Научная статья на тему 'Параллельный алгоритм для моделирования процессов в цилиндрических открытых ловушках'

Параллельный алгоритм для моделирования процессов в цилиндрических открытых ловушках Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
28
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — М А. Боронина, В А. Вшивков, Е А. Генрих, Г И. Дудникова

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Параллельный алгоритм для моделирования процессов в цилиндрических открытых ловушках»

Суперкомпьютерные вычисления 109

7. Сибирский суперкомпьютерный центр ИВМиМГ СО РАН. URL: http://www.sscc.icmmg.nsc.ru (дата обращения: 30.11.2019).

Параллельный алгоритм для моделирования процессов в цилиндрических открытых ловушках

М. А. Боронина, В. А. Вшивков, Е. А. Генрих, Г. И. Дудникова

Институт вычислительной математики и математической геофизики СО РАН

Email: [email protected]

DOI: 10.24411/9999-017A-2020-10182

В докладе вниманию представляется параллельный алгоритм для проведения численного моделирования динамики плазмы в открытых цилиндрических ловушках в двумерном случае [1]. Алгоритм основан на использовании гибридной модели, идея которой состоит в кинетическом описании ионной компоненты и описании с помощью МГД-подхода электронной компоненты плазмы. Применен метод частиц-в-ячейках с численными схемами на сдвинутых сетках [2]. Для распараллеливания использована смешанная декомпозиция: расчетная область разбивается на подобласти, за каждую подобласть отвечает группа ядер, частицы в подобласти распределены между ядрами своей группы. Такой подход позволяет существенно ускорить вычисления за счет выделения большего количество ядер на группу с более высокой плотностью частиц и, соответственно, равномерной загрузки ядер внутри группы [3].

Реализованный алгоритм тестировался на задаче диамагнитного удержания плазмы. В докладе демонстрируются результаты численных экспериментов, проведенных на процессорах Сибирского суперкомпьютерного центра (ИВМиМГ СО РАН, Новосибирск).

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 18-29-21025 мк). Концепция гибридной модели создана в рамках гос.задания ИВМиМГ СО РАН (проект 0315-2019-0009).

Список литературы

1. Beklemishev A. D. Phys. Plasmas 23 (2016).

2. Birdsall Ch. K., Langdon A. B. Plasma physics via computer simulation. McGraw-Hill Book Company, 1985.

3. Boronina M. A., Vshivkov V A. J. of Plasma Phys. 2015. 81(6). 495810605.

Параллельная реализация полулагранжевого метода для численного решения уравнений Навье - Стокса на многопроцессорных вычислительных системах

А. В. Вяткин1,2, Е. В. Кучунова2

1Институт вычислительного моделирования СО РАН 2Сибирский федеральный университет Email: [email protected] DOI: 10.24411/9999-017A-2020-10183

В работе представлен численный алгоритм решения уравнений Навье - Стокса, описывающий трехмерное течение вязкого теплопроводного газа. В работе для аппроксимации полной (субстанциональной) производной по времени в каждом уравнении системы используется метод траекторий. Дискретизация по пространству остальных слагаемых уравнений Навье - Стокса на каждом временном слое проводится методом конечных элементов [1]. Как следует из тестовых расчетов [2, 3], применение комбинации методов траекторий и конечных элементов позволяет построить алгоритм, довольно эффективный с вычислительной точки зрения. Разработана параллельная версия алгоритма для многопроцессорных вычислительных систем с использованием технологии передачи сообщений MPI. Созданный программный комплекс применен для моделирования трехмерного течения вязкого теплопроводного газа в трубе.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда поддержки научной и научно-технической деятельности в рамках научного проекта № 18-41-243006.

Список литературы

1. Shaydurov, V V., Shchepanovskaya, G. I., Yakubovich, M. V. Semi-Lagrangian Approximation of Conservation Laws in the Flow around a Wedge // Lobachevskii J. of Mathematics. 2018. Vol. 39. P. 936-948.

i Надоели баннеры? Вы всегда можете отключить рекламу.