https://doi.org/10.21122/1029-7448-2018-61-6-539-551 УДК 62.5
Параметрическая оптимизация системы автоматического управления мощностью энергоблоков 300 МВт в режиме переменного давления пара перед турбиной
Г. Т. Кулаков1*, А. Т. Кулаков1*, К. И. Артёменко1*
'^Белорусский национальный технический университет (г. Минск, Республика Беларусь)
© Белорусский национальный технический университет, 2018 Belarasian National Technical University, 2018
Реферат. Статья посвящена вопросу параметрической оптимизации систем автоматического управления мощностью энергоблоков 300 МВт Лукомльской ГРЭС в режиме переменного давления перегретого пара перед турбиной. Последний раз модернизация систем автоматического управления мощностью энергоблоков на всех энергоблоках Лукомльской ГРЭС проводилась в 90-е гг. XX в. В данный момент эти системы уже не удовлетворяют всем требованиям нового стандарта, который регулирует нормы участия энергоблоков тепловых электростанций в нормированном первичном регулировании частоты и автоматическом вторичном регулировании частоты и перетоков активной мощности. Согласно данному стандарту, время достижения половинного значения необходимого изменения мощности должно составлять 10 с в пределах нормального и аварийного резервов; время достижения полного значения необходимого изменения мощности должно составлять 30 с в пределах нормального резерва и 2 мин - в пределах аварийного. Также завершается строительство Белорусской АЭС, первый энергоблок которой будет введен в эксплуатацию в 2019 г., второй - в 2020 г. После запуска АЭС энергоблоки Лукомльской ГРЭС будут вынуждены работать в широком диапазоне изменения нагрузок. Именно по этим причинам необходимо повысить эффективность работы энергоблоков, в частности и всей станции в целом. Этого можно добиться с помощью приведенной методики параметрической оптимизации типовой системы автоматического управления мощностью энергоблоков, позволяющей повысить качество регулирования мощности и давления пара перед турбиной. Результаты компьютерного моделирования переходных процессов в системе иллюстрируют описанную в данной статье методику и подтверждают ее правильность и несомненные преимущества перед другими методами оптимизации типовых систем автоматического управления мощностью энергоблоков.
Ключевые слова: автоматическое управление, электрическая мощность, режим переменного давления пара, параметрическая оптимизация системы
Для цитирования: Кулаков, Г. Т. Параметрическая оптимизация системы автоматического управления мощностью энергоблоков 300 МВт в режиме переменного давления пара перед турбиной / Г. Т. Кулаков, А. Т. Кулаков, К. И. Артёменко // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2018. Т. 61, № 6. С. 539-551. https://doi.org/10.21122/ 1029-7448-2018-61-6-539-551
Адрес для переписки
Кулаков Геннадий Тихонович Белорусский национальный технический просп. Независимости, 65/2, 220013, г. Минск, Республика Беларусь Тел.: +375 17 293-91-45 [email protected]
Address for correspondence
Kulakov Gennady T.
Belarusian National Technical University
65/2 Nezavisimosty Ave.,
220013, Minsk, Republic of Belarus
Tel.: +375 17 293-91-45
Parametric Optimization for Automatic Control System of Power Units of 300 MW for the Mode of Variable Pressure of Turbine Inlet Steam
G. T. Kulakov1*, A. T. Kulakov1*, K. I. Artsiomenka1*
1)Belаrusian National Technical University (Minsk, Republic of Belarus)
Abstract. The article deals with the problem of parametric optimization of automatic control systems for power units of 300 MW of Lukoml'skaya GRES in the mode of variable pressure of turbine inlet superheated steam. The modernization of automatic power control systems of all power units of Lukoml'skaya GRES was carried out in the nineties of XX century for the last time. At the moment, these systems no longer meet all the requirements of the new standard, which regulates the participation rates of thermal power units in the normalized primary frequency control and in automatic secondary control of frequency and active power flows. According to this standard, the time to achieve the half value of the required power change should be 10 seconds within the normal and emergency reserves; the time to achieve the full value of the required power change should be 30 seconds within the normal reserve and 2 minutes within the emergency one. The construction of the Belarusian NPP is also being completed; its first unit will be put into operation in 2019, and the second one-in 2020. After the launch of the NPP, the Lukoml'skaya GRES power units will be necessitated to operate in a wide range of load changes. It is for these reasons that it is necessary to improve the efficiency of power units in particular and of the entire power plant in general. This can be achieved with the help of the outlined method of parametric optimization of a typical system of automatic control of power units, which allows improving the quality of control of turbine inlet steam power and pressure. The results of computer simulation of transient processes in the system illustrate the technique described in this article and confirm its correctness and undoubted advantages over other methods of optimization of typical systems of automatic control of power units.
Keywords: automatic control, electric power, steam variable pressure mode, system parametric optimization
For citation: Kulakov G. T., Kulakov A. T., Artsiomenka K. I. (2018) Parametric Optimization for Automatic Control System of Power Units of 300 MW for the Mode of Variable Pressure of Turbine Inlet Steam. Energetika. Proa CIS Higher Educ. Inst. аnd Power Eng. Assoc. 61 (6), 539-551. https: //doi. org/10.21122/1029-7448-2018-61-6-539-551 (in Russian)
Введение
Автоматическому регулированию перетоков активной мощности и частоты энергосистемы посвящено немало публикаций [1-15], в том числе: системам автоматического управления мощностью энергоблоков (САУМБ) [1, 4, 7-11], алгоритмам работы систем автоматического регулирования перетоков мощности энергосистемы [2, 3], системам общестанционной части автоматического управления мощностью станции [5], способам управления энергоблоком в аварийных режимах энергосистемы [6], а также анализу динамических характеристик энергоблоков в широком диапазоне изменения их нагрузок [9, 11, 12].
Современные требования к качеству поддержания мощности и частоты энергосистемы существенно ужесточились: энергоблок должен за 10 с набрать 50 % от необходимого изменения мощности в пределах нормального и аварийного резервов; время полного набора требуемого изменения мощности должно составлять 30 с в пределах нормального резерва и 2 мин -в пределах аварийного [13]. Но повысить качество отработки изменения задания для энергоблока можно только, увеличив степень форсировки кот-
ла [12]. В свою очередь, это приводит к тому, что необходимо применять более сложные схемы управления с такими же сложными методиками настройки.
Параметрическая оптимизация системы
Параметрической оптимизации типовой САУМБ в режиме постоянного давления пара посвящена работа [16]. В связи с этим актуальной становится задача параметрической оптимизации САУМБ в режиме переменного давления пара перед турбиной в диапазоне от 70 до 30 % номинальной мощности энергоблока.
Структурная схема моделирования переходных процессов типовой САУМБ с ведущим котельным регулятором и форсированием сигнала задания по мощности при переменном давлении пара перед турбиной приведена на рис. 1.
Рис. 1. Структурная схема моделирования переходных процессов типовой системы автоматического управления мощностью энергоблоков с форсированием сигнала задания по мощности
Fig. 1. Block diagram of simulation of transient processes of the typical automatic control system for power units' capacity with power signal forcing
На рис. 1 использованы следующие обозначения: Ызд - заданное значение мощности энергоблока; - фактическая электрическая мощность энергоблока; f - внутреннее возмущение; хзд1 - задание регулятору топлива; а - доля ошибки регулирования по мощности с выхода измерительного блока котельного регулятора мощности (КРМ) на вход стабилизатора положения регулирующих клапанов турбины, т. е. турбинного регулятора мощности (ТРМ); Вт - изменение расхода топлива; p0 - давление перегретого пара перед турбиной; Изд, Нрк - соответственно заданное и текущее значения положения регулирующих клапанов турбины.
Исходные данные для расчета параметров динамической настройки типовой САУМБ при моделировании переходных процессов энергоблока 300 МВт Лукомльской ГРЭС приведены в [14].
Передаточная функция опережающего участка по расходу топлива (газа)
К 1,1
Жоп (Р) = у (Р) = -=-=-, (1)
т> (Топ Р +!)(аоп Р +!) (5р +1)(0,5 р +1)
где Коп - коэффициент передачи; Топ, соп - соответственно большая и меньшая постоянные времени передаточной функции опережающего участка по расходу топлива (газа), с.
Передаточная функция, характеризующая инерционность датчика измерения давления иввиоля, соответствующего положению регулирующих клапанов турбины:
* К. 1,2 Ж (р) = Ж (р) =-— =-,
оп ^ ' ивв ^ ' 7
Т9 р +1 10р +1' (2)
где К5 - коэффициент передачи; Т9 - постоянная времени передаточной функции датчика измерения давления иввиоля, с.
Передаточная функция по электрической мощности при скачкообразном изменении расхода топлива Вт
ту -Т1Р с -25 Р
К1е 3,5е
Жуфв(Р)=-=-, (3)
^ т (ТР +1)(СТ!Р +1) (152р +1)(29р +1) ()
где К\ - коэффициент передачи; Ть С1 - соответственно большая и меньшая постоянные времени передаточной функции по мощности при изменении расхода топлива, с; т - время запаздывания по каналу регулирующего воздействия, с.
Передаточная функция по давлению перегретого пара перед турбиной при скачкообразном изменении расхода топлива Вт
К2е-Т2Р 3е-16р
Жро,Вт (Р) =-=-, (4)
0т (Т2 р + 1)(с 2 р + 1) (51р +1)(13 р + 1) ()
где К2 - коэффициент передачи; Т2, с2 - соответственно большая и меньшая постоянные времени передаточной функции по давлению пара перед турбиной при изменении расхода топлива, с; т2 - время запаздывания по каналу регулирующего воздействия, с.
Передаточная функция по электрической мощности при скачкообразном перемещении регулирующих клапанов турбины
То р (Т3 р + 1) 509,4р(7 р + 1)
Ж^флр(Р) =-=-, (5)
ф,йрк (Т4 р + 1)(Т5 р + 1) (504р + 1)(144 р + 1)
где Т0, Т3, Т4, Т5 - постоянные времени передаточной функции по мощности при возмущении регулирующими клапанами турбины, с.
Передаточная функция по давлению перегретого пара перед турбиной при скачкообразном перемещении регулирующих клапанов турбины
Кз (Т р +1) -0,42 • (14р +1)
Жр0>К« (Р) =-=-' (6)
Р0 "рк Т7 р +1 270р +1 ^
где К3 - коэффициент передачи; Т6, Т7 - постоянные времени передаточной функции по давлению перегретого пара перед турбиной при возмущении регулирующими клапанами турбины, с.
Котельный регулятор мощности и регулятор топлива - это каскадная система автоматического управления, в которой корректирующий котельный ПИ- или ПИД-регулятор настраивают на оптимальную отработку задающего сигнала, а стабилизирующий ПИ-регулятор топлива - на оптимальную отработку внутреннего возмущения.
Регулятор топлива (передаточная функция на рис. 1) настраивается по передаточной функции опережающего участка (1) по методу частичной компенсации [15]. Для этого необходимо рассчитать относительное значение коэффициента передачи стабилизирующего регулятора К
П2 , П — ^ , Г2
К = КРК0П = 0,739571^1+ TJ -1 = 0,7395-10+ 10J -1 = 7,948, (7)
где T - относительная постоянная времени передаточной функции опережающего участка (1),
T 5
T = -^ =-= 10; (8)
"оп 0,5
Кр1 - коэффициент передачи стабилизирующего регулятора. С учетом (7) и (8) находим абсолютное значение Кр\
К 7 948
Кр1= — = 7948 = 7,23. (9)
р1 —оп U
Относительное значение времени интегрирования стабилизирующего регулятора I рассчитываем с учетом (7) и (8) по формуле
j = Tsl = 6,3К = 6,3 - 7,948 = 3 8 (10)
"оп T (1 + T J 10( 1 +^ ••
Затем определяем абсолютное значение времени интегрирования Th1
TH1 = I"оп = 3,8 - 0,5 = 1,9 с. (11)
Котельный ПИ-регулятор мощности с передаточной функцией Жр2 настраиваем по передаточной функции (3) при возмущении расходом топлива, используя метод полной компенсации (МПК) в частном виде [15].
Время интегрирования КРМ
Ти2 =Т +а1 =152 + 29 = 181 с. (12)
Коэффициент передачи рассчитываем следующим образом:
Т 152 + 29
Кр2 = = 122 +29 = 0,52, (13)
р 4^2К1х1 4. 12 . 3,5 . 25
где Е - коэффициент демпфирования, равный единице, позволяющий устранить перерегулирование при отработке скачка задания.
Структура ТРМ с передаточной функцией Жр3 формируется на основе передаточной функции оптимального регулятора при помощи передаточной функции датчика измерения давления иввиоля (2) при возмущении изменением положения регулирующих клапанов турбины [14]
Жр3 (Р) = ЖТрМ (р) = [С (р) ]-1 Ж/;/"=1) (р), (14)
рс(и = 1),
где Жзд1 (р) - заданная передаточная функция разомкнутой системы в виде идеального интегрирующего звена,
Жзрдс("=1}(р) = -Л-;
'здг (р)"т ; (15)
Тзд1 р
Тзд1 - единственный расчетный параметр динамической настройки ТРМ, с.
Численное значение Тзд1 рассчитываем с учетом ряда чисел правила «золотого сечения» по формуле [14]
Тзд1 = 0,09Т9 = 0,09 • 10 = 0,9 с. (16)
С учетом передаточных функций (2), (14) и (15) передаточная функция ТРМ примет вид ПИ-регулятора с одним параметром динамической настройки Тзд1
Ж™ (р) = ^ = = ^. (17)
ТР К,Тзд, р 1,2 • 0,9р 1,08р
Расчет параметров динамической настройки дифференциатора инвариантности осуществляем с помощью передаточных функций (5) и (6) из условия
Жинв (р) = КХр = = Тор(Т3р +1)(Т7р +1)
д ^ Тир +1 Ж3(р) (Т4 р+1)(Т5 р+1)К3 (Тб р+1)'
Отсюда численное значение времени дифференцирования рассчитываем по формуле
Гди = T4 + T5 + T6 - T7 - T3 = 504 + 144 + 14 - 270 - 7 = 385 c.
(19)
Коэффициент передачи Кд1 принимаем равным единице.
Передаточную функцию формирователя сигнала задания (ФСЗ) представляем в виде звена быстрого реагирования
^з(р) = 1+ -дзд (р) = 1 + К^ = = (20)
ГдЗД p +1
Гд p +1
гд p+1
где ^дзд (р) - передаточная функция дифференциатора ФСЗ.
Постоянную времени передаточной функции (20) с учетом передаточной функции (5) рассчитываем по формуле
T^ = 3,09(T4 +T5) = 3,09-(504 +144) = 2002,3 c.
(21)
Численное значение постоянной времени числителя передаточной функции ФСЗ (20) определяем также с учетом ряда чисел правила «золотого сечения», приняв за целое три:
T^ = 3,382(T4 +T5) = 3,382-(504 +144) = 2192 c.
(22)
Графики переходных процессов САУМБ, построенные с помощью пакета Simulink МаЛаЬ для трех вариантов оптимизации параметров динамической настройки систем при отработке скачка задания по мощности, приведены на рис. 2-5.
500
1000 1500 2000 2500 3000 Время, с
Рис. 2. Фактическая мощность при отработке скачка задания Fig. 2. Available power in the process of response to input step
На рис. 2-5 кривые 1 соответствуют схеме САУМБ на рис. 1 (вариант I), оптимизированной по описанной выше методике.
3.0
к
5
а
о О К и
О
а 2,5
о
а 2<°
ч о
й
1,5
1,0
I 0.5
— 1 — 2 -3
\v_
200
400 600
Время, с
800
1000
Рис. 3. Расход топлива при отработке скачка задания Fig. 3. Flow of fuel in the process of response to input step
100
200
oo
400
500
Bper*
Рис. 4. Перемещение регулирующих клапанов турбины при отработке скачка задания Fig. 4. Turbine regulation valve motion in the process of response to input step
Рис. 5. Давление перегретого пара перед турбиной при отработке скачка задания Fig. 5. Pressure of over-heated turbine inlet steam in the process of response to input step
Кривые 2 соответствуют варианту II и отличаются тем, что КРМ представляет собой ПИД-регулятор, настроенный по графоаналитическому методу полной компенсации в общем виде (МПК в ОВ-I) [14]. Передаточная функция котельного регулятора мощности с учетом (3) выглядит следующим образом:
Кр2(?;2p + 1)| -ip +1
Wp2 (p) = WKPM (p) =
T2 p T p + 1)
(23)
где T6 - балластная постоянная времени, с.
Балластная постоянная времени принимается в 10 раз меньше времени дифференцирования, равного ii/4. Время интегрирования и коэффициент передачи рассчитывают аналогично варианту I по формулам (12) и (13).
Кривые 3 соответствуют варианту III и отличаются от варианта I тем, что, во-первых, КРМ представляет собой реальный ПИД-регулятор, структура которого определена на базе передаточной функции оптимального регулятора [14]. С учетом (3) и (12) передаточная функция регулятора имеет вид
WP2 (Р) = WpM (Р) =
W*
(p)
W^f =2) (Р) = ■
(Tu2 p +1)(T, p +1)
( t v
(24)
К 2ТзД2 p
^ p+1 2
где Гзд2 - заданная постоянная времени, определяемая с помощью чисел ряда «золотого сечения» следующим образом:
Гзд2 = 1,618x1 = 1 ,618 • 25 = 40,45 с; (25)
Гзр;2("=2) (р) - заданная передаточная функция разомкнутой системы в виде реального интегрирующего звена,
W Pc(n = 2)
зд2
(Р) =
1
2Тзд2 p
Т
зд2 p+1 2
(26)
Также вариант III отличается от I тем, что дифференциатор инвариантности отключен от входа КРМ. В этом варианте время регулирования по мощности при отработке скачка задания уменьшилось более чем в 10 раз по сравнению с вариантами I и II.
Графики переходных процессов САУМБ при внутреннем возмущении изображены на рис. 6-9.
х10-
1000 Время, с
2000
Рис. 6. Фактическая мощность при внутреннем возмущении Fig. 6. Available power in the process of response to internal disturbance
0,12
cd а 0,10
g I
0,08
0,06
0,04
Ii м
Ё § и Ш О и
Е S °>02 о I
- 1 ....
-3
50
100
150
200
250
Время, с
Рис. 7. Расход топлива при внутреннем возмущении Fig. 7. Flow of fuel in the process of response to internal disturbance
x10-:
3
OJ
я
200
400 600
Время, с
800
1000
Рис. 8. Перемещение регулирующих клапанов турбины при внутреннем возмущении Fig. 8. Turbine regulation valve motion in the process of response to internal disturbance
x10-:
10
a g, a ts
5 § U §
-2
—1 — 2 -3 --
у- /
200
400
600 Время, с
800
1000
1200
Рис. 9. Давление перегретого пара перед турбиной при внутреннем возмущении Fig. 9. Pressure of over-heated turbine inlet steam in the process of response to internal disturbance
Прямые показатели качества переходных САУМБ процессов при отработке скачка задания Ызд и внутреннего возмущенияf сведены в табл. 1.
Из анализа сравниваемых вариантов САУМБ следует, что лучшие показатели качества при отработке скачка задания и внутреннего возмущения
обеспечивает вариант III системы, который не подает на вход КРМ сигнал по давлению перегретого пара перед турбиной (кроме относительного расхода топлива и относительного прироста давления при скачке Мзд). Также в данном варианте больше изменение мощности при внутреннем возмущении но это не критично, поскольку в этом случае речь идет о слишком маленьких значениях мощности энергоблока.
Таблица 1
Прямые показатели качества переходных процессов сравниваемых вариантов систем автоматического управления мощностью энергоблоков
Direct values of performance of transient processes of automatic control systems for power units' capacity
Вариант Вид возмущения !р, с Aßf АйрК АрО А<!о
I ^зд 1800 8,910 +6,50 0,812 -
fl 2200 0,111 -0,01 +0,00992 0,00148
II ^зд 1800 2,280 +8,10 0,885 -
fl 2200 0,111 -0,00275 +0,01005 0,00153
III ^зд 165 2,980 +6,50 1,457 -
fl 1400 0,111 -0,01 +0,00976 0,00316
Обозначения: Гр - полное время регулирования; AB0 - относительное максимальное
изменение расхода топлива; АйрК - то же положения регулирующих клапанов турбины;
АрЦ - максимальное отклонение давления перегретого пара перед турбиной; А¥ф1ц - то же фактической мощности при внутреннем возмущении.
ВЫВОДЫ
1. Предложена система автоматического управления мощностью энергоблоков (вариант III), отличающаяся от типовой тем, что котельный регулятор мощности представляет собой реальный ПИД-регулятор. Второе отличие заключается в том, что отключен дифференциатор инвариантности, т. е. сигнал по скорости изменения давления перегретого пара перед турбиной не подается на вход котельного регулятора мощности в режиме переменного давления пара перед турбиной.
2. Результаты моделирования переходных процессов предлагаемой системы автоматического управления мощностью энергоблоков по сравнению с такими же типовыми системами, установленными на Лукомль-ской ГРЭС, показали улучшение качества управления в некоторых аспектах: при отработке скачка задания Л^зд полное время регулирования 1р составляет 165 с против 660 с у типовой системы, однако при этом максимальное относительное изменение расхода топлива у типовой системы автоматического управления мощностью энергоблоков меньше в два раза [14]. Кроме того, в предлагаемом варианте системы максимальное отклонение положения регулирующих клапанов сократилось на 35 %, но при этом у таких систем максимальное изменение давления перегретого пара перед турбиной примерно одинаковое [14].
3. При отработке внутреннего возмущения /1 время регулирования 1р у варианта III сократилось в 1,57 раза по сравнению с двумя первыми вариантами при примерно одинаковых других показателях качества.
ЛИТЕРАТУРА
1. Система регулирования энергоблока: а. с. 657179 СССР: МПК Е 01 К 13/02 / Г. Т. Кулаков, М. Н. Терешко, В. И. Литвинец и др.; дата публ. 15.04.1979.
2. Способ автоматического регулирования перетоков активной мощности и частоты энергообъединения: а. с. 864427 СССР: МПК Н 02 I 3/06 / Ю. М. Терезов, Г. Т. Кулаков, В. В. Гуренко; дата публ. 15.09.1981.
3. Устройство для автоматического регулирования перетока мощности между двумя частями энергосистемы: а. с. 864426 СССР: МПК Н 02 I 3/06 / Ю. М. Терезов, Г. Т. Кулаков, Л. М. Плахов, В. И. Литвинец; дата публ. 15.09.1981.
4. Система автоматического регулирования мощностью энергоблока: а. с. 877091 СССР: МПК Е 01 К 13/02 / Г. Т. Кулаков, А. А. Москаленко, И. Ю. Костив, Н. В. Молотков; дата публ. 30.10.1981.
5. Система группового автоматического управления мощностью энергоблоков тепловой электростанции: а. с. 1053221 СССР: МПК Н 02 I 3/46 / Г. Т. Кулаков, А. А. Москаленко,
A. Д. Качан и др.; дата публ. 07.11.1983.
6. Способ управления энергоблоком в аварийных режимах энергосистемы: а. с. 881356 СССР: МПК Е 01 К 13/02 / Г. Т. Кулаков, И. Ю. Костив; дата публ. 15.11.1981.
7. Система автоматического регулирования частоты и мощности блочных ТЭС с прямоточными котлами / Н. И. Давыдов [и др.] // Теплоэнергетика. 1979. № 8. С. 2-6.
8. Система автоматического управления энергоблоком сверхкритических параметров /
B. И. Литвинец [и др.] // Энергетика. Изв. высш. учеб. заведений. 1980. № 8. С. 40-45.
9. Кулаков, Г. Т. Экспериментальное определение и анализ динамических свойств энергоблоков мощностью 300 МВт / Г. Т. Кулаков // Энергомашиностроение. 1984. № 1. С. 9-11.
10. Система автоматического регулирования мощностью энергоблока паровой котел - турбина: пат. 2315871 Рос. Федерация: МПК Е 01 К 13/02 / Н. И. Давыдов; заявитель и патентообладатель Москва, ВТИ; № 2006121529/06; заявл. 20.06.2006; опубл. 27.01.2008. Бюл. № 3. 7 с.
11. Зорченко, Н. В. Исследование влияния формирующих сигналов в системе автоматического управления мощностью энергоблока на его приемистость / Н. В. Зорченко, Н. И. Давыдов, А. А. Григоренко // Теплоэнергетика. 2006. № 10. С. 42-48.
12. Разработка и внедрение САРЧМ крупных энергоблоков / В. А. Биленко [и др.] // Теплоэнергетика, 2008. № 10. С. 14-26.
13. Нормы участия энергоблоков тепловых электростанций в нормированном первичном регулировании частоты и автоматическом вторичном регулировании частоты и перетоков активной мощности: СТО 59012820.27.100.002-2013. Введ. 25.04.2013. М.: ОАО «СО ЕЭС», 2013. 36 с.
14. Теория автоматического управления теплоэнергетическими процессами / Г. Т. Кулаков [и др.]; под общ. ред. Г. Т. Кулакова. Минск: Вышэйш. шк., 2017. 238 с.
15. Кулаков, Г. Т. Инженерные экспресс-методы расчета промышленных систем / Г. Т. Кулаков. Минск: Вышэйш. шк., 1984. 192 с.
16. Кулаков, Г. Т. Параметрическая оптимизация системы автоматического управления мощностью энергоблоков 300 МВт в режиме постоянного давления пара перед турбиной / Г. Т. Кулаков, А. Т. Кулаков, К. И. Артёменко // Энергетика. Изв. высш. учеб. заведений и энерг. объединений СНГ. 2018. Т. 61, № 5. С. 451-462. https://doi.org/10.21122/ 1029-7448-2018-61-5-451-462.
Поступила 17.05.2018 Подписана в печать 20.06.2018 Опубликована онлайн 28.11.2018
REFERENCES
1. Kulakov G. T., Tereshko M. N., Litvinets V. I., Volnyanko M. G., Pirogov V. G., Kurilin L. A., Manuilov V. K. (1979) Power Unit Regulating System. USSR Author's Certificate No 657179 (in Russian).
2. Terezov Yu. M., Kulakov G. T., Gurenko V. V. (1981) Method for Automatic Control of Active Power Flows and Frequency of Power Pool System. USSR Author's Certificate No 864427 (in Russian).
3. Terezov Yu. M., Kulakov G. T., Plakhov L. M., Litvinets V. I. (1981) Device for Automatic Power Flow Control between Two Parts of Power Pool System. USSR Author's Certificate No 864426 (in Russian).
4. Kulakov G. T., Moskalenko A. A., Kostiv I. Yu., Molotkov N. V. (1981) Power Unit Automatic Regulating System of Capacity. USSR Author's Certificate No 877091 (in Russian).
5. Kulakov G. T., Moskalenko A. A., Kachan A. D. (1983) Thermal Power Unit Group Automatic Regulating System of Capacity. USSR Author's Certificate No 1053221 (in Russian).
6. Kulakov G. T., Kostiv I. Yu. (1981) Power Unit Control Method for Emergency Running of Power System. USSR Author's Certificate No 881356 (in Russian).
7. Davydov N. I., Malamed A. D., Trakhtenberg M. D., Fotin L. P. (1979) The System of Automatic Regulation of Frequency and Power of Block-Type Thermal Power Plants with Straight-Through Boilers. Teploenergetika = Thermal Engineering, (8), 2-6 (in Russian).
8. Litvinets V. I., Kulakov G. T., Molev V. V., Red'ko I. I., Polishchuk S. I. (1980) Automatic Control System of Power Unit with Supercritical Parameters. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii. [Energetika. Proceedings of CIS Higher Education Institutions.], (8), 40-45 (in Russian).
9. Kulakov G. T. (1984) Experimental Determination and Analysis of Dynamic Properties for 300 MW Power Units. Energomashinostroenie [Power Plant Engineering], (1), 9-11 (in Russian).
10. Davydov N. I. (2006) System of Automatic Control of Power of Steam Boiler-Turbine Power Unit. Russian Federation Patent No 2315871 (in Russian).
11. Zorchenko N. V., Davydov N. I., Grigorenko A. A. (2006). Investigating the Effect of Forcing Signals in a System for Automatically Controlling the Output of a Power Unit on its Pickup Capability. Thermal Engineering, 53 (10), 810-818. https://doi.org/10.1134/s004060150610 0107.
12. Bilenko V. A., Melamed A. D., Mikushevich E. E., Nikol'skii D. Y., Rogachev R. L., Romanov N. A. (2008) Development and Application of Automatic Frequency and Power Control Systems for Large Power Units. Thermal Engineering, 55 (10), 824-837. https://doi.org/10. 1134/s0040601508100030.
13. Company Standard 59012820.27.100.002-2013. Participation Norm of Thermal Power Plants Power Generator Units in Standard Primary Frequency Control and Automatic Secondary Frequency Control and Active Power Flows Control. Moscow, OAO "SO EES", 2013. 36 (in Russian).
14. Kulakov G. T., Kulakov A. T., Kravchenko V. V., Kuchorenko A. N., Artsiomenka K. I., Kov-rigo Yu. M., Golinko I. M., Bagan T. G., Bunke A. S. (2017) Automatic Control Theory for Heat and Power Processes. Minsk, Vysheishaya Shkola Publ. 238 (in Russian).
15. Kulakov G. T. (1984) Engineering Proximate Methods of Design Calculation for Industrial Regulating Systems. Minsk, Vysheishaya Shkola Publ. 192 (in Russian).
16. Kulakov G. T., Kulakov A. T., Artsiomenka K. I. (2018) Parametric Optimization for Automatic Control System of 300 MW Power Units at a Constant Steam Pressure Upstream of the Turbine. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob 'edenenii SNG = Energetika. Proceedings of the CIS Higher Educational Institutions and Power Engineering Associations, 61 (5), 451-462 (in Russian). https://doi.org/10.21122/1029-7448-2018-61-5-451-462.
Received: 17 May 2018
Accepted: 20 June 2018
Published online: 28 November 2018