Научная статья на тему 'Оценка защищенности двигателей ПД-14 от повреждений посторонними предметами на самолете МС-21'

Оценка защищенности двигателей ПД-14 от повреждений посторонними предметами на самолете МС-21 Текст научной статьи по специальности «Механика и машиностроение»

CC BY
406
80
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ДВИГАТЕЛЬ ПД-14 / ВОЗДУШНОЕ СУДНО МС-21 / ЗАЩИЩЕННОСТЬ ДВИГАТЕЛЕЙ / ПОСТОРОННИЕ ПРЕДМЕТЫ / КОЛЕСА ШАССИ / ВИХРЕВОЕ ТЕЧЕНИЕ / РЕВЕРСИВНЫЕ СТРУИ / PD-14 ENGINE / MS-21 AIRCRAFT / ENGINES PROTECTION / FOREIGN OBJECTS / LANDING GEAR WHEELS / VORTEX MOTION / REVERSER JETS

Аннотация научной статьи по механике и машиностроению, автор научной работы — Комов Алексей Алексеевич

В статье приводятся результаты расчетной оценки уровня защищенности двигателей ПД-14 в компоновке воздушного судна МС-21 от повреждений посторонними предметами, которые могут быть заброшены в двигатели с поверхности аэродрома на режимах руления, взлета и посадки воздушного судна. Для оценки защищенности двигателей ПД-14 от повреждений посторонними предметами, забрасываемых колесами шасси и вихревым течением, использовались расчетные методы, основанные на обобщении результатов модельных, стендовых и натурных исследований различных типов воздушных судов. Оценка защищенности двигателей ПД-14 от попадания реверсивных струй проводилась при помощи программы ANSYS/CFX.Проведенные расчетные исследования показывают, что защищенность двигателей ПД-14 от повреждений посторонними предметами в компоновке самолета МС-21 находится на недостаточном уровне. Для повышения конкурентоспособности самолета МС-21 необходимо обеспечить защищенность двигателей до передачи самолета в эксплуатирующие организации.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ASSESSMENT OF PD-14 ENGINES PROTECTION FROM DAMAGES IN MS-21 PLANE

This article includes there sults of an estimated assessment of PD-14 engines protection level are given in configuration of the MS-21 aircraft from damages by foreign objects which can be got into engines from an airfield surface during taxing, take-off and landing stage of the aircraft. For an assessment of PD-14 engines protection from the damages by foreign objects got by landing gear wheels and a vortex motion the calculation methods based on generalization of model results, bench and original researches of various aircraft types were used. The assessment of PD-14 engines protection from getting of reverer jets was carried out by means of the ANSYS/CFX program. The conducted estimated researches show that security of PD-14 engines from damages by foreign objects to configuration of the MS-21 plane is at the insufficient level. For increase of the MS-21 plane competitiveness, it is necessary to provide engines protection before the plane transfer to the operating organizations.

Текст научной работы на тему «Оценка защищенности двигателей ПД-14 от повреждений посторонними предметами на самолете МС-21»

УДК 621.452.322

ОЦЕНКА ЗАЩИЩЕННОСТИ ДВИГАТЕЛЕЙ ПД-14 ОТ ПОВРЕЖДЕНИЙ ПОСТОРОННИМИ ПРЕДМЕТАМИ НА САМОЛЕТЕ МС-21

© 2016 А.А. Комов

Московский государственный технический университет гражданской авиации

Статья поступила в редакцию 21.10.2016

В статье приводятся результаты расчетной оценки уровня защищенности двигателей ПД-14 в компоновке воздушного судна МС-21 от повреждений посторонними предметами, которые могут быть заброшены в двигатели с поверхности аэродрома на режимах руления, взлета и посадки воздушного судна. Для оценки защищенности двигателей ПД-14 от повреждений посторонними предметами, забрасываемых колесами шасси и вихревым течением, использовались расчетные методы, основанные на обобщении результатов модельных, стендовых и натурных исследований различных типов воздушных судов. Оценка защищенности двигателей ПД-14 от попадания реверсивных струй проводилась при помощи программы ANSYS/CFX.Проведенные расчетные исследования показывают, что защищенность двигателей ПД-14 от повреждений посторонними предметами в компоновке самолета МС-21 находится на недостаточном уровне. Для повышения конкурентоспособности самолета МС-21 необходимо обеспечить защищенность двигателей до передачи самолета в эксплуатирующие организации.

Ключевые слова: Двигатель ПД-14, воздушное судно МС-21, защищенность двигателей, посторонние предметы, колеса шасси, вихревое течение, реверсивные струи.

Повреждение авиадвигателей, вызванное попаданием посторонних предметов (ПП) с поверхности ВПП, является одним из факторов, влияющих не только на эффективность использования воздушного судна (ВС), но и на безопасность полетов.

Повреждения, вызываемые посторонними предметами, приводят к значительным материальным затратам на восстановление рабочих лопаток компрессора двигателя. Поэтому защита двигателей от повреждений посторонними предметами (ПП) остается актуальной проблемой как для авиакомпаний, эксплуатирующих воздушные суда, так и для разработчиков авиационной техники. Добиться полной ликвидации посторонних предметов, состав которых, в основном, минералогического происхождения, с поверхности отечественных аэродромных покрытий в настоящее время, практически, не представляется возможным. Уровень повреждений двигателей для самолетов отечественной разработки остается на достаточно высоком уровне до настоящего времени [1, 2]. Посторонние предметы с поверхности ВПП попадают в авиадвигатели по различным причинам, среди которых можно назвать:

- заброс колесами шасси при рулении, пробеге и разбеге самолета;

- заброс вихревым течением, возникающий между воздухозаборником двигателя и поверхностью аэродрома;

- заброс реверсивными струями на пробеге самолета [3].

Комов Алексей Алексеевич, доктор технических наук, доцент, начальник отдела научных исследований. E-mail: [email protected]

Для оценки защищенности двигателей ПД-14 от заброса ПП в компоновке самолета МС-21 использовались расчетные методы, основанные на обобщении результатов модельных, стендовых и натурных исследований, а также программа ANSYS/CFX.

Оценку защищенности двигателей ПД-14 в компоновке самолета МС-21 начнем с оценки защищенности от заброса посторонних предметов колесами шасси. Процесс заброса ПП колесами шасси изучен достаточно подробно, что позволяет производить расчет уровня защищенности двигателей исходя из компоновки силовых установок на воздушном судне [3, 4].

На рис. 1 представлена прогнозируемая зависимость количества поврежденных двигателей посторонними предметами, забрасываемых колесами шасси, от относительного расстояния между входными кромками воздухозаборников двигателей ПД-14 и колесами передней стойки шасси самолета МС-21. Из рис. 1 видно, что компоновка самолета модификации МС-21-200 обеспечивает достаточно хорошую защищенность двигателей. При численности парка самолетов в 100 единиц и суточном налете каждого самолета 10 часов, количество поврежденных двигателей за год составит четыре двигателя. Причем, при смещении передней стойки шасси в сторону воздухозаборников всего на 25 см, обеспечивается полная защищенность двигателей.

Количество поврежденных за год двигателей в компоновке самолета модификации МС-21-300, при таком же количестве эксплуатируемых самолетов и суточном налете, составляет уже 210 двигателей. Такое количество поврежденных двигателей

означает, что при парке в 100 самолетов, каждый двигатель, находящийся на крыле, будет в течение года поврежден посторонними предметами, выброшенными колесами передней стойки шасси.

При компоновке самолета МС-21-400 количество поврежденных двигателей будет еще выше и может исчисляться в 226 двигателей.

В последнее время большие надежды возлагаются на широкохордные лопатки вентилятора, которые смогут являться преградой для посторонних предметов, не пуская их во внутренний контур двигателя. Однако расчеты показывают, что это далеко не так. Широкохордные лопатки вентилятора не могут выполнять «возложенную» на них задачу и большинство посторонних предметов, выброшенных колесами шасси, смогут по-

пасть, минуя лопатки вентилятора, в компрессор высокого давления (рис. 2). Причем, учитывая направление вращения лопаток вентилятора, повышенному уровню повреждений будут подвержены лопатки компрессоров высокого давления двигателей силовой установки № 2.

Обеспечить защищенность двигателей на самолете МС-21модификаций МС-21-300 и МС-21-400 от заброса посторонних предметов колесами шасси возможно при помощи защитных устройств пластинчатого типа, которые нашли широкое применение в военной авиации. Для различных компоновок самолета МС-21 (МС-21-300 и МС-21-400) в МГТУ ГА определены конструктивные особенности защитных устройств пластинчатого типа.

Рис. 1. Зависимость прогнозируемого количества поврежденных двигателей от расстояния входных кромок воздухозаборников двигателей ПД-14 до колес передней стойки шасси

Углы соударения ПП с плоскостью вращения РЛ = 36° Скорости соударения ПП с РЛ = 67 м/с Периферийная часть рабочих лопаток вентилятора

Режим пробега МС-21

Углы соударения ПП с плоскостью вращения РЛ ~ 69° Скорости соударения ПП с РЛ ~ 42 м/с Комлевая часть рабочих лопаток вентилятора

Рис. 2. Параметры соударения посторонних предметов, выброшенных колесом, с лопатками вентилятора двигателя ПД-14 на пробеге самолета МС-21

Вихревое течение, возникающее между воздухозаборником и поверхностью аэродрома, также является одной из причин заброса посторонних предметов в двигатель с поверхности ВПП. Необходимым условием возникновения вихревого жгута является наличие точки торможения в воздушном приземном потоке, стекающемся к воздухозаборнику [5]. Для возможности заброса посторонних предметов в двигатель вихрь должен обладать определенной интенсивностью. Основным параметром интенсивности вихревого течения является величина максимальной горизонтальной скорости воздушного потока в приземном слое, стекающемся к точке торможения (рис. 3). Интенсивность вихревого течения напрямую зависит от высоты расположения воздухозаборника двигателя над поверхностью аэродрома.

На рис. 4 представлены значения параметра интенсивности вихревого течения Угmax для различных самолетов [6].

Из рис. 4 видно, что компоновочная схема размещения силовой установки на самолете, широко применяемая в настоящее время, не позволяет избежать возможности появления вихревого течения при работе двигателей в наземных условиях. Чем ниже находится двигатель, тем выше значение V , и тем большей интенсив-

г max '

ности могут возникать вихревые течения.

Однако анализируя компоновки самолётов компаний Boeing и Airbus, можно придти к выводу, что разработчики данных самолетов не боятся располагать авиадвигатели на малой высоте от поверхности земли.

Расчетные исследования показали, что при уменьшении высоты расположения воздухозаборника можно достичь такой высоты расположения воздухозаборника, при которой вихреобразование отсутствует [7, 8]. Назовем высоту расположения воздухозаборника, на которой вихреобразовани-еотсутствует, критической высотой расположения воздухозаборника. Причем, значение критической высоты расположения воздухозаборника не зависит от режима работы двигателя (рис. 5).

Для проверки результатов расчетов о существовании критической высоты размещения дви-

Точка торможения

гателя были проведены модельные исследования. Особенности течения потока под воздухозаборником изучались на модельной установке ВВИА имени профессора Н.Е. Жуковского [9].

Результаты испытаний подтвердили результаты расчетных исследований о значительном влиянии высоты расположения воздухозаборника на вихреобразование и о существовании «критической» высоты расположения воздухозаборника, при которой отсутствуют условия возникновения вихревого течения. На этой высоте наблюдается только интенсивное « кипение» поверхности воды в некоторой зоне вблизи расположения точки торможения (рис. 6).

Результаты модельных исследований полностью подтвердили и расширили результаты расчетных исследований, а именно:

- при соответствующей высоте расположения воздухозаборника вблизи поверхности земли работа двигателя происходит без образования вихря;

- значение критической высоты расположения воздухозаборника не зависит от режима работы двигателя;

- существует не одно значение критической высоты расположения воздухозаборника, а область значений критической высоты расположения воздухозаборника, в которой отсутствует вихреобразование (рис. 7).

Из рис. 7 следует, что при существующей в настоящее время компоновке двигателей СБМ56-3 7

Vr г м iax, 'с

ТУ-1 ИЛ 204 -96 (BI [утр)

9 I BI 1Л-96 ИНТ 1ХРЕ< ЕНСИ )бра: н) ВНО] ЮВА ШЕ

ИЛ-8 АН-1 6 (вну 24 (вн гр) гшн)

1 ИЛ-! Ь At 6 (вш -124 ( :шн) внутр )

ч* [Л-62 Ссдвое н)

СЛАо ВИХЭ ОЕ ЕОБ] 5азо: як-ЗАИК Е ил оТУ-1 -62 >4 >

Рис. 3. Линии тока воздушного потока вблизи воздухозаборника

0,5 1 1,5 2 2,5 3 3,5 4

HOTH=H/DB3

Рис. 4. Изменение параметра Vzmax от высоты расположения воздухозаборника

6

5

4

3

2

0

¥г макс' М/С

20

18

16

14

10

6 ■

G8

/ G7 < G8

/ G6 < G7

/ G5 < '/ G4 < G6 g5

/ G3 < G4

/ G2 < G3

/ G1 < G2

Н отн

Рис. 5. Влияние относительной высоты расположения воздухозаборника и режима работы двигателя на критическую высоту расположения воздухозаборника

на самолете Boeing737-500, двигатели находятся непосредственно в области критической высоты расположения. Отметим, что штатное расположение двигателей CFM56-3 "находится" несколько ниже значения критической высоты размещения двигателей, что обеспечивает безвихревое течение воздушного потока при различных изменениях массы самолета на режимах взлета и посадки [3]. Расчёты показывают, что производители воздушных судов авиакомпаний Boeing

Рис. 6. Течение приземного воздушного потока при размещении воздухозаборника на критической высоте

и Airbus располагают двигатели именно на этой высоте. Двигатели всех самолетов отечественного производства расположены выше, что не исключает случаев образования вихревого течения под воздухозаборником (рис. 8).

Более наглядно оценить уровень защищенности двигателей на самолетах различных компоновок можно по рис. 9. Из рис. 9 видно, что компоновки всех ВС зарубежного производства обеспечивают защищенность двигателей от вих-реобразования. Более того, двигатели всех ВС зарубежного производства расположены ниже критической высоты расположения воздухозаборника, примерно, на одну и ту же величину, что позволяет избежать вихреобразования при изменении массы самолета. По рисунку 9 можно оценить защищенность двигателей ПД-14 в компоновке самолета МС-21 от вихреобразования. Из рисунка 9 видно, что относительная высота расположения воздухозаборников двигателей ПД-14 в компоновке самолета МС-21 выше, чем критическая высота, но несколько ниже, чем относительная высота расположения воздухозаборников двигателей ПС-90А в компоновке

8

4

2

0

1- ОБЛАСТЬ ВИХРЯ ВЕТР ^ДУВА / DM / Н вз

ОБЛАСТЬ СУЩ ВИХРЯ --.,.. ЕСТВОВАНИЯ

^ 1 ШТАТНАЯ КС 1 VinOHOBKA

ОБЛАСТЬ КРИ' ВЫСОТЫ РАС[ ВОЗДУХОЗАБС 'ИЧЕСКОЙ ЮЛОЖЕНИЯ РНИКА 1

-30 -20 -10 0 10 20

W, (м/с)

Рис. 7. Область существования вихря. Самолёт В737-500. Двигатель СБМ56-3

2 1,8 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0

Н отн

Рис. 8. Компоновка силовых установок на различных типах ВС

1,5 Н 1 1 0,5 0 1 [ отн

N [ар

V [-86 Не руж л 1

^ Щ [-86 вь утр , мс ИЛ-9 0 нару аШ -74 7-400 I

\ ИЛ-9 0 внут 1>\ч

_ * ТУ-2 )4

т \ у _______

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Б-7Г 5-737\ №6) =319 А- 310 ^ * /

Б- 747 вн \TVVl/

\ , '7

\ [ стич еска Я _ г

Б-767 ■200

Д вз, м ,4 1,5 1,6 1,7 1,8 1,9 2 2,1 2,2 2,3 2,4 2,5

уж

Рис. 9. Относительная высота расположения двигателей на различных самолётах

самолета ТУ-204 и Ил-96. Это может обуславливать, по сравнению с самолетами Ту-204 и Ил-96, появление более интенсивных вихревых течений под воздухозаборниками двигателей ПД-14 в компоновке самолета МС-21 и, следовательно, более частое повреждение лопаток компрессора от посторонних предметов, заброшенных на вход в двигатели вихревым течением на режимах наземных отработок, руления, взлета и посадки.

Работа двигателей на режиме реверса и работа аэродинамических устройств торможения и управления самолета оказывает взаимное влияние друг на друга, что ухудшает посадочные характеристики самолета на пробеге (увеличение подъемной силы крыла, снижение нормального давления самолета на ВПП, что приводит к ухудшению путевой управляемости и возможному бо-

ковому выкатыванию самолета за пределы ВПП). Решение указанных задач требует комплексного подхода к оптимизации работы системы «самолет - силовая установка» на режиме реверса тяги.

Расчетные исследования, проведенные в МГТУ ГА при помощи программы АЫБУБ/СРХ, показали, что попадание реверсивных струй в двигатели ПД-14 происходит на скорости пробега самолета МС-21, равной 140 км/ч. Попадание реверсивных струй в двигатели увеличивает вероятность заброса посторонних предметов в тракт двигателя, появления угрозы срыва потоков воздуха с лопаток вентилятора и первых ступеней компрессора высокого давления, что может привести к газодинамической неустойчивости работы двигателя.

Проведенные расчетные исследования показывают, что защищенность двигателей ПД-14

от повреждений посторонними предметами в компоновке самолета МС-21 находится на недостаточно высоком уровне. Для повышения конкурентоспособности самолета МС-21 необходимо обеспечить защищенность двигателей до передачи самолета в эксплуатирующие организации.

СПИСОК ЛИТЕРАТУРЫ

1. По результатам оценки безотказности авиационных двигателей гражданской авиации: Справка-доклад. ГосНИИ ГА, ЦИАМ. 1991...2002.

2. Комов А. А., Юрин С.П. Уровень защищенности авиационных двигателей отечественных воздушных судов от повреждений посторонними предметами // Научный вестник ГосНИИ ГА. 2014. № 4. С. 42-48.

3. Комов А.А. Теоретические основы и технические решения для защиты авиационных двигателей от попадания твердых посторонних предметов с поверхности аэродрома. Дис. ... докт. техн. наук. Москва, 2005. 400 с.

4. Комов А. А. Защищенность двигателей от твердых посторонних предметов, забрасываемых колесами шасси // ВНТК «Научные чтения по авиации, посвященные памяти Н.Е. Жуковского. Москва, 2015.

С. 132-133.

5. Colehour J.L., Parquhar B.W. InletVortex // Journal of Aircraft. 1971. № 1.

6. Кизим В.Я., Комов А. А. Методы экспериментального исследования вихревых течений между воздухозаборниками и поверхностью аэродрома на натурных самолетах // Проблема защиты ГТД от повреждений посторонними предметами: Сб. докладов всесоюзной научно-технической конференции. Жуковский: ЛИИ им. М.М. Громова, 1978. С. 32-33.

7. Комов А. А. Расчетные исследования влияния компоновки силовой установки на самолете на вихревое течение // Конструкция и системы управления ГТД. Сб. научно-методических материалов. М.: ВВИА им. проф. Н.Е. Жуковского, 2001. С. 35-49.

8. Комов А.А. Расчетные исследования влияния компоновки силовой установки на самолете на вихревое течение // Научный вестник МГТУ ГА. 2005. № 90. 123-128.

9. Комов А.А., Евдокимов А.И. Расчетные и модельные исследования влияния компоновки силовой установки самолета на вихреобразование // Международный авиакосмический салон: Сб. докладов международной научно-технической конференции. Жуковский, 2001. С. 85-89.

ASSESSMENT OF PD-14 ENGINES PROTECTION FROM DAMAGES IN MS-21 PLANE

© 2016 A.A. Komov

Moscow State Technical University of Civil Aviation

This article includes there suits of an estimated assessment of PD-14 engines protection level are given in configuration of the MS-21 aircraft from damages by foreign objects which can be got into engines from an airfield surface during taxing, take-off and landing stage of the aircraft. For an assessment of PD-14 engines protection from the damages by foreign objects got by landing gear wheels and a vortex motion the calculation methods based on generalization of model results, bench and original researches of various aircraft types were used. The assessment of PD-14 engines protection from getting of reverer jets was carried out by means of the ANSYS/CFX program. The conducted estimated researches show that security of PD-14 engines from damages by foreign objects to configuration of the MS-21 plane is at the insufficient level. For increase of the MS-21 plane competitiveness, it is necessary to provide engines protection before the plane transfer to the operating organizations.

Keywords: PD-14 engine, MS-21 aircraft, engines protection, foreign objects, landing gear wheels, vortex motion, reverser jets.

Alexey Komov, Doctor ofTechnics, Associate Professor, Head of Scientific Researches Department. E-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.