Научная статья на тему 'PECULIAR PROPERTIES OF SURFACE PLASMON-POLARITONS EXCITATION IN METAL-DIELECTRIC STRUCTURES BASED ON OPALS'

PECULIAR PROPERTIES OF SURFACE PLASMON-POLARITONS EXCITATION IN METAL-DIELECTRIC STRUCTURES BASED ON OPALS Текст научной статьи по специальности «Физика»

CC BY
25
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
SURFACE PLASMON-POLARITONS / METAL-DIELECTRIC STRUCTURES / OPALS / OPTICAL PROPERTIES

Аннотация научной статьи по физике, автор научной работы — Cvetkov A.V., Khanin S.D., Kumzerov Yu.A., Puchkov N.I., Solovyev V.G.

The paper reports on the study of optical phenomena peculiarities in metal-dielectric nanocomposite materials based on opal matrices caused by the excitation and propagation of surface plasmon-polaritons along the metal-dielectric interface. It is shown that two types of surface plasmon polaritons (‘bright’ and ‘dark’) can occur in the studied structures, which manifests itself in the established anomalies of light transmission and absorption.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «PECULIAR PROPERTIES OF SURFACE PLASMON-POLARITONS EXCITATION IN METAL-DIELECTRIC STRUCTURES BASED ON OPALS»

i l St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.1 Научно-технические ведомости СПбГПУ. Физико-математические науки. 15 (3.1) 2022

Conference materials

UDC 539.216:535.346

DOI: https://doi.org/10.18721/JPM.153.104

Peculiar properties of surface plasmon-polaritons excitation in metal-dielectric structures based on opals

A. V. Cvetkov \ S. D. Khanin 2, Yu. A. Kumzerov 1 3, N. I. Puchkov \ V. G. Solovyev 1 2 A. I. Vanin \ M.V. Yanikov 1

1 Pskov State University, Pskov, Russia;

2 S. M. Budienny Military Telecommunications Academy, Saint Petersburg, Russia;

3 Ioffe Physico-Technical Institute RAS, Saint Petersburg, Russia H solovyev_v55@mail.ru

Abstract. The paper reports on the study of optical phenomena peculiarities in metal-dielectric nanocomposite materials based on opal matrices caused by the excitation and propagation of surface plasmon-polaritons along the metal-dielectric interface. It is shown that two types of surface plasmon polaritons ('bright' and 'dark') can occur in the studied structures, which manifests itself in the established anomalies of light transmission and absorption.

Keywords: surface plasmon-polaritons, metal-dielectric structures, opals, optical properties

Funding: This work was partially supported by the German Academic Exchange Service (DAAD) and by the Russian Foundation for Basic Research (RFBR), project no. 20-32-90003.

Citation: Cvetkov A. V., Khanin S. D., Kumzerov Yu. A., Puchkov N. I., Solovyev V. G., Vanin A. I., Yanikov M. V., Peculiar properties of surface plasmon-polaritons excitation in metal-dielectric structures based on opals St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 15 (3.1) (2022) 27—31. DOI: https://doi. org/10.18721/JPM. 153.104

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/ licenses/by-nc/4.0/)

Материалы конференции

УДК 539.216:535.346

DOI: https://doi.org/10.18721/JPM.153.104

Особенности возбуждения поверхностных плазмон-поляритонов в металлодиэлектрических структурах на основе опалов

А. В. Цветков 1 С. Д. Ханин 2, Ю. А. Кумзеров 1 3, Н. И. Пучков \ В. Г. Соловьев 1 2 е, А. И. Ванин \ М. В. Яников 1 1 Псковский государственный университет, Псков, Россия;

2 Военная академия связи им. С. М. Буденного, Санкт-Петербург, Россия;

3 Физико-технический институт им. А. Ф. Иоффе РАН, Санкт-Петербург, Россия

н solovyev_v55@mail.ru

Аннотация. Представлены результаты исследования особенностей оптических явлений в металлодиэлектрических нанокомпозитных материалах на основе опаловых матриц, обусловленных возбуждением и распространением поверхностных плазмон-поляритонов вдоль границы раздела металл-диэлектрик. Показано, что в изученных структурах могут возникать два типа поверхностных плазмон-поляритонов («светлые» и «темные»), что проявляется в установленных аномалиях пропускания и поглощения света.

Ключевые слова: поверхностные плазмон-поляритоны, металлодиэлектрические структуры, опалы, оптические свойства

© Cvetkov A. V., Khanin S. D., Kumzerov Yu. A., Puchkov N. I., Solovyev V. G., Vanin A. I., Yanikov M. V., 2022. Published by Peter the Great St. Petersburg Polytechnic University.

^St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.1 ^

Финансирование: Работа частично поддержана Германской службой академических обменов (DAAD) и Российским фондом фундаментальных исследований в рамках проекта № 20-32-90003.

Ссылка при цитировании: Цветков А. В., Ханин С. Д., Кумзеров Ю. А., Пучков Н. И., Соловьёв В. Г., Ванин А. И., Яников М. В., Особенности возбуждения поверхностных плазмон-поляритонов в металлодиэлектрических структурах на основе опалов // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.1. С. 27-31. DOI: https://doi.org/10.18721/ JPM.153.104

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https://crea-tivecommons.org/licenses/by-nc/4.0/)

Introduction

Surface plasmon-polaritons (SPPs) propagating at tangential directions along metal-dielectric interfaces [1] allows expanding functionality of photonic crystals [2] that control the flows of electromagnetic (EM) radiation [3-5].

One of the most common techniques for SPP excitation using phase-matching to SPP can be achieved by grating coupling:

P = kx + 2nll a, (1)

where P and kx = ksin0 are tangential projections of wave vectors of SPP and incident photon, respectively, 0 is the angle of light incidence, a is the period of grating, l is an integer. Thus, the peculiarity of SPP excitation by this method is that the metal-dielectric interfaces must be profiled. This can be achieved by covering the surface of opal globule [6] monolayer with a thin metal (usually silver) layer which retains the shape and spatial periodicity of the interface between the opal globules and this layer. To clarify these requirements, optical properties of two metal-dielectric opal-based structures were studied in this paper. Assuming that the optical resonator plays the main role in the studied phenomena, we used the first structure with a profiled optical resonator (Fig. 1, a) and the second one (control sample) with a flat resonator (Fig. 1, b).

а)

b)

bm

ООО

Fig. 1. Schematics of the metal-dielectric opal-based hybrid plasmon-photonic structures: glass substrate 1, monolayer (ML) 2 of opal globules, Ag/SiO2/Ag resonator 3 hybrid plasmon-photonic crystal Ag/SiO2/Ag/ML/Ag (a), hybrid plasmon-photonic crystal Ag/ML/Ag/SiO2/Ag (b)

Materials and Methods

Samples of hybrid plasmon-photonic crystals [7, 8] were fabricated by sequential deposition of metal (Ag) and dielectric (SiO2) film coatings of a given thickness on a grating that was a monolayer (ML) of opal globules made of polymethyl methacrylate by magnetron sputtering on an ATC Orion Series Sputtering System.

Cross-sectional images of the samples (Fig. 2, 3) were obtained after processing them with a ZEISS FIB-SEM GEMINI scanning electron microscope (SEM). It should be noted that focused ion beam treatment (FIB-technology) probably enhances defect concentration in the Ag/ML/Ag/SiO2/Ag sample as compared with the Ag/SiO2/Ag/ML/Ag sample which has higher mechanical strength due to a rather thick SiO2 layer deposited on the opal globes.

© Цветков А. В., Ханин С. Д., Кумзеров Ю. А., Пучков Н. И., Соловьёв В. Г., Ванин А. И., Яников М. В., 2022. Издатель: Санкт-Петербургский политехнический университет Петра Великого.

3

2

2

3

1

1

Fig. 2. SEM image of the sample of hybrid Fig. 3. SEM image of the sample of hybrid plasmon-photonic crystal Ag/SiO2/Ag/ML/Ag plasmon-photonic crystal Ag/ML/Ag/SiO2/Ag

The transmission and reflectance spectra of 5- and p-polarized light by layered thin-film heterostructures (when the vector of the electric field of the EM wave is perpendicular or

parallel to the plane of incidence, respectively) were studied with angular resolution using an experimental setup based on the OceanOptics QE65000 spectrometer.

At large angles 0, Bragg reflectance spectroscopy was successfully complemented with spectral ellipsometry due to the main ellipsometric equation [9, 10]:

tan ¥ • eiA = r / r

(2)

Fig. 4. Optical spectra of hybrid plasmon-photonic crystal Ag/ML/Ag/SiO2/Ag obtained from the ratio of its reflectance coefficients Rp/Rs (1) and from the ellipscometric parameter ¥ (2). Angle of light incidence 9 = 50°

where r and r are the amplitude reflectance

p S

coefficients for two types of light polarisation, ¥ and A are the ellipsometric parameters. In this work, ellipsometric measurements were carried out with the Ellipse-1891 spectral ellipsometer. As can be seen from Fig. 4, experimental results obtained by both optical methods are similar.

Results and Discussion

Both types of hybrid plasmon-photonic crystals under study (Figs. 1, 2 and 3) can be considered to be metal-dielectric optical systems consisting of two optical elements (monolayer of opal globules and resonator with transmission coefficients T1 and T, respectively), series-connected and located one after another. In the absence of interaction between these 'passive' optical elements one can calculate the total transmission coefficient T of this system from the relation T = T •T, hence, the ratio r = T/(T^T2) = 1. Experiment confirms this assumption [11] only for the control sample, the hybrid plasmon-photonic crystal Ag/ML/Ag/SiO2/Ag with a flat resonator (Fig. 3), but not for the Ag/SiO2/Ag/ML/Ag system (Fig. 2), where the outer surface of a thin layer covering the opal globules retained the shape and spatial periodicity characteristic of the interface between the opal-like film and this layer. In this case, excitation of surface plasmon-polaritons of various types at the interfaces profiled metal layer—monolayer of opal globules takes place. Consequently, the ratio r demonstrates a pronounced spectral dependence with the maxima at about 489 and 584 nm and the minima at 392 and 760 nm (Fig. 5, curve 3).

We attributed these maxima to an extraordinary transmission (EOT) and the minima to an extraordinary absorption (EOA) associated with the excitation of 'bright' and 'dark' surface plasmon-polaritons, respectively [7, 8]. It should be noted that EOT maxima which can be seen in transmission spectrum of a hybrid plasmon-photonic crystal Ag/SiO2/Ag/ML/Ag (Fig. 5, curve 1)

4

St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2022 Vol. 15, No. 3.1

correspond to the minima in its reflectance spectrum (Fig. 5, curve 2). At the same time, we emphasize that the spectral positions of EOA (Fig. 5, curve 3) correlate with the minima in the reflectance spectrum of the resonator (interference filter itself) Ag/SiO2/Ag (Fig. 5, curve 4).

Fig. 5. Transmission (T(X), curve 1) and reflectance (R(X), curve 2) spectra of the hybrid plasmon-photonic crystal Ag/SiO2/Ag/ML/Ag in comparison with the ratio r(X)= T/(T^T2) (curve 3) and reflectance spectrum of resonator (interference filter) Ag/SiO2/Ag (R (X)), curve 4).

Angle of light incidence 9 = 50°

Fig. 6. Angular dispersion of the long wavelength EOA position and that of the corresponding minimum in the reflectance spectrum of resonator Ag/SiO2/Ag (circles). Solid line shows the angular dependence of the resonator transmission peak (X = 2d\jn2 - sin2 0, d ~ 250 nm, n ~ 1.5)

We observed this correlation for all the light incidence angles 9 [7], as can be seen from Fig. 6 where the angular dispersion of the long wavelength EOA position and that of the corresponding minimum in the reflectance spectrum of resonator Ag/SiO2/Ag (circles) are demonstrated. The solid line shows angular dependence of the resonator transmission peak according to the well-

known equation _

X = 2d\Jn2 - sin2 9, (2)

where d ~ 250 nm is the dielectric layer thickness, n ~ 1.5 is its refractive index.

Conclusion

Excitation of surface plasmon-polaritons (SPPs) in opal-based hybrid plasmon-photonic crystals with a complex architecture is possible when the phase synchronism condition is met.

Two types of surface plasmon-polaritons may be excited in such metal-dielectric structures: these are 'bright' SPP, responsible for extraordinary transmission (EOT), and 'dark' SPP causing extraordinary absorption (EOA).

Acknowledgments

The authors are grateful to U. Peschel and D. Ploss for assistance in conducting experiments.

REFERENCES

1. Maier S. A., Plasmonics: Fundamentals and Applications, Springer, New York, 2007.

2. Romanov S. G., Korovin A., Regensburger A., Peschel U., Hybrid colloidal plasmonic-photonic crystals, Advanced Materials. 23 (2011) 2515-2533.

3. Joannopoulos J. D., Meade R. D., and Winn J. N., Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, 2008.

4. Photonic crystals: Advances in design, fabrication, and characterization, Editors K. Busch, S. mkes, R. B. Wehrspohn, H. Foll, Wiley-VCH, 2004.

5. Optical Properties of Photonic Structures: Interplay of Order and Disorder, Editors M. F. Limonov, R. V. De La Rue, CRC Press, 2012.

6. Balakirev V. G., Bogomolov V. N., Zhuravlev V. V., Kumzerov Yu. A., Petranovskii V. P., Romanov S. G., and Samoilovich L. A., Three-dimensional superlattices in opal matrices, Crystallography Reports. 38 (1993) 348-353.

7. Vanin A. I., Kumzerov Yu. A., Romanov S. G., Solovyev V. G., Khanin S. D., Cvetkov A. V., Yanikov M. V., Transmission and conversion of electromagnetic radiation by photonic crystal metal-dielectric systems based on opals, Optics and Spectroscopy. 128 (2020) 2022-2027.

8. Vanin A. I., Lukin A. E., Romanov S. G., Solovyev V. G., Khanin S. D., Yanikov M. V., Optical properties of metal-dielectric structures based on photon-crystal opal matrices, Physics of the Solid State. 60 (2018) 774-777.

9. Alexeeva N., Cema G., Lukin A., Pan'kova S., Romanov S., Solovyev V., Veisman V., Yanikov M., Experimental investigation of self-assembled opal structures by atomic force microscopy, spectroscopic ellipsometry and reflectometry, Journal of Self-Assembly and Molecular Electronics. 1 (2013) 209-222.

10. Shvets V. A., Spesivtsev E. V., Rykhlitskii S. V., Mikhailov N. N., Ellipsometry as a high-precision technique for subnanometer-resolved monitoring of thin-film structures. Nanotechnologies in Russia, 4 (2009) 201-214.

11. Khanin S. D., Vanin A. I., Kumzerov Yu. A., Solovyev V. G., Cvetkov A. V., Yanikov M. V.,

Peculiar properties of electromagnetic radiation propagation in photonic crystalline metal-dielectric systems based on opals, Radio communication technology. 4 (2021) 89-99.

THE AUTHORS

CVETKOV Alexander V.

aleksandr23031994@gmail.com ORCID: 0000-0001-8340-9896

PUCHKOV Nikolai I.

muxanin@mail.ru

ORCID: 0000-0002-0494-3132

KHANIN Samuil D.

sd_khanin@mail.ru ORCID: 0000-0002-8316-0362

VANIN Alexander I.

a.ivanin@mail.ru

ORCID: 0000-0002-6722-4848

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

KUMZEROV Yurii A.

yu.kumzerov@mail.ioffe.ru ORCID: 0000-0002-4661-2702

YANIKOV Mikhail V.

losthighway@mail.ru ORCID: 0000-0002-0116-2787

SOLOVYEV Vladimir G.

solovyev_v55@mail.ru ORCID: 0000-0002-8452-6928

Received 19.05.2022. Approved after reviewing 04.07.2022. Accepted 04.07.2022.

© Peter the Great St. Petersburg Polytechnic University, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.