ИЗВЕСТИЯ ВЫСШИХ УЧЕБНЫХ ЗАВЕДЕНИЙ. Т 61 (9-10)_Серия «ХИМИЯ И ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ»_2018
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII V 61 (9-10) KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 2018
RUSSIAN JOURNAL OF CHEMISTRY AND CHEMICAL TECHNOLOGY
DOI: 10.6060/ivkkt.20186109-10.5802 УДК: 537.528+541.15
ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ С УЧАСТИЕМ ИОНОВ МАРГАНЦА, ИНИЦИИРУЕМЫЕ ТЛЕЮЩИМ РАЗРЯДОМ, В ВОДНОМ РАСТВОРЕ
Д.А. Шутов, А.В. Сунгурова, К.В. Смирнова, А.С. Манукян, В.В. Рыбкин
Дмитрий Александрович Шутов, Александра Вадимовна Сунгурова, Кристина Валерьевна Смирнова, Анна Славиковна Манукян, Владимир Владимирович Рыбкин*
Кафедра технологии приборов и материалов электронной техники, Ивановский государственный химико-технологический университет, Шереметевский пр., 7, Иваново, Российская Федерация, 153000
E-mail: [email protected], [email protected], [email protected]*
В статье анализируются результаты экспериментальных исследований кинетики окисления-восстановления ионов Mn7+(MnO4-) в водных растворах, инициируемых действием разряда постоянного тока атмосферного давления в воздухе. Раствор пер-манганата калия служил катодом разряда. Диапазон начальных концентраций раствора по ионам Mn7+ составлял (0,44-2,5) ммоль/л, а токов разряда (20-60) мА. Обнаружено, что действие разряда приводит к восстановлению ионов Mn7+ и обесцвечиванию раствора. Одновременно происходит образование частиц темного цвета размером от 100 нм до 20 мкм. Рентгеноструктурный анализ показал, что частицы являются аморфными, а энергодисперсионный рентгеновский анализ показал, что порошок есть оксид марганца (IV). Измерена кинетика восстановления-окисления ионов Mn7+. Предложено формально-кинетическое описание кинетических кривых. Показано, что полученные данные по кинетике восстановления ионов Mn7+ наилучшим образом (коэффициент детерминации R2 ~ 0,99) могут быть описаны схемой X^Y^Z, где Х- исходное вещество, а Y и Z - продукты реакций. Обработкой кинетических кривых на основе этой схемы найдены эффективные константы скоростей соответствующих стадий. Обнаружено, что эффективные константы скоростей зависят от начальной концентрации раствора. При токе разряда 20 мА увеличение концентрации от 0,44 до 2,5 моль/л приводило к уменьшению константы скорости восстановления ионов Mn7+ от (2,48 ± 0,5)102 до (7,2 ± 1,5)^Ю3 с-1 соответственно. Обсуждаются возможные механизмы процессов. Предполагается, что основными частицами, участвующими в реакциях окисления восстановления ионов марганца, являются Н2О2, НО2, ОН и сольватированные электроны, которые образуются в растворе под действием разряда.
Ключевые слова: плазма, газовый разряд, физические параметры, активные частицы, механизмы процессов
OXIDATIVE-REDUCING PROCESSES WITH PARTICIPATION OF MANGANESE IONS INITIATED BY ELECTRIC DISCHARGE IN AQUEOUS SOLUTION D.A. Shutov, A.V. Sungurova, K.V. Smirnova, A.S. Manukyan, V.V. Rybkin
Dmitriy A. Shutov, Aleksandra V. Sungurova, Kristina V. Smirnova, Anna S. Manukyan, Vladimir V. Rybkin*
Department of Electronic Devices and Materials, Ivanovo State University of Chemistry and Technology,
Sheremetevskiy ave., 7, Ivanovo, 153000, Russia
E-mail: [email protected], [email protected], [email protected]*
The results of experimental studies of the kinetics of oxidation-reduction of Mn7+ ions (MnOi) in aqueous solutions initiated by the action of a discharge of a direct current of atmospheric pressure in air are analyzed in the article. A solution of potassium permanganate served as a discharge cathode. The range of initial solution concentrations for Mn7+ ions was (0.44-2.5) mmol/l, and discharge currents (20-60) mA. It was found that the discharge action leads to the reduction of Mn7+ ions and discoloration of the solution. At the same time, dark solid particles with a size of 0.1 цт to 20 цт are formed. X-ray diffraction analysis showed that the particles are amorphous, and energy dispersive X-ray analysis showed that the powder is manganese oxide (IV). The kinetics of reduction-oxidation of Mn7+ ions is measured. It is shown that the obtained data on the kinetics of the reduction of Mn7+ ions in the best way (the determination coefficient R2~0.99) can be described by the scheme X^Y^Z, where X is the starting material, and Yand Z are the reaction products. The processing of kinetic curves on the basis of this scheme found the effective rate constants of the corresponding stages. It was found that the effective rate constants depend on the initial concentration of the solution. At a discharge current of 20 mA, an increase in the concentration from 0.44 to 2.5 mol/l led to a decrease in the rate constant for the reduction of Mn 7+ ions from (2.48 ± 0.5) •Iff-2 to (7.2 ± 1.5) •10r3 s-1, respectively. Possible mechanisms of processes are discussed. It is assumed that the main particles involved in the oxidation reactions of the reduction of manganese ions are H2O2, HO2, OH and solvated electrons that are formed in the solution under the action of a discharge.
Key words: gas discharge, oxidation-reduction, active species. manganese ions, kinetics
Для цитирования:
Шутов Д.А., Сунгурова А.В., Смирнова К.В., Манукян А.С., Рыбкин В.В. Окислительно-восстановительные процессы с участием ионов марганца, инициируемые тлеющим разрядом, в водном растворе. Изв. вузов. Химия и хим. технология. 2018. Т. 61. Вып. 9-10. С. 23-29 For citation:
Shutov D.A., Sungurova A.V., Smirnova K.V., Manukyan A.S., Rybkin V.V. Oxidative-reducing processes with participation of manganese ions initiated by electric discharge in aqueous solution. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2018. V. 61. N 9-10. P. 23-29
INTRODUCTION
In the last 10-15 years, several hundred papers have been published on the effects of gas discharges of various types of atmospheric pressure on aqueous solutions [1-4]. Interest in such discharges is due to the possibilities of using them for the implementation of water purification processes without the use of any chemical reagents. The overwhelming majority of works are devoted to studies of degradation processes of organic compounds. At the same time, both industrial effluents and household waste contain inorganic pollutants, such as heavy metals. The works devoted to the removal of such pollutants are extremely small. The only processes of reduction of Cr6+
ions to Cr3+ under the influence of discharges in air and argon have been studied [5-7].
The effect of electrical discharges of atmospheric pressure in various gases on water leads to the appearance of active particles in it, which, depending on the conditions, can be both oxidizing agents and reducing agents [5,8]. The radicals OH, O(3P) atoms, hydrogen peroxide, ozone, and HO2 radicals possess a high oxidizing ability. H atoms, hydrogen molecules and solvated electrons possess with a good reducing ability. The formation of these particles occurs without the participation of any chemical reagents. These data show that the discharge action can initiate reactions not only with chromium ions, but with ions of other heavy metals. Therefore, the purpose of this
work was to study the regularities of the kinetics of the reduction of Mn7+ ions under the effect of a direct current discharge of atmospheric pressure in the air on the KMnO4 solution. Data of this kind are not available in the literature known to us.
METHODS OF EXPERIMENT AND METHODS OF RESEARCHES
In this paper we used the setup described earlier in [5]. The discharge at atmospheric pressure was excited by applying a constant voltage between the metal anode and the solution. The volume of the solution was 70 ml. The distance of the anode-surface of the electrolyte was 10 mm. The discharge current was varied within 20-60 mA. A solution of the desired concentration was prepared by dissolving the sample of potassium permanganate (KMnO4) of the analytical grade in distilled water. The concentration range for Mn7+ ions was (0.44-2.5) mmol/l. The concentration of permanganate ions was measured from the absorption at a wavelength of ~ 522 nm (the maximum of the absorption band), taking into account the baseline. The spectrophotometer Hitachi U-2001 (Japan) was used for the measurements. The time course of the pH of the solution was determined by pH meter PHT-028 Kelilong, China.
Diffractometer DRON-3 (Burevestnik, Russia) was used for X-ray phase analysis.
The shape of the particles, their size and elemental analysis were determined on a scanning electron microscope Tesla Vega 3SBH (Czech Republic) with an energy dispersive X-ray analyzer Aztec EDS (Oxford Instruments Ltd., England).
To obtain each time point of the kinetic curve, a fresh portion of the solution was used. Each point on the kinetic curve is the result of averaging over five independent measurements.
RESULTS AND ITS DISCUSSION
Indeed, the discharge action led to the initiation of chemical transformations in solution. Visually, the solution began to discolor. Initially, its pink color disappeared. At the same time, a solid polydisperse reaction product began to form. The smallest fractions of it formed a stable suspension, which was located at the interface of solution-gas. Larger fractions were deposited on the bottom of the reactor. With the passage of time of discharge effects, this product has disappeared as a solid phase. The treated solution with the product was centrifuged, dried and the mass of the formed substance was determined. Its kinetics is shown in Fig. 1.
Fig. 1. Change in the mass of the sediment over the processing time in terms of manganese. It was supposed that the sediment is MnO2. The initial concentration is 0.37 mmol/L in terms of Mn. 1, 2, 3 - discharge currents of 20,40 and 60 mA, respectively.
4 - initial content of Mn in solution Рис. 1. Изменение массы осадка во времени обработки в пересчете на марганец. Предполагалось, что осадок есть MnO2. Начальная концентрация 0,37 ммоль/л в пересчете на Mn. 1, 2, 3 - токи разряда 20, 40 и 60 мА, соответственно. 4 - исходное содержание Mn в растворе
The dried substance had a dark color and metallic luster. X-ray patterns showed that the substance is amorphous (no reflexes). The size of the agglomerates of the substance according to SEM is 2-20 цт, and its elemental composition (Mn : O «1 : 2.2) is close to the composition of MnO2. In this case, from Fig. 1 it follows that for a certain time of discharge, practically all of the manganese contained in the solution can be converted to MnO2.
Due to the scattering of light by the stable suspension, the absorption spectrum demonstrates an increase in absorption over time (Fig. 2). This requires for its processing the application of the baseline method.
Wave lenght (длина волны), пт(нм) Fig. 2. Change in the absorption spectrum of the treated solution. 1-5 - processing time - 0, 30, 60, 120, 180 and 300 s, respectively. The
discharge current is 20 mA. The initial concentration is 0.44 mmol/l Рис. 2. Изменение спектра поглощения обрабатываемого раствора. 1-5 - время обработки 0, 30, 60, 120, 180 и 300 с, соответственно. Ток 20 мА. Начальная концентрация 0,44 ммоль/л
Since the characteristic shape of the spectrum does not change, it can be assumed that in the process of reduction of Mn7+ ions, the concentrations of Mn4+ and Mn3+ ions in the solution are substantially less than the concentrations of Mn7+ since their extinction coefficients are comparable (350 nm: Mn7+ - 1250 M-1cm-\ Mn4+ - 2470 M-1cm-1, Mn3+ - 260 M-1cm-1 [9]).
The dependences of the concentration of Mn7+ ions on the time of discharge action at different initial concentrations are shown in Fig. 3, 4. To handle these dependencies, we used three possible ways of the process: 1) X~Y, 2) X~Y ^ Z, 3) X~Y~Z, where X is the starting substance, and Y and Z are reaction products.
The formation and dissolution of the solid indicates that the stages must be at least 3.
All three schemes admit an analytical solution of the kinetic equations. Using these equations, we processed the obtained dependences. The quality of the description was determined by the coefficient of determination R2. It turned out that scheme (3) gives the best description. For all conditions, this scheme provides R2 = 0.99 and higher.
2,5 -
2,0 -
J ra
CP H
Ш ? J Ta
s i1,5
: 1,0
0,5 -
о О
0,0
50 100
Time (время), s(c)
150
Fig. 3. Dependence of the concentration of Mn7+ ions on the treatment time at a current of 40 mA and different initial concentrations (1-3) Рис. 3. Зависимость концентрации ионов Mn7+ от времени обработки при токе 40 мА и разных начальных концентрациях (1-3)
J го
3,0 г
2,5 -
1 -р-J j2,0
9 §
¡1,5 -
о
Е1,0 Е
о О
0,5 -
0,0
50
300
100 150 200 250 Time (время), s(c) Fig. 4. Dependence of the concentration of Mn7+ ions on the treatment time at a current of 20 mA and different initial concentrations (1-3) Рис. 4. Зависимость концентрации ионов Mn7+ от времени обработки при токе 20 мА и разных начальных концентрациях (1-3)
The solution of the kinetic equations for scheme (3) has the form:
X (t ) = X 0{(-
1
1
^ -a) • exp(^ • t) + ■
x[K + (1 -a)• \]• [exp(A2 • t)-exp(^ • t)]} K2 • K4 = a • ^ • A2; (K + K4) = (V^2 -K2 • K4)/K;
K 2 = -(A +^2) - K1 - K 3 -K 4;
K3 = -(A + ^2 ) - K1 - K2 - K4 where X0 is the initial concentration of Mn7+ ions, Ki is the rate constant of X ^ Y, K2 is the rate constant of X ^ Y, K3 is the rate constant of Y ^ Z, and K4 is the rate constant of Z ^ Y.
The parameters Xi, X2, a and Ki are determined from the kinetic curves and the rate constants K2, K3 and K4 are calculated on their basis. The results of calculations for this relationship are shown in Fig. 3.4 solid lines. The rate constants calculated from the kinetic curves are given in Table.
0
The rate constants
Table
Discharge current 20 mA
Initial concentration, mmol/l Ki, s-1 K2, s-1 K3, s-1 K4, s-1
0.44 (2.48±0.5)10-2 (1.4±0.2)10-2 (9.39±1.8)10-3 (7.11±3)10-4
1.5 (9.2±1.8)10-3 (1.3±0.2)10-2 (3.17±0.5)10-3 (6.61±1)10-4
2.5 (7.2±1.5)10-3 (5.63±1.2)10-3 (3.32±0.5)^10-3 (1.05±0.2)10-4
Discharge current 40 mA
0.37 (1.01±0.2)10-2 (1.4±0.3)-10-2 (9.39±2)10-3 (7.11±3.5)10-4
1.47 (1.93±0.5)10-2 (1.33±0.3)10-2 (2.08±0.5)10-2 (5.35±2.2)^10-6
2.3 (2.13±0.5)10-2 (1.9±0.5)10-2 (1.54±0.4)10-2 (3.3±1)10-6
The preservation of the discharge current ensures the invariance of the rates of initiation of the formation of active species in the solution. It is clear that the constants found are effective and the actual processes must be at least two-particle ones. That is, the constants must include the product of real constants and corresponding concentrations. Therefore, changes in the constants should reflect changes in the concentrations of the corresponding active particles.
At a given discharge current, an increase in the initial concentration leads to an increase in the initial rate (at time ^ 0) of the transformation of Mn7+ ions. At a given concentration, the increase in current also results in an increase in the rate. Current growth provides a higher degree of conversion of Mn7+ as well as a decrease in the initial concentration (Fig. 5).
0
50
300
100 150 200 250 Time , s
Fig. 5. The degree of conversion of Mn7+ ions. 1-3 - discharge current is 20 mA. 4-6 - discharge current is 40 mA. 1, 2, 3 - initial concentrations are 0.44, 1.5 and 2.5 mmol /l. 3, 4, 5 - initial
concentrations are 0.37, 1.47 and 2.3 mmol/l Рис. 5. Степень превращения ионов Mn7+. 1-3 - ток разряда 20 мА.
4-6 - ток разряда 40 мА. 1, 2, 3 - начальные концентрации 0,44, 1,5 и 2,5 ммоль/л. 3, 4, 5 - начальные концентрации 0,37, 1,47 и 2,3 ммоль/л
In all cases known to us, the action of any kind of discharge in air on water [11], aqueous solutions of organic compounds [10] and chromium salts [5, 7] leads to a decrease in the pH of the solution. A solution of permanganate is the only one where the medium becomes alkaline during the treatment (Fig. 6). The pH dependence on the concentration clearly shows that this is due to the reduction of Mn7+ ions, in which H+ ions must be consumed.
One of the channels for the reduction of Mn7+ ions can be its known reaction with hydrogen peroxide. It is known that the action of any discharges, including those used in this study, on aqueous solutions results in the formation of hydrogen peroxide in them [12, 13].
pH
12
10 8 6 4
0
100
200
х- 300 400,,
Time (время), s(c)
500 600
Fig. 6. Changes in the pH of solutions at a discharge current of60 mA. 1-4 - initial concentrations of the solution are 0, 0.44, 1.5 and
2.5 mmol/l, respectively Рис. 6. Изменения рН растворов при токе разряда 60 мА. 1-4 - начальные концентрации раствора 0, 0,44, 1,5 и 2,5 ммоль/л, соответственно
The mechanism of this reaction was studied in [14]. It was found that the rate of reduction of permanganate is described by the expression:
- 0.5
d[MnO- ] dt
= (K7 + K • [H+]) • [MnO-] • [H2O2]
The authors suggested that initiation proceeds as: MnO4- + H+ ^ HMnO4 (rapid establishment of equilibrium, .^-constant of the rate of direct reaction, K-5 - reverse one).
HMnO4 + H2O2 ^ HX (the limiting stage, constant K6).
MnO4- + H2O2 ^ X- (the limiting stage, constant K7).
Then K* = K5 K6/K-5. Further, the authors suggest that subsequent rapid reactions convert Mn7+ to Mn2+:
MnO4- + H2O2 + 2H+ = MnO2+ + O2 + 2H2O, MnO2+ + H2O2 = MnO2- + O2 + 2H+, MnO2- + H2O2 + 3H+ = Mn2+ + HO2 + 2H2O, HO2 = I/2H2O2 + I/2O2. This scheme of reactions qualitatively reflects the observed increase in the initial rate of reduction of MnO4- with the increase in the discharge current, since the rate of formation of hydrogen peroxide also increases with increasing current [13]. It also explains the increase in pH since, according to this scheme, the consumption of three H+ ions is required for reduction of one MnO4- ion.
The processes leading to the formation of MnO2 and its dissolution may include reactions, the possibility of which is shown in [15]:
MnO4- + 2Mn2+ ^ 2MnO2 + Mn3+, MnO2 + 4H+ + Mn2+ ^ 2H2O + 2Mn3+.
2
The formation of MnO2 is also possible in reactions involving Mn3+, as observed in [16]:
2Mn3+ ^ Mn2+ + Mn4+, Mn4+ > MnO2.
The reactions considered above proceed under equilibrium conditions. Additional reactions with particles formed under the action of a discharge [17, 18] can be the following. Reactions of reduction: H + Mn7+ ^ H+ + Mn6+ (K = 2.5-1010 l/(mol-s)) [19]),
HO2 + Mn7+ ^ O2 + Mn6+ + H+ (K = 8.0 ■ 106 l/(mol ■ s)) [20]),
Mn2+ + esolv ^ Mn+ (K = 1.0-107 l/(mol-s)) [16]).
Reactions of oxidation: Mn2+ + OH ^ Mn3+ + OH- (K = 3.4-107 l/(mol-s)) [16]).
Of course, detailed kinetic calculations are needed to determine what reactions the observable regularities provide. Further research will be devoted
to solving this problem.
ЛИТЕРАТУРА
1. Jiang B., Zheng J., Qiu S., Wu M., Zhang Q., Yan Z.,
Xue Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014. V. 236. P. 348-368.
2. Locke B.R., Mededovic Thagard S.M. Streamer-Like Electrical Discharges in Water: Part II. Environmental Applications. Plasma Chem. Plasma Process. 2013. V. 33. N 1. P. 17-49.
3. Бобкова Е.С., Гриневич В.И., Исакина А.А., Рыбкин В.В. Разложение органических соединений в водных растворах под действием электрических разрядов атмосферного давления. Изв. вузов. Химия и хим. технология. 2011. Т. 54. Вып. 6. С. 3-17.
4. Шукуров А.Л., Maнукян A.C, Шутов Д.А., Рыбкин В.В. Физико-химические свойства плазмы разряда постоянного тока с жидким катодом. Изв. вузов. Химия и хим. технология. 2016. Т. 59. Вып. 12. С. 4-16.
5. Shutov D.A., Sungurova A.V., Choukourov A., Rybkin V.V. Kinetics and mechanism of Cr(VI) reduction in a water cathode induced by atmospheric pressure DC discharge in air. Plasma Chem. Plasma Process. 2016. V. 36. N 5. P. 1253-1269.
6. Ke Z., Huang Q., Zhang H., Yu Z. Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas-solution interface. Environ. Sci. Technol. 2011. V. 45. N 18. P. 7841-7847.
7. Shutov D.A., Sungurova A.V., Smirnova K.V., Rybkin V.V. Kinetic features of chromium(VI) reduction and phenol degradation in aqueous solution by treatment in atmospheric pressure air direct-current discharge. High Energy Chemistry. 2018. V. 52. N 1. P. 95-98.
8. Rybkin V.V., Shutov D.A. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions. Plasma Physics Reports. 2017. V. 43. N 11. P. 1089-1113.
9. Tsaplev Yu.B., Vasil'ev R.F., Trofimov A.V. Role of chemiexcited particles in permanganate reduction by citric acid: investigation with spectrophotometric and chemiluminescence methods. High Energy Chemistry. 2014. V. 48. N 6. P. 371-375.
10. Bobkova E.S., Krasnov D.S., Sungurova A.V., Rybkin V.V., Choi H.-S. Phenol decomposition in water cathode of DC atmospheric pressure discharge in air. Korean J. Chem. Eng. 2016. V. 33. N 5. P. 1620-1628.
11. Anderson C.E.., Cha N.R., Lindsay A.D., Clark D.S., Graves D.B. The role of interfacial reactions in determining plasma-liquid chemistry. Plasma Chem. Plasma Process. 2016. V. 36. N 6. P. 1393-1415.
This study was carried out in the frame of Project part of State Assignment of the Ministry of Education and Science of the RF, No 3.1371.2017/4.6.
REFERENCES
1. Jiang B., Zheng J., Qiu S., Wu M., Zhang Q., Yan Z.,
Xue Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014. V. 236. P. 348-368.
2. Locke B.R., Mededovic Thagard S.M. Streamer-like electrical discharges in water: Part II. Environmental applications. Plasma Chem. Plasma Process. 2013. V. 33. N 1. P. 17-49.
3. Bobkova E.S., Grinevich V.I. Isakina A.A., Rybkin V.V. Decomposition of organic compounds in aqueous solutions under action of electrical discharges of atmospheric pressure. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2011. V. 54. N 6. P. 3-17.
4. Choukourov A., Manukyan A.S., Shutov D.A., Rybkin V.V. Physico-chemical properties of dc current discharge plasma with liquid cathode. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2016. V. 59. N 12. P. 4-16.
5. Shutov D.A., Sungurova A.V., Choukourov A., Rybkin V.V. Kinetics and mechanism of Cr(VI) reduction in a water cathode induced by atmospheric pressure DC discharge in air. Plasma Chem. Plasma Process. 2016. V. 36. N 5. P. 1253-1269.
6. Ke Z., Huang Q., Zhang H., Yu Z. Reduction and removal of aqueous Cr(VI) by glow discharge plasma at the gas-solution interface. Environ. Sci. Technol. 2011. V. 45. N 18. P. 7841-7847.
7. Shutov D.A., Sungurova A.V., Smirnova K.V., Rybkin V.V. Kinetic features of chromium(VI) reduction and phenol degradation in aqueous solution by treatment in atmospheric pressure air direct-current discharge. High Energy Chemistry. 2018. V. 52. N 1. P. 95-98.
8. Rybkin V.V., Shutov D.A. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions. Plasma Physics Reports. 2017. V. 43. N 11. P. 1089-1113.
9. Tsaplev Yu.B., Vasil'ev R.F., Trofimov A.V. Role of chemiexcited particles in permanganate reduction by citric acid: investigation with spectrophotometric and chemiluminescence methods. High Energy Chemistry. 2014. V. 48. N 6. P. 371-375.
10. Bobkova E.S., Krasnov D.S., Sungurova A.V., Rybkin V.V., Choi H.-S. Phenol decomposition in water cathode of DC atmospheric pressure discharge in air. Korean J. Chem. Eng. 2016. V. 33. N 5. P. 1620-1628.
11. Anderson C.E.., Cha N.R., Lindsay A.D., Clark D.S., Graves D.B. The role of interfacial reactions in determining plasma-liquid chemistry. Plasma Chem. Plasma Process. 2016. V. 36. N 6. P. 1393-1415.
12. Locke B.R., Shih K.-Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci. Technol. 2011. V. 20. N 3. P. 034006 (12 pp).
13. Бобкова Е.С., Шикова Т.Г., Гриневич В.И., Рыбкин В.В. Анализ механизма образования пероксида водорода в разряде постоянного тока атмосферного давления с электролитным катодом. Химия высоких энергий. 2012. Т. 46. № 1. С. 60-63.
14. Simoyi R.H., Kepper P., Epstein I.R., Kustin K. Reaction between permanganate ion and hydrogen peroxide: kinetics and mechanism of the initial phase of the reaction. Inorg. Chem. 1986. V. 25. N 4. P. 538-542.
15. Morrow J.l, Perlman S. A kinetic study of the permanga-nate-manganous ion reaction to form manganic ion in sulfuric acid media. Inorg. Chem. 1973. V. 12. N 10. P. 2453-2455.
16. Pick-Kaplan M., Rabani J. Pulse radiolytic studies of aqueous Mn(CIO4)2 solutions. J. Phys. Chem. 1976. V. 80. N 17. P. 1840-1843.
17. Bobkova E.S., Smirnov S.A., Zalipaeva Y.V., Rybkin V.V. Modeling chemical composition for an atmospheric pressure DC discharge in air with water cathode. Plasma Chem. Plasma Process. 2014. V. 34. N 4. P. 721-743.
18. Bobkova E.S., Smirnov S.A., Zalipaeva Y.V., Rybkin V.V. Chemical composition, physical properties and populating mechanism of some O(I) states for a DC discharge in oxygen with water cathode. Plasma Chem. Plasma Process. 2016. V. 36. N 2. P. 415-436.
19. Elliot A.J., McCracken D.R., Buxton G.V., Wood N.D. Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J. Chem. Soc. Faraday Trans. 1990. V. 86. P. 1539 - 1547.
20. Ebert M., Keene J.L., Swallow A.J., Baxendale J.H. Pulse Radiolysis. New York: Academic Press. 1965.P. 107-115.
12. Locke B.R., Shih K.-Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci. Technol. 2011. V. 20. N 3. P. 034006 (12 pp).
13. Bobkova E.S., Shikova T.G., Grinevich V.I., Rybkin V.V. Mechanism of hydrogen peroxide formation in electrolytic-cathode atmospheric-pressure direct-current discharge. High Energy Chemistry. 2012. V. 46. N 1. P. 56-59.
14. Simoyi R.H., Kepper P., Epstein I.R., Kustin K. Reaction between permanganate ion and hydrogen peroxide: kinetics and mechanism of the initial phase of the reaction. Inorg. Chem. 1986. V. 25. N 4. P. 538-542.
15. Morrow J.I., Perlman S. A kinetic study of the permanga-nate-manganous ion reaction to form manganic ion in sulfuric acid media. Inorg. Chem. 1973. V. 12. N 10. P. 2453-2455.
16. Pick-Kaplan M., Rabani J. Pulse radiolytic studies of aqueous Mn(CIO4)2 solutions. J. Phys. Chem. 1976. V. 80. N 17. P. 1840-1843.
17. Bobkova E.S., Smirnov S.A., Zalipaeva Y.V., Rybkin V.V. Modeling chemical composition for an atmospheric pressure DC discharge in air with water cathode. Plasma Chem. Plasma Process. 2014. V. 34. N 4. P. 721-743.
18. Bobkova E.S., Smirnov S.A., Zalipaeva Y.V., Rybkin V.V. Chemical composition, physical properties and populating mechanism of some O(I) states for a DC discharge in oxygen with water cathode. Plasma Chem. Plasma Process. 2016. V. 36. N 2. P. 415-436.
19. Elliot A.J., McCracken D.R., Buxton G.V., Wood N.D. Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J. Chem. Soc. Faraday Trans. 1990. V. 86. P. 1539 - 1547.
20. Ebert M., Keene J.L., Swallow A.J., Baxendale J.H. Pulse Radiolysis. New York: Academic Press. 1965.P. 107-115.
Поступила в редакцию 29.05.2018 Принята к опубликованию 17.08.2018
Received 29.05.2018 Accepted 17.08.2018