8 39,2±3,5

17 A. japonica > I. aquifolium I. aquifolium > A. japonica 87,5±1,9 48,8±1,5 83,4±1,6 44,4±1,5

145,1±2,7 51,9±1,2 139,7±3,0 53,6±1,4

18 O. fragrans > M. grandiflora M. grandiflora > O. fragrans 190,2±3,5 92,0±2,1 179,8±2,9 91,4±1,9

78,8±1,8 40,9±2,1 84,3±1,9 43,3±1,5

19 M. communis > V. tinus V. tinus > M. communis 64,7±2,3 29,0±1,1 51,2±0,9 23,6±0,6

37,0±0,7 12,2±1,2 32,8±0,8 11,8±0,2

20 S. humilis > I. aquifolium I. aquifolium > S. humilis 86,5±1,2 51,8±1,6 83,4±1,6 44,4±1,5

54,2±1,2 18,3±0,3 53,6±0,7 17,8±0,3

Note: in the right part of the entry ofplant species names, the object offormation of the phytogenic field is indicated, in the left part - the object of the action of this phytogenic field.

The analysis of the obtained results shows that when the adjacent plants grow together in closely adjacent plants, the biometric characteristics of the vegetative structures may decrease, which, in the opinion of

some researchers, is associated with antagonistic relations [2], but approximately at the same level of frequency there was an increase the size of the vegetative organs in the zone of action of the neighboring plant (Table 2).

Table 2

Dynamics of seasonal growth of plant shoots in joint growth in park communities

No. The direction of interaction of plants Dimensions of plate, mm

In the phytogenic field Control

1 T. baccata > N. oleander N. oleander > T. baccata 19,0±0,3 51,5±2,3 26,1±0,5 48,6±2,9

2 V. tinus > T. baccata T. baccata > V. tinus 22,4±1,2 36,5±2,7 19,2±0,6 29,2±1,9

3 C. divaricatus > V. tinus V. tinus > C. divaricatus 27,7±2,2 13,0±0,6 29,2±1,9 14,1±0,5

4 C. salicifolius > С. serrulata С. serrulata > C. salicifolius 36,3±1,8 26,4±2,3 31,1±1,4 30,4±1,3

5 C. radicans > P. tobira P. tobira > C. radicans 19,6±1,5 140,3±8,9 21,6±2,2 159,3±11,4

6 C. glaucophyllus > P. tobira P. tobira > C. glaucophyllus 3,2±0,4 10,9±0,8 3,5±0,35 8,1±0,6

7 L. lucidum > J. mesney J. mesney > L. lucidum 50,5±1,6 26,7±2,1 59,6±1,9 32,3±1,9

8 E. japonicus > B. soulieana B. soulieana > E. japonicus 32,3±1,5 22,6±1,5 32,5±1,6 20,9±1,3

9 S. sempervirens > L. fragrantissima L. fragrantissima > S. sempervirens 46,9±2,2 73,3±2,9 35,0±2,4 71,9±2,9

10 H. syriacus > L. indica L. indica > H. syriacus 22,0±1,6 33,9±1,7 23,4±1,5 34,3±1,4

11 P. latifolia > E. korolcovii E. korolcovii > P. latifolia 20,3±1,0 14,0±0,5 20,0±0,1 14,2±0,9

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12 L. lusitanica > P. heterophyllum P. heterophyllum > L. lusitanica 21,8±2,4 14,4±0,9 20,5±1,6 17,8±1,1

13 L. nobilis > L. lusitanica L. lusitanica > L. nobilis 13,7±0,6 17,4±0,9 14,6±0,9 16,9±0,9

14 L. nobilis > C. glaucophyllus C. glaucophyllus > L. nobilis 17,7±1,2 9,9±0,6 16,8±1,1 13,1±0,8

15 F. viridissima > P.xylocarpus P.xylocarpus > F. viridissima 24,5±2,0 27,3±2,3 19,2±1,9 21,8±1,7

16 F. viridissima > P. crenulata P. crenulata > F. viridissima 16,1±1,5 17,8±1,2 14,4±0,9 23,6±1,9

17 A. japonica > I. aquifolium I. aquifolium > A. japonica 16,6±1,1 38,2±3,2 17,5±0,8 27,1±2,2

18 O. fragrans > M. grandiflora M. grandiflora > O. fragrans 8,0±0,7 25,1±1,8 7,7±0,5 21,5±1,6

19 M. communis > V. tinus V. tinus > M. communis 22,9±1,7 22,2±1,7 22,0±2,0 20,2±0,8

20 S. humilis > I. aquifolium I. aquifolium > S. humilis 17,5±0,9 12,3±0,5 17,0±0,8 11,7±0,4

Of the 40 variants of interaction of ornamental plants considered in 10 cases, there was an increase and also in 10 cases the inhibition of growth of the studied structures. Obviously, suppression of growth processes of vegetative organs in the zone of action of the phytogenic field of a neighboring plant is one of the types of competitive relations in realizing the possibilities of using environmental resources. The opposite situation -an increase in the growth of vegetative organs may be due to the favorable effect of volatile substances released by plants, which is manifested through biochemical stimulation of growth, and also as a factor of airspace sanitation around plants that reduces the negative

impact of phytopathogenic organisms. The stimulating effect of the phytogenic field associated with the change in the ion-air membrane of the plant is also not excluded [3]. In the evaluation of the specific features of the interaction of individual pairs of plants of different species, complete mutual oppression was revealed in two cases (trial area No. 3 and 7) and also in two variants (trial area No. 19 and 20), a mutually stimulating phytogenic effect on the growth of vegetative organs was observed. An assessment of the level of antagonism or mutual stimulation of growth processes of vegetative organs is of fundamental importance from

the position of the formation of complementary artificial plant communities. It can be assumed that, ideally, communities should be created exclusively from plant species that have an interrelimating effect on the growth of vegetative organs. However, characterizing the peculiarities of individual development, it should be noted that in every organism the ontogenetic program has a certain bioenergetic balance. The acceleration of bioenergetic costs at certain stages of ontogeny can affect the time scale of their implementation, and, in general, shorten the duration of the organism's existence. Increased energy costs also reduce the adaptive capacity and resistance to the effects of negative factors. Therefore, based on the law of dialectics on the unity and struggle of opposites as the most important driving force of development, it should be noted that in order to increase the stability, ecological plasticity and longevity of artificial plant communities, in addition to mutually stimulating plants, plant antagonists optimizing the general bioenergetic balance of development of the plant community [11, 17]. In forestry practice in the creation of forest crops, this principle is realized through the allocation and use in ordinary planting of main and associated tree species [15]. From the point of view of complementarity of park communities, increase of their stability, durability and decorativeness, this problem requires further expansion of studies on the study of the features of plant development under conditions of intersection and interaction of phytogenic fields.

During the observation, cases of the opposite synchronization of the growth of vegetative organs were revealed (Table 3). The investigated plant pairs No. 4

(C. serrulata> C. salicifolius), No. 6 (C. glaucophyl-lus> P. tobira), No. 10 (H. syriacus> L. indica), No. 11 (P. latifolia> E. Korolcovii and E. korolcovii> P. lati-folia), No. 13 (L. nobilis> L. lusitanica), No. 15 (A. japonica> I. aquifolium), as the size of the leaf blade increases in the zone of the phytogenous field influence, the seasonal shoot growth is reduced. Obviously, in this situation the mechanism of redistribution of plastic substances works: when the growth rate of the leaf blade increases, the possibilities for the formation of biomass of shoots decrease, which determines the reduction of their seasonal growth.

At other sites (No. 2 (V. tinus> T. baccata), No. 8 (B. soulieana> E. japonicus), No. 13 (L. lusitanica> L. nobilis), No. 15 (P. xylocarpus> F. viridissima), No. 18 (A. japonica> I. aquifolium) the reverse situation was observed: with a decrease in the size of the leaf blade, there was an increase in seasonal shoot growth. The increase in the growth of shoots against the background of a noticeable decrease in the size of the leaf blade under the conditions of the phytogenic field is evidently due to the imbalance in the growth of vegetative structures. Inhibition of growth processes of leaf blade under the influence of phytogenic field leads to an increase in the level of localization of plastic substances in shoot tissues, which in this situation can be used to form their biomass, which, as a consequence, determines the increase in seasonal shoot growth. It is also possible that differences in the growth dynamics of the leaf blade and shoots are associated with different hierarchical levels of the reaction of vegetative organs to the action of environmental factors [9], which obviously increases the ecological plasticity of plants.

Table 3

Dynamics of the size of the vegetative organs of ornamental plants under the influence of phytogenic fields

No. Species name of plant pair Resizing

Sheet plate Sprout

Length Width Growth

1 T. baccata > N. Oleander N. oleander > T. baccata -9,7/9,1 +0,4/2,2 -1,8/9,3 -0,1/5,0 -7,1/27,2 +2,9/6,0

2 V. tinus > T. baccata T. baccata > V. tinus -2,1/8,5 +7,4/10,8 -0,8/25,8 +5,1/14,9 +3,2/16,7 +7,2/19,7

3 C. divaricatus > V. tinus V. tinus > C. divaricatus -9,0/14,8 -1,8/7,9 -3,2/10,9 -0,7/4,6 -1,5/5,1 -1,1/7,8

4 C. salicifolius > C. serrulata C. serrulata > C. salicifolius +1,1/0,3 +16,0/26,8 -2,2/2,8 +5,4/27,6 +5,2/16,7 -4,0/13,2

5 C. radicans > P. tobira P. tobira > C. radicans +5,1/6,8 -21,1/23,4 -0,2/0,9 -13,3/27,2 -2,0/9,3 -19,0/11,9

6 C. glaucophyllus > P. tobira P. tobira > C. glaucophyllus +4,4/9,1 -3,1/5,0 +5,1/24,5 -0,5/1,7 -0,3/8,6 +2,8/34,5

7 L. lucidum > J. mesney J. mesney > L. lucidum -10,5/15,2 -10,2/9,5 -4,1/18,6 -4,0/7,3 -9,1/15,3 -5,6/17,3

8 E. japonicus > B. soulieana B. soulieana > E. japonicus +17,3/20,4 -7,1/38,4 +8,5/23,4 -0,5/27,8 +16,8/48,3 +1,4/1,9

9 S. sempervirens > L. fragrantissima L. fragrantissima >S. sempervirens -4,0/6,7 +8,3/11,8 -0,7/5,4 -5,3/12,8 -0,2/0,6 +1,7/8,1

10 H. syriacus > L. indica L. indica > H. syriacus +9,3/16,7 -1,7/2,4 +3,1/8,6 -4,6/8,5 -1,4/6,0 -0,4/1,2

11 P. latifolia > E. korolcovii E. korolcovii > P. latifolia +3,8/8,0 +8,0/32,1 +4,4/18,4 +3,4/29,3 -0,3/1,5 -0,2/1,4

12 L. lusitanica > P. heterophyllum P. heterophyllum > L. lusitanica -1,1/1,5 -9,5/9,7 +0,2/0,9 -3,2/7,6 +1,3/6,4 -3,4/19,1

Resizing

No. Species name of plant pair Sheet plate Sprout

Length Width Growth

i3 L. nobilis > L. lusitanica +9,9/11,0 +0,4/i,0 -0,9/6,2

L. lusitanica > L. nobilis -22,3/27,8 -1,0/3,4 +0,5/3,0

i4 L. nobilis > C. glaucophyllus +3,4/4,8 +i,8/5,4 +0,9/5,4

C. glaucophyllus > L. nobilis +21,5/30,9 +0,8/2,3 -3,2/24,2

i5 F. viridissima > P.xylocarpus +10,3/13,5 +6,4/i9,8 +5,3/27,6

P.xylocarpus > F. viridissima -8,8/11,0 -5,4/i6,2 +5,5/25,3

^ F. viridissima > P. crenulata +б, i/i7,5 +2,0/14,3 +2,7/i8,7

P. crenulata > F. viridissima -5,3/7,5 -i5,4/39,2 -5,8/24,3

i7 A. japonica > I. aquifolium I. aquifolium > A. japonica +4,i/4,9 +5,4/3,9 +4,4/9,9 -i,7/3,2 -0,9/5,i +5,i/i5,4

i8 O. fragrans > M. grandiflora +10,4/5,9 +0,6/0,7 +0,3/3,9

M. grandiflora > O. fragrans -5,5/б,5 -2,4/5,5 +3,6/i6,7

i9 M. communis > V. tinus +13,5/26,3 +5,4/22,8 +0,9/4,0

V. tinus > M. communis +4,2/i2,8 +0,4/3,4 +2,0/9,9

20 S. humilis > I. aquifolium +3,i/3,7 +7,4/i6,7 +0,5/2,9

I. aquifolium > S. humilis +0,6/1,1 +0,5/2,8 +0,6/5,i

Note: in the numerator absolute changes in the length dimensions, width of the leaf blade, seasonal growth of shoots in mm, in the denominator relative indicators %, the sign "+" — increase in size, "—" — decrease

For a deeper analysis of these phenomena, it is necessary to expand research on the problem of studying the specifics of the mechanisms of interaction between different types of plant communities, realizing their competitive advantages, which ultimately determine the optimization of the formation of the structure and composition of a group of plants and the community as a whole in ensuring their stability and stability of development.

Cases of mutual suppression and mutual stimulation of growth processes of vegetative organs are revealed in the zone of intersection of phytogenic fields of various types of ornamental plants that grow together in the park communities. Intensification of growth processes during phytogenic interaction, affecting the bio-energetic balance of the ontogenesis realization stages, determines the change in the time scale of their passage, the decrease in the adaptive potential and resistance to the action of negative factors, and shortens the overall duration of the plant's existence. To increase the stability, ecological plasticity and longevity of artificial plant communities, antagonists should be present in their composition along with mutually stimulating plants, which optimize the energy balance of the development of the plant community.

This work is supported by the Russian Foundation for Basic Research (grants No 15-29-02596).

References

1. Bulygin N. E. Dendrology. L., 1991. 352 pp.

2. Chasovennaya, AN, "Phytoncides and Garden and Park Biological Systems," Tez. doc. VIII sovshch. on the problem of phytoncides. 1979. P. 148-152.

3. Demyanov VA Representation of the phyto-genic field of plants and the problem of the essence of phytocenosis // Izvestiya RAN. Ser. Biol., 1996. № 3. P. 359-363.

4. Eremenko Yu. A. Allelopathic properties of adventitious species of arboreal and shrub plants // Industrial botany. 2012. Issue. 12. P. 121-126.

5. Gorelov AM The role of the phytogenic field in the formation of spatial structures of a tree plant // Modern Phytomorphology. 2012. Vol.1. P. 137-141.

6. Grodzinsky AM Allelopathy in the life of plants and their communities. Kiev, 1965. 198 pp.

7. Ivanova LA Adaptive characteristics of the leaf structure of plants of different ecological groups // Ecology. 2014. № 2. P. 109-118.

8. Kholodnyi NG Biological significance of phytogenic organic substances of the atmosphere // Bul. Moscow. about-va test. nature. Otd. Biol. 1948. Vol. 53, No. 1. P. 53-71.

9. Kochetova NI Adaptive properties of the plant surface. M., 1982. 176 pp.

10. Lakin, G. F. Biometrics. M., 1990. 352 pp.

11. Makarova EI, Kotov SF Methods of studying interactions between plants: experimental and static approaches // Ecosystems, their optimization and protection. 2012. Issue. 6. P. 225-234.

12. Matveev, NM Allelopathy as a factor in the ecological environment. Samara, 1994. 200 pp.

13. Molchanov AA, Smirnov VV Method of studying the growth of woody plants. M., 1967. 100 pp.

14. Novitskaya Yu. A. On the isolation of chemical substances by the leaves of woody plants // In: Physiological and biochemical bases of interaction of plants in phytocenoses. M., 1966. P. 234-239.

15. Rodin A. R, Kalashnikova E.A., etc. Forest cultures: a textbook. N.Novgorod, 2011. 462 pp.

16. Tokin B. P. Killers of microbes. Phytoncides. M., 1960. 198 pp.

17. Trofimov VK Fundamentals of Philosophy: A Training Manual. Izhevsk, 2013. 408 pp.

18. Uranov A. A. Phytogenic field // Problems of modern botany. 1965. Vol. 1. P. 251-254.

19. Vazhov VI Agroclimatic zoning of the Crimea // Proceedings of Nikit. nerd. garden. 1977. 70. P. 92120.

i Надоели баннеры? Вы всегда можете отключить рекламу.