Научная статья на тему 'Параллельная обработка данных в программном обеспечении систем планирования использования воздушного пространства'

Параллельная обработка данных в программном обеспечении систем планирования использования воздушного пространства Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
137
102
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по компьютерным и информационным наукам , автор научной работы — Григорьев В. А., Тимофеев С. Ю.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Параллельная обработка данных в программном обеспечении систем планирования использования воздушного пространства»

УДК 004.451.45

ПАРАЛЛЕЛЬНАЯ ОБРАБОТКА ДАННЫХ В ПРОГРАММНОМ ОБЕСПЕЧЕНИИ СИСТЕМ ПЛАНИРОВАНИЯ ИСПОЛЬЗОВАНИЯ ВОЗДУШНОГО ПРОСТРАНСТВА

В.А. Григорьев, д.т.н.; С.Ю. Тимофеев

(Тверской государственный технический университет, evm@tstu.tver.ru, timofeev.simeon@hotmail.com)

Рассматриваются процессы обработки плановой информации в системе планирования использования воздушного пространства и возможности применения параллельной обработки данных для повышения производительности системы.

Ключевые слова: программирование, параллельная обработка, планирование, воздушное движение, специальное ПО.

С ростом количества авиаперевозок повышается актуальность совершенствования систем управления воздушным движением и систем планирования использования воздушного пространства (ПИВП). Планирование заключается в распределении воздушного пространства по месту, времени и высоте между его различными пользователями с целью обеспечения безопасного и эффективного совместного использования при осуществлении ими заявленной деятельности [1]. Совершенствование таких систем происходит по четырем основным направлениям:

1) совершенствование каналов связи для повышения надежности и скорости обмена информацией;

2) разработка и внедрение новых правил и регламентирующих документов для согласования работы служб, вовлеченных в процесс планирования и управления воздушным движением;

3) разработка и внедрение новых форматов данных при обмене информацией с целью повышения уровня автоматизации взаимодействия различных систем планирования и управления воздушным движением;

4) совершенствование специального ПО (СПО) для повышения уровня автоматизации.

Совершенствование СПО связано с необходимостью более сложного анализа большого количества плановой, аэронавигационной и метеоинформации. Это увеличивает требования к производительности СПО, которой можно добиться за счет совершенствования алгоритмов обработки данных либо более эффективного использования ресурсов компьютерной техники. Разработка новых алгоритмов требует значительных затрат времени на проведение исследований, при этом всегда существует некоторый предел производительности. С другой стороны, в последнее время неуклонно растет процессорная мощность за счет увеличения

количества физических и логических ядер, способных вести параллельную обработку данных. Таким образом, вопрос использования методов параллельного программирования при разработке систем ПИВП является актуальным. В данной статье описываются основные задачи, решаемые системами ПИВП, с точки зрения возможности их параллельного выполнения.

Рассмотрим процесс обработки заявки на полет (рис. 1) в системе ПИВП, разрабатываемой для Главного центра Единой системы организации воздушного движения (ЕС ОрВД) Российской Федерации. Задачи, решаемые системой ПИВП, подробно изложены в [2].

Заявки на использование воздушного пространства приходят в систему в виде формализованных сообщений, формат которых определен Табелем сообщений о движении воздушных судов в Российской Федерации (ТС-95). Кроме того, в это же время идут и работы по организации взаимодействия с помощью обмена сообщениями в формате ADEXP, более пригодном для автоматизированной обработки. На рисунке 2 приведено сообщение FPL с заявкой на осуществление полета воздушного судна по территории России.

Обработка сообщения начинается с выполнения форматно-логического контроля (ФЛК), основные этапы которого представлены на рисунке 3. (На приведенных в статье схемах пунктирной границей отмечены блоки, операции в которых могут выполняться параллельно.)

Сообщение N Информация План План

ФЛК о полете N Расчет 4D- полета N Валидация полета \

1 , , , -

V У траектории V У

План полета N План Перегрузки N Меры

Коррек- полета N Корректи- Решение ОПВД N

1 . тировка БД ровка загрузки задач перегрузки

У У У У

Рис. 1. Фазы обработки заявки на выполнение полета в системе

Редактор телеграмм

|й|в I

Исходный текст =

зцзц дмп003 0019 фф ухкхзфзь 120017 ухххадзц (фпл-ни922б-жн -мие/м-с/н -уххх0100

-к01э0м001б карк00025 к01э0ф050 КД51 нерси0045 к0190ф050 кд51 падйно0100 к0180фобо кд51 ухкн0140 к0180м0030 33550340/0400 к01э0м0030

-ухсн0б00 ухкк ухнб ухсн

-еет/ъгхххооо1 ухккообо ухнн0140 ъгкснозоо рер/061Б1 опр/хаваровские авиалинии стс/21 мин/150 2.0 пап/видановоб1б9с14113в фио/киселев

рмк/обеспе4ение согласовано вез сро вне мвл р-8бб есть полет с, с -зака34ик/авис амур)

Рис. 2. Пример сообщения FPL с планом попета ВС

После определения типа сообщение передается соответствующему синтаксическому анализатору (парсеру), который отвечает за анализ текста и извлечение интересующей информации. Прежде всего, выделяя поля данных, он определяет структуру сообщения. Если удалось определить все обязательные для данного типа сообщения поля данных, парсером извлекаются значимые для построения плана полета данные в структуру «Информация о полете» и проводится их валидация. В состав данных входят дата полета, номер рейса и регистрационный номер, тип воздушного судна, время взлета и посадки, аэродромы взлета и назначения, точки входа/выхода в контролируемое

воздушное пространство, маршрут полета с указанием точек изменения скорости и высоты полета, навигационное и спасательное оборудование и другие данные, указанные в заявке.

Если при ФЛК не удалось определить все обязательные поля сообщения либо извлеченные данные не прошли ва-лидацию, сообщение отправляется в очередь на обработку диспетчером центра сбора и обработки планов полетов (ЦСОПП). При успешном прохождении ФЛК делается попытка построения пространственно-временной траектории движения воздушного судна (4D-траектории, или 4D-маршрута) по указанным в заявке данным. Этапы расчета 4D-траектории [3] представлены на рисунке 4.

Построение 2D-маршрута начинается с поиска в БД аэронавигационной информации указанных в заявке именованных точек и трасс. При успешном сопоставлении всех элементов на их основе строится плоский (2D) маршрут в виде последовательности участков. Участок соединяет две последовательные точки маршрута и содержит информацию

Сообщение

Определение типа сообщения

Синтаксический анализатор (парсер) сообщения

й>

Определение основных полей

к I Разбор полей 1/1 на подполя

Валидация + заполнение информации о полете

Информация о полете

Рис. 3. ФЛК входящих сообщений

Рис. 4. Порядок построения пространственно-временной траектории судна

о траектории движения воздушного судна на участке, о протяженности (длине) участка, прямом и обратном магнитном курсе. Если участок проходит по трассе, в него добавляется ссылка на описание участка трассы из БД аэронавигационной информации (в дальнейшем это потребуется для анализа соблюдения установленных правил использования воздушного пространства). В конце первого этапа маршрут обрезается по границам зоны ответственности системы ПИВП (для Главного центра - по границе зоны ответственности РФ). Если системе не удалось построить 2D-мар-шрут, сообщение отправляется в очередь на обработку диспетчером ЦСОПП.

На втором этапе с учетом летно-технических характеристик типа воздушного судна и данных о метеоусловиях рассчитывается высотный профиль полета. При этом в план вводятся дополнительные точки, характеризующие траекторию воздушного судна на этапах набора высоты после взлета, снижения перед посадкой, а также при изменениях эшелона во время крейсерского полета.

Далее рассчитываются и вводятся в план точки входа/выхода в зоны воздушного пространства по маршруту полета. Расчет ведется по участкам маршрута, его целесообразно выполнять параллельно. Из зон воздушного пространства представляют интерес сектора управления воздушным движением, районы аэродромов и зоны ограничений использования воздушного пространства (запретные зоны, опасные зоны, зоны ограничения полетов и опасных метеоявлений). Расчет пересечений с зонами осуществляется на данном этапе, так как необходимо учитывать не только внешнюю границу зоны, но и диапазон занимаемых ею высот. Если воздушное судно производит набор/снижение высоты, то точки входа/выхода могут быть не только на границе, но и внутри зоны.

Таким образом, в конце второго этапа получается описание траектории движения воздушного судна в пространстве (3D-маршрут).

На третьем этапе определяется время нахождения судна в каждой из точек плана. Для этого рассчитывается время на прохождение каждого участка маршрута. Эти расчеты не связаны друг с другом и могут выполняться параллельно. Целесообразность параллельной обработки обусловлена необходимостью произвести достаточно сложные расчеты для учета метеоусловий и летно-технических характеристик воздушного судна.

С завершением третьего этапа получается полноценный 4D-мар-шрут полета, содержащий всю необходимую информацию для анализа плана на соблюдение правил использования воздушного простран-

ства (рис. 5).

Для каждого участка в зависимости от направления движения (с запада на восток либо с востока на запад) проверяется допустимость занимаемого эшелона. Если участок является частью трассы, то выполняются дополнительные проверки на соответствие действующим правилам его использования, а также производится проверка попадания судна в зоны ограничения использования воздушного пространства. Затрагиваемые зоны ограничений были выявлены еще на втором этапе, при построении 3D-маршрута. Анализ производится на данном этапе, так как необходимо рассчитать время входа/выхода в зоны для учета регламента их работы. Кроме того, выполняется проверка на допустимость приема указанного типа воздушного судна на аэродроме назначения и запасных аэродромах, на соответствие указанных скоростей и эшелонов полета летно-техническим характеристикам судна и ряд других. Все эти проверки можно выполнять параллельно.

При обнаружении нарушений сообщение отправляется в очередь на обработку диспетчером ЦСОПП. Диспетчер проводит анализ выявленных ошибок и, если это возможно, устраняет их корректировкой текста сообщения. После этого сообщение заново проходит все этапы обработки. Процесс повторяется до тех пор, пока не будут решены все возникающие проблемы.

По результатам анализа подателю заявки отсылается сообщение одного из трех видов: ACK, MAN, REJ. Сообщение ACK отсылается при успешном прохождении всех проверок без корректировки его системой или диспетчером и подтверждает факт приема заявки. Сообщение типа MAN также подтверждает факт приема заявки, но при этом указывает на то, что оно подвергалось изменению. Если сообщение не удается скорректировать, отсылается сообщение REJ, содержащее описание причин отказа в приеме заявки. В случае успешной обработки рассчитанный план заносится в БД планов полетов системы.

После добавления плана или его изменения система должна скорректировать данные об ожидаемой загрузке элементов воздушного простран-

I-

План ||

полета ||

|1

Проверка участков на соблюдение правил использования воздушного пространства + расчет конфликта с зонами ограничений + соответствие заявленной скорости и высоты летно-техническим характеристикам

Проверка аэродромов,

План 1полета

Рис. 5. Валидация рассчитанного плана полета

ства и сравнить полученные результаты с установленными нормами пропускной способности этих элементов (рис. 6).

Рис. 6. Корректировка загрузки элементов воздушного пространства

Расчет загрузки производится в основном для секторов управления воздушным движением и аэродромов. Для разработки предложений по совершенствованию структуры воздушного пространства расчеты загрузки могут производиться для отдельных точек или участков трасс. Загрузка определяется по количеству входов воздушных судов в элемент воздушного пространства за интересующий интервал времени, обычно 1 час, 30, 20 или 10 минут.

Существуют два подхода к корректировке информации о загрузке. Во-первых, корректировку можно проводить инкрементально при добавлении, изменении или удалении плана полета. Такой подход наиболее эффективен с точки зрения затрат ресурсов, но сложен для реализации из-за постоянного изменения плановой и аэронавигационной информации. Таким образом, более выгодно использовать второй подход, подразумевающий полный перерасчет загрузки затрагиваемых элементов воздушного пространства. Расчет загрузки при этом осуществляется в виде запроса на выборку планов полетов, входящих в интересующий элемент пространства в указанный интервал времени. Такие запросы можно выполнять параллельно, так как они не требуют модификации данных, а соответственно, блокировки таблиц БД.

После корректировки данных система проверяет соответствие рассчитанной загрузки нормам пропускной способности элемента воздушного пространства. При обнаружении ситуаций превышения либо приближения к максимальной пропускной способности элемента воздушного пространства для разработки мер снижения загрузки привлекается диспетчер службы организации потоков воздушного движения (ОПВД). Разрабатываемые меры называются мерами ОПВД. При их разработке диспетчер должен

стремиться к минимальному влиянию вносимых изменений на существующий план полетов.

Для анализа диспетчеру предоставляются данные о планируемых полетах за сутки до и после момента фиксации превышения норм пропускной способности. Это необходимо для полноценного учета влияния вводимых изменений. Также предоставляются данные о планируемых ограничениях использования воздушного пространства.

Добиться снижения загрузки можно несколькими способами (рис. 7).

Первый способ заключается в изменении маршрута полета судна таким образом, чтобы он не затрагивал элемент воздушного пространства, в котором фиксируется превышение загрузки. Задаче прокладки или изменения маршрута воздушного судна с учетом ограничения использования воздушного пространства посвящено большое количество работ. Рассматриваемые в них алгоритмы позволяют получить маршрут судна, соответствующий заданным критериям. При этом заранее нельзя сказать, что какой-либо из алгоритмов наиболее эффективен, так как большое влияние оказывают особенности конкретной рассматриваемой ситуации. Таким образом, целесообразно реализовать несколько алгоритмов расчета альтернативного маршрута и выполнять их параллельно. Кроме того, имеет смысл установить ограничение на количество предлагаемых диспетчеру вариантов маршрутов и принудительно прерывать расчеты при достижении заданного ограничения.

Второй способ заключается в изменении профиля полета судна. Данная мера ОПВД использует тот факт, что границы нескольких секторов могут частично или даже полностью совпадать, но сами сектора при этом действуют на разных диапазонах высот. Изменив эшелон полета, можно добиться того, что воздушное судно будет передано под управление в сектор, располагающийся над или под перегруженным сектором, и тем самым снизить его загрузку.

Третий способ заключается в изменении времени входа судна в перегруженный сектор. Такое изменение позволяет учитывать воздушное судно в загрузке за другой интервал времени. Скорректировать время входа можно следующим образом:

— изменить время вылета; в основном применяется для судов, взлетающих с аэродромов РФ;

Рис. 7. Меры по решению проблем перегрузки секторов

— измененить время входа; воздушному судну определяется окно (слот) времени для входа в воздушное пространство сектора; в основном применяется для назначения времени входа иностранного судна в воздушное пространство РФ на этапе тактического планирования (в день выполнения полета);

— изменить время входа за счет изменения скорости полета на предшествующих участках.

Последняя мера ОПВД не затрагивает планы полетов. Вместо этого производится анализ возможностей повышения пропускной способности воздушного пространства, которого можно добиться изменением конфигурации секторов. Возможные конфигурации определены заранее, а значит, системе достаточно рассчитать загрузку секторов для каждого варианта и выбрать те, что позволяют решить проблему перегрузки. Эти расчеты также можно выполнять параллельно.

Расчеты рассмотренных вариантов мер ОПВД не связаны между собой и могут выполняться одновременно. При завершении расчетов очередного варианта результаты незамедлительно отображаются у диспетчера, что позволяет уменьшить воспринимаемое время реакции системы.

Принятие конечного решения об используемых мерах остается за диспетчером ОПВД. Если они

приводят к изменению планов полетов воздушных судов, их владельцам рассылаются сообщения с предложениями об изменении плана. Те, в свою очередь, могут либо согласиться с изменениями, либо самостоятельно разработать новый план полета. В обоих случаях они должны заново подать заявки с желаемым планом полета.

Рассмотренные в данной статье возможности параллельной обработки данных реализуются в перспективной системе планирования использования воздушного пространства, которая разрабатывается для Главного центра единой системы организации воздушного движения Российской Федерации в соответствии с Федеральной целевой программой «Модернизация Единой системы организации воздушного движения Российской Федерации» (2009-2015 годы).

Литература

1. Федеральные правила использования воздушного пространства Российской Федерации. М.: 2011.

2. Рудельсон Л.Е. Программное обеспечение автоматизированных систем управления воздушным движением. Ч. II. Функциональное программное обеспечение. Кн. 4. Модель использования воздушного пространства. Обработка плановой информации. М.: МГТУ ГА, 2004.

3. Илларионова М.А., Черников П.Е. Алгоритм расчета маршрута в централизованной службе планирования полетов // Науч. вестн. МГТУ ГА. 2005. № 92.

УДК 681.3.06:669.018

ПРОГРАММА ВЫБОРА ТЕХНОЛОГИЧЕСКИХ РЕЖИМОВ ДИСКРЕТНО-НЕПРЕРЫВНОГО ЛИТЬЯ ЦВЕТНЫХ МЕТАЛЛОВ

И ИХ СПЛАВОВ

(Работа выполнена при поддержке программы «Научные и научно-педагогические кадры России»,

грант № 16.740.11.0452)

Н.К. Жиганов, д.ф.-м.н.; Е.Е. Фомина, к.т.н.

(Тверской государственный технический университет, jiganov2005@yandex.ru)

Рассматривается программа оптимизации, предназначенная для моделирования и выбора технологических режимов процессов непрерывного и дискретно-непрерывного литья цветных металлов.

Ключевые слова: литье цветных металлов, моделирование, оптимизация, технологические режимы.

Литейное производство цветных металлов в отличие от литья черных металлов является малотоннажным. Однако ассортимент продукции, производимой из цветных металлов, намного шире. При смене ассортимента продукции технолог вынужден изменять технологические режимы литья. Процесс подбора нужного режима достаточно сложный и при традиционном подходе требует постановки специальных физических экспериментов, а также большого количества времени, иногда измеряемого месяцами. Существенно сократить материальные затраты и потери времени можно за

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

счет замены физического эксперимента вычислительным, который проводится не на реальном технологическом процессе, а на его виртуальном физико-математическом аналоге. Поэтому задача использования компьютерного моделирования для управления технологическим процессом и повышения его эффективности, направленная на улучшение качества продукции и увеличение производительности оборудования, безусловно, является актуальной.

Программа выбора технологических режимов литья состоит из модулей гидродинамики, тепло-

i Надоели баннеры? Вы всегда можете отключить рекламу.