Научная статья на тему 'Оценка возмущающего момента при моделировании движения системы наведения антенн'

Оценка возмущающего момента при моделировании движения системы наведения антенн Текст научной статьи по специальности «Механика и машиностроение»

CC BY
209
63
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МАТЕМАТИЧЕСКАЯ МОДЕЛЬ / ВОЗМУЩАЮЩИЙ МОМЕНТ / СИСТЕМА НАВЕДЕНИЯ АНТЕННЫ / MATHEMATICAL MODEL / DISTURBING MOMENTS / ANTENNA POINTING SYSTEM

Аннотация научной статьи по механике и машиностроению, автор научной работы — Гончарук А. В., Лукьяненко М. В., Раевский В. А.

Ставится задача построения системы наведения антенны, не влияющей на ориентацию и стабилизацию космического аппарата при выполнении основной функции. Рассматривается математическая модель системы наведения антенны, позволяющая моделировать динамические процессы, возникающие в ней. Проводится оценка возможных возмущающих моментов на основе математической модели системы наведения антенны космического аппарата. По результатам моделирования находятся максимальные амплитуды возмущающего момента и соответствующие им частоты. Определяется, что полученная величина возмущающих моментов не превышает допустимых значений во всей временной области. Показано, что результаты могут быть использованы для оценки динамических процессов на космическом аппарате в целом и оценки влияния на его точность ориентации в пространстве.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

EVALUATION OF THE DISTURBING MOMENT IN THE ANTENNA POINTING SYSTEM MOVEMENT SIMULATION

This article provides for the task of construction of the antenna pointing system, which does not influence the orientation and stabilization of the spacecraft. The mathematical model of the antenna pointing system, that can simulate the dynamic processes occurring in it, is presented. The evaluation of possible disturbing moments is made on the basis of a mathematical model of the spacecraft antenna pointing system. Simulation results of the disturbing moment maximum amplitudes and their corresponding frequencies are defined. It is determined that the found value of the disturbing moments do not exceed the allowable values in the whole time domain. It is shown that the results can be used to estimate the dynamic processes on the spacecraft as a whole and to assess the accuracy of its orientation in space.

Текст научной работы на тему «Оценка возмущающего момента при моделировании движения системы наведения антенн»

УДК 621.396.67

ОЦЕНКА ВОЗМУЩАЮЩЕГО МОМЕНТА ПРИ МОДЕЛИРОВАНИИ ДВИЖЕНИЯ СИСТЕМЫ НАВЕДЕНИЯ АНТЕНН

А. В. Гончарук1, М. В. Лукьяненко2, В. А. Раевский2

'ОАО «Информационные спутниковые системы» имени академика М. Ф. Решетнёва»,

Россия, 662970, Красноярский край, г. Железногорск, ул. Ленина, 52 E-mail: [email protected] 2Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнёва,

Россия, 660014, г. Красноярск, просп. имени газеты «Красноярский рабочий», 31

E-mail: [email protected]

Ставится задача построения системы наведения антенны, не влияющей на ориентацию и стабилизацию космического аппарата при выполнении основной функции. Рассматривается математическая модель системы наведения антенны, позволяющая моделировать динамические процессы, возникающие в ней. Проводится оценка возможных возмущающих моментов на основе математической модели системы наведения антенны космического аппарата. По результатам моделирования находятся максимальные амплитуды возмущающего момента и соответствующие им частоты. Определяется, что полученная величина возмущающих моментов не превышает допустимых значений во всей временной области. Показано, что результаты могут быть использованы для оценки динамических процессов на космическом аппарате в целом и оценки влияния на его точность ориентации в пространстве.

Ключевые слова: математическая модель, возмущающий момент, система наведения антенны.

EVALUATION OF THE DISTURBING MOMENT IN THE ANTENNA POINTING SYSTEM MOVEMENT SIMULATION

A. V. Goncharuk1, M. V. Lukyanenko2, V. A. Raevskiy2

1 JSC “Information Satellite Systems” named after acadenician M. F. Reshetnev”

52 Lenin str., Zheleznogorsk, Krasnoyarsk region, 662970, Russia E-mail: [email protected]

2 Siberian State Aerospace University named after academician M. F. Reshetnev

31 “Krasnoyarskiy Rabochiy” prosp., Krasnoyarsk, 660014, Russia E-mail: [email protected]

This article provides for the task of construction of the antenna pointing system, which does not influence the orientation and stabilization of the spacecraft. The mathematical model of the antenna pointing system, that can simulate the dynamic processes occurring in it, is presented. The evaluation of possible disturbing moments is made on the basis of a mathematical model of the spacecraft antenna pointing system. Simulation results of the disturbing moment maximum amplitudes and their corresponding frequencies are defined. It is determined that the found value of the disturbing moments do not exceed the allowable values in the whole time domain. It is shown that the results can be used to estimate the dynamic processes on the spacecraft as a whole and to assess the accuracy of its orientation in space.

Keywords: mathematical model, disturbing moments, antenna pointing system

Этим обусловлен переход на использование крупногабаритных антенн и высоких связных частот, что приводит к чрезвычайно жестким требованиями к управлению наведением.

Ввиду жесткого лимита веса и объема космического аппарата созданные большие конструкции антенн являются гибкими в силу выбора легкого материала, а упаковка такой конструкции получается более плотной. Также большие космические конструкции имеют большое количество форм колебаний, которые обладают низкой частотой и близко расположены друг к другу.

Современные космические средства связи предъявляют всё более и более жесткие требования к функциональным возможностям предоставляемых услуг связи, её непрерывности и готовности, независимо от местонахождения потребителя и времени суток.

Данные функции реализуемы лишь при наличии возможностей оперативного и точного наведения антенн на наземные пункты, международную космическую станцию, космические аппараты, находящиеся на низкой и круговой орбите.

В результате антенная система становится более сложным многомерным объектом управления, и это диктует новые требования к системам управления положением антенн.

Необходимость ограничения возмущающего момента на аппарат при соблюдении заявленной точности и скорости сопровождения объекта создала задачу построения системы наведения антенн, не влияющей на ориентацию и стабилизацию космического аппарата при выполнении основной функции.

Конструкция антенны, для управления которой проектировалась система наведения антенн, выполнена из 16 углепластиковых спиц, на которые натянуто радиоотражающее сетеполотно. Антенна в рабочем положении (рис. 1) установлена на штангу.

Рис. 1. Общий вид антенны в рабочем положении

На этапе создания системы наведения антенн было уделено внимание оценке возмущающего момента при математическом моделировании работы системы при управлении положением нежесткой антенной.

Моделирование даёт возможность увидеть, как будет вести себя система в действительности. Для получения реальной картины поведения системы была разработана математическая модель, которая учитывает воздействие факторов, оказывающих наибольшее влияние на работу системы.

Электромеханический модуль (ЭММ) блока механического системы наведения антенн (БМ СНА) моделируемой системы наведения антенны состоит из двух параллельных ветвей по пять ступеней, последняя ступень является волновой передачей, связанной с выходным валом. В данной модели представлена только одна из ветвей.

По результатам анализа структуры ЭММ БМ СНА разработана расчётная эквивалентная схема модели. Данная схема представлена в виде кинематической схемы, с учётом нежёсткости и люфтов редуктора и упругости антенны, на рис. 2.

Все ступени редуктора содержат нелинейность типа люфт.

Математическая модель редуктора (рис. 2) с учётом нежёсткости и люфтов представляет собой систему дифференциальных уравнений (2)—(11), представленных ниже.

В уравнениях обозначено:

З1 - момент инерции вала синхронного двигателя с электромагнитной редукцией (СДЭР) и первой шестерни редуктора;

АІ1, АІ2, АІ3 - амплитуда тока в соответствующей фазе;

СМ1, СМ2, СМ3 - коэффициенты момента СДЭР для соответствующей фазы;

01 - угол поворота ротора СДЭР и первой шестерни редуктора;

£Щ2^0, £Щ2^/+120°), 5Щ2-л^М20°) -синусоидальная форма тока в соответствующей фазе;

£Щ2-л-0гО, £Щ2-л-0г+12О°), £ІМ(2-л-0гМ2О°) -синусоидальная форма момента СДЭР в соответствующей фазе;

СОП, СО¥2 - коэффициенты, учитывающие вторую и третью гармоники в форме момента СДЭР;

РП, Р^2, РЮ - погрешность сдвига фаз для соответствующей фазы СДЭР;

^ - частота тока в фазах двигателя;

КБ - коэффициент вязкого трения (коэффициент демпфирования) в СДЭР;

МТР1 - момент сухого трения на валу СДЭР;

К - коэффициент электромагнитной редукции СДЭР;

02, VI, а, рь р2, «і, уь у2, р - углы поворота соответствующих шестерён в редукторе (рис. 2);

д - угол поворота антенны;

З2, З3, З4, З5, З6, З7, Л, З9 - моменты инерции соответствующих шестерён в редукторе (рис. 2);

З10 - момент инерции антенны (рис. 2);

Я1, Я2, Я3, Я4, Я5, Я6, Я7, Я8, Я9, Я10 - радиусы соответствующих шестерён в редукторе;

С2, С3, С4, С6, С8 - жесткости на кручение соответствующих осей в редукторе (рис. 2);

С1, С5, С7 - упругое сопротивление («твердость») зубцов (первой, четвертой и пятой ступеней редуктора) шестерён при соприкосновении зубцов после выборки люфта;

С9 - жесткость на кручение выходного вала, в месте крепления антенны к БМ, для моделирования первого тона упругих колебаний антенны;

Ь1, Ь2, Ь3 - люфты на первой, четвертой и пятой ступенях редуктора (рис. 2);

КБ2, КБ4, КБ6, КБ8 - коэффициенты вязкого трения при демпфировании упругих колебаний в редукторе;

КБ9 - коэффициент вязкого трения при демпфировании упругих колебаний антенны;

МТР2 - момент сухого трения на последней (выходной) ступени редуктора;

БХ, БУ, Б2 - относительное линейное перемещение зубьев шестерён соответствующих радиусов;

БХЬ, БУЬ, Б2Ь - «проникновение» одного зуба в другой после того, как выберется люфт

БХ = 01 Я1+ 02 Я2, (1)

если БХ < 0, то БХЬ= БХ + Ь1, при этом, если БХЬ > 0, то БХЬ=0,

если БХ > 0, то БХЬ = БХ - Ь1, при этом, если БХЬ < 0, то, БХЬ = 0 то есть люфт не выбран.

r6,c4, ь,

Rs

J5 J8

R10

R7

с5

RaCe, 91

С7

МТР2

С3,92 '

МТРЗ

с,, m

Рис. 2. Кинематическая расчётная схема модели ЭММ БМ СНА

Математическая модель синхронного двигателя с электромагнитной редукцией в виде дифференциальных уравнений имеет следующий вид:

J1-0J = AI1-CM1-SIN(2-п-F-t) x x [ SIN(K - 0j + PF1) + COF1 - SIN(2 - K - 0j + PF1) +

+ COF2 - SIN(3 - K - 0j + PF1)] + AI2 - CM2 x x SIN(2 - n - F -1 +120°) - [ SIN(K - 0j +120° + PF2) +

+ COF1 - SIN(2 - K - 0j +120° + PF2) +

+ COF2 - SIN(3 - K - 0j +120° + PF2)] + AI3 - CM3 x (2)

x SIN(2 -n- F -1 -120°) -[ SIN(K -0j -120° + PF3) +

+ COF1 - SIN(2 - K - 0j -120° + PF3) + COF2 - SIN x x (3-K-0j -120° + PF3)]-KD-0*j-

- DXL • C1 • R1 - MTP1 • SIGN(0),

J2 • 02 =-(02 -C1)•C2-(02-u1)x x KD2 - DXL • C1 • R2,

•• • •

J3-Ц = (02-u1) •C2-(02-u1) KD2 -

- (N2•u1 +a)• N2• C3 -(N2•u1 + a)• N2• KD3,

J4 •a = -(N2•u1 +a)• C3-(N2•u1 + a)^KD3-

- (N3 • a + P1) • N3 • C4 -(N3 •a+p*) • N3 • KD4, N2 = R3/R4, N3 = R5/R6,

DY = p1 R7+ p2 R8,

J5 •p1 =-(N3•a + p1)• C4 + (N3•a+P1)> x KD4 - DYL • C5 • R7;

J6 -p2 = -DYL • C5 • R8 -

(6)

(7)

- (Р2-У1)• С6-(Р2-У1)• КВ6;

В1 = у1 Я9 + у2 •Я 10,

если В2 < 0, то В2Ь = Б2 + Ь3, при этом, если ть > о, то ть = о,

если Б2 > 0, то Б2Ь = Б2 - Ь3, при этом, если Б2Ь < 0, то, Б2Ь = 0.

(3)

(4)

(5)

J7 -Y1 = (в2 -Y1)-C6 + (в2-Y1)x x KD6 - DZL - C7 - R9,

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

J8-Y2 = (P-Y2)-C8 + (P-Y2)-KD8-- DZL - C7 - R10 - MTP2 - SIGN(y2),

J9 -P =-(p-Y2)-C8-(p-Y2)-KD8 +

+ (ц-p) - C9 + (ц-p) - KD9,

• • • •

J\0 -ц = -(ц-р) - C9 - (ц-p) x x KD9 -MTP3 - SIGN(ц).

(8)

(9)

(10)

(11)

В блоке управления системы наведения антенны реализована импульсная форма. При импульсной форме тока в фазах двигатель работает в шаговом режиме. Период тока Т разделен на шесть частей, средняя величина в радианах определяется по формуле:

если ВУ < 0, то БУЬ = ВУ + Ь2, при этом, если БУЬ > 0, то ВУЬ = 0;

если ВУ > 0, то ВУЬ = ВУ - Ь2, при этом, если ВУЬ < 0, то, ВУЬ = 0.

^1Ш

2 • п

6 • K

(12)

Средняя угловая скорость вычисляется по формуле: • 2•п •F

K

Для построения амплитудно-частотных характеристик колебаний скорости и возмущающих моментов использовалась программная среда МаИаЪ, функция [2, с. 138], реализующая алгоритм быстрого преобразования Фурье.

Для оценки возмущающего момента, действующего на космический аппарат (в данном случае при работе СНА в режиме программного наведения), рассматривался диапазон частот 0,1-1 Гц. Для вариантов расчётов были получены частотные спектры возмущающего момента. По результатам анализа проведённых расчётов и полученных частотных спектров были определены максимальные амплитуды возмущающего момента и соответствующие им частоты, которые приведены в таблице.

Возмущающий момент немного более 0,02 Н • м (200 гс • см) присутствует в вариантах расчётов 7, 8, 10.

Проведённая оценка по результатам моделирования работы системы показала:

- величина полученных возмущающих моментов не превышает 0,02 Нм в диапазоне частот 0,1-1,0 Гц во всей временной области;

- наблюдаемые возмущающие моменты не корел-лируются с частотами управления, а определяются параметрами зубчатых пар редуктора и выходной ступени.

В результате проведенной работы была получена математическая модель системы наведения антенны, позволяющая моделировать динамические процессы, возникающие в ней, а так же производить оценку возможных возмущающих моментов, которые могут создаваться при её работе. Данные результаты могут быть использованы для оценки динамических процессов на космическом аппарате в целом и оценки влияния на его точность ориентации и ориентацию в пространстве антенны при наведении на наземные пункты, международную космическую станцию, космические аппараты, находящиеся на низкой и круговой орбите.

Максимальные амплитуды возмущающего момента и соответствующие им частоты

№ варианта ацу,' а Ц У с Частота 1, Гц Момент 1, Нхм Частота 2, Гц Момент 2, Нхм

1 50 0,2 0,409 0,0142 0,247 0,0104

2 50 0,5 0,1698 0,0184 0,3196 0,0135

3 50 -0,2 0,368 0,01 0,667 0,00856

4 50 -0,5 0,0499 0,0190 0,29 0,0143

5 150 0,2 0,4489 0,0133 0,92 0,0159

6 150 0,5 0,066 0,0191 0,332 0,0105

7 150 -0,2 0,227 0,0293 0,399 0,0194

8 150 -0,5 0,06 0,0223 0,238 0,0209

9 400 0 0,078 0,0104 0,306 0,0103

10 500 0,5 0,829 0,0388 0,889 0,0139

11 0 0,5 0,83 0,0213 0,76 0,0148

12 10 -0,5 0,648 0,0106 0,282 0,00856

Передаточное число примененного редуктора = Я2 ^Я4 ^ЯТС Я8 ^Я10 = Ш809.

Р Я1 Я3 Я5 Я7 Я9

С учетом параметров редуктора были определены собственные частоты колебаний ступеней редуктора с учётом нежесткости на кручение [1, с. 305]:

ю = , (14)

\ J

102,6 Гц, 127,11 Гц, 103,4 Гц, 12,08 Гц, 20,4 Гц.

На основе проведенного модального анализа антенны в рабочем положении на штанге было получено значение частоты первого тона собственных колебаний антенны 0,83 Гц.

Максимально возможный момент инерции антенны составляет: J10 = 50 кг •м2.

При проектировании системы были задано следующее ограничение по работе системы: во всем диапазоне скоростей не должен создаваться возмущающий момент более 0,02 Н м (200 гс см), в диапазоне частот 0,1-1 Гц амплитуда периодической составляющей возмущающего момента должна быть не более 0,001 Н •м (10 гс •см).

Для оценки возмущающего момента, действующего на космический аппарат при работе системы наведения антенн, рассматривались несколько вариантов. Данные варианты приведены в таблице.

Возмущающий момент определяется как произведение углового ускорения на момент инерции нагрузки, приведённый к выходному валу ЭММ БМ СНА. То есть оценка возмущающего момента при движении БМ СНА производилась относительно места закрепления на элементе конструкции спутника.

По результатам проведенного моделирования движения антенны для оценки возмущающего момента от БМ СНА использовалась формула:

МВМ = JН . (15)

Рис. 3.Частотный спектр возмущающего момента на выходе редуктора (вариант 8)

Рис. 4. Частотный спектр возмущающего момента на выходе редуктора (вариант 10)

Библиографические ссылки

1. Левитский Н. И. Колебания в механизмах : учеб. пособие для втузов. М. : Наука. Гл. ред. физ.-мат. лит., 1988. 336 с.

2. Дьяконов В. П., Абраменкова И. В. МЛТЬЛБ. Обработка сигналов и изображений. Специальный справочник. СПб. : Питер, 2002. 608 с.

References

1. Levitskiy N. I. Kolebaniya v mekhanizmakh, ucheb. posobiye dlya vtuzov (Fluctuations in the mechanisms, a manual for technical universities). Moscow, Nauka, Chap. Ed. Sci. Lit., 1988. 336 p.

2. Dyakonov V. P., Abramenkova I. V. MATLAB. Obrabotka signalov i izobrazheniy. Spetsial’nyy spravochnik (MATLAB. Signal and image processing. A special handbook). St.Petersburg, Peter, 2002. 608 p.

© Гончарук А. В., Лукьяненко М. В., Раевский В. А., 2013

i Надоели баннеры? Вы всегда можете отключить рекламу.