УДК 62-405.8 ББК 30.36 О-93
Кошевой Евгений Пантелеевич, доктор технических наук, профессор, профессор кафедры технологического оборудования и систем жизнеобеспечения ФГБОУ ВО «Кубанский государственный технологический университет»; 350072, г. Краснодар, ул. Московская, 2; тел.: 8(861)2752279;
Шорсткий Иван Александрович, кандидат технических наук, ассистент кафедры технологического оборудования и систем жизнеобеспечения ФГБОУ ВО «Кубанский государственный технологический университет»; 350072, г. Краснодар, ул. Московская, 2; тел.: 8(861)2752279;
Схаляхов Анзаур Адамович, доктор технических наук, доцент, профессор кафедры технологии, машин и оборудования пищевых производств, декан технологического факультета ФГБОУ ВО «Майкопский государственный технологический университет»; 385000, Республика Адыгея, г. Майкоп, ул. Первомайская, 191; тел.: 8(8772)570412;
Еремянц Альберт Михайлович, магистр заочной формы обучения направления «Технологические машины и оборудование» ФГБОУ ВО «Майкопский государственный технологический университет»; 385000, Республика Адыгея, г. Майкоп, ул. Первомайская, 191; тел.: 8(8772)570412
ОЦЕНКА ЭКСТРАГИРОВАНИЯ ПОРИСТОГО МАТЕРИАЛА С ПРОПИТКОЙ В МНОГОСТУПЕНЧАТОМ ПРОТИВОТОЧНОМ ПРОЦЕССЕ
(рецензирована)
В работе проведено математическое описание процесса экстрагирования с пропиткой пористого исходного материала в многоступенчатом противоточном каскаде, что позволило сделать заключение о том, что повышенная пористость экстрагируемого материала ведет при прочих равных условиях к снижению глубины экстрагирования.
Ключевые слова: пористый материал, математическое моделирование, экстрагирование, эффективность процесса, анализ.
Koshevoy Evgeny Panteleevich, Doctor of Technical Sciences, professor, professor of the Department of Technological Equipment and Life Support Systems, FSBEI HE "Kuban State Technological University"; 350072, Krasnodar, 2Moscovskaya str.; tel.: 8 (861) 2752279;
Shorstky Ivan Alexandrovich, Candidate of Technical Sciences, an assistant of the Department of Technological Equipment and Life Support Systems, FSBEI HE "Kuban State Technological University"; 350072, Krasnodar, 2Moscovskaya str.; tel.: 8 (861) 2752279;
Skhalyakhov Anzaur Adamovich, Doctor of Technical Sciences, an associate professor, professor of the Department of Technology, Machinery and Equipment for Food Production, Dean of the Technological Faculty of FSBEI HE "Maikop State Technological University"; 385000, the Republic of Adygea, Maikop, 191 Pervomayskaya str.; tel.: 8 (8772) 570412;
Yeremyants Albert Mikhailovich, a part-time master of Technological Machines and Equipment of FSBEI HE "Maikop State Technological University"; 385000, the Republic of Adygea, Maikop, 191 Pervomayskaya str.; tel.: 8 (8772) 570412.
EVALUATION OF SATURATED POROUS MATERIAL EXTRACTION IN A MULTISTAGE COUNTERFLOW PROCESS
(Reviewed)
A mathematical description of the extraction process with impregnation of a porous raw material in a multistage countercurrent cascade is give, which led to the conclusion that the increased porosity of the extracted material leads to a decrease in the extraction depth at other equal conditions.
Keywords: porous material, mathematical modeling, extraction, process efficiency, analysis.
В связи с вопросами экстрагирования масличных растительных материалов, появились работы, в которых обращено внимание на роль фактора пористости экстрагируемого материала [1, 2], уточняется механизмы процесса экстрагирования [3], дается оценка эффективности предварительной пропитки пористого экстрагируемого материала чистым растворителем в противоточном процессе.
Выполнение анализа влияния пропитки пористого экстрагируемого материала в многоступенчатом противоточном процессе возможно на основе математических моделей, учитывающих данный фактор. Разработанные к настоящему времени математические модели многоступенчатого процесса экстрагирования [4, 5, 6] не учитывают пропитки пористой структуры исходного материала, поступающего на первую ступень многоступенчатого каскада.
В данной работе приводятся результаты теоретического анализа влияния пропитки пористого экстрагируемого материала в многоступенчатом противоточном процессе. Рассматривается равновесная экстракция, так как можно показать, сравнивая полученные ранее [4, 5] уравнения многоступенчатой противоточной экстракции для равновесных и неравновесных условий, что существует связь между ними.
lg(i-*)-lg(i-^ . 100 д igp w
где п, пд - соответственно число ступеней в многоступенчатых противоточных каскадах одинаковой эффективности /достигается одинаковое извлечение экстрактивных веществ с использованием равного количества растворителя/ для равновесных и неравновесных условий;
г(2) (2)
ту _ 1
^ _ ""(2)-(Г)" - степень извлечения на ступени.
Ci-1-Ci+1
Как известно, пропитка пористого исходного экстрагируемого материала имеет место на первой ступени многоступенчатого противоточного каскада и для этой ступени уравнение материального баланса имеет вид
VC(2) + рс(1) = vc(2) + wc(1) (2)
где V, P, W - соответственно объемные производительности по общему поровому объему
-л. - з, г( 2)
твердой фазы, растворителя и отходящей из экстрактора мисцеллы, м/с; L0 -
соответственно концентрации экстрагируемых веществ в общем поровом объеме твердой фазы исходная и на выходе из 1-ой ступени /верхний индекс (2) - индекс твердой фазы,
нижний индекс - номер ступени/, кг/мз; C(1 - соответственно концентрации экстрагируемых веществ в мисцелле на выходе из 1 -ой и 2-ой ступени /верхний индекс (1) -индекс мисцеллы, нижний индекс - номер ступени/, кг/мз.
Разница между объемной производительностью растворителя и отходящей мисцеллы представляет собой количество растворителя, поглощенного в процессе пропитки
AV = P-W (3)
о ¥ й¥ г(1) г(2)
Если ввести обозначения р = — и а = —, а также учесть, что = ,
V
Р Р
можно записать уравнение для 1 -ой ступени
с(1) = с(1)(1 + р)-с(2)р-с(1)
то
а
(4)
Для остальных ступеней п>1
с+^с^а + ю-с-^ (5)
Решение системы уравнений (4), (5) для п ступеней позволяет определить относительные концентрации мисцеллы на каждой ступени, в том числе и конечную на выходе из 1 -ой ступени
-(1)
(1)
Р(1~Рп)
1_ _
(2) [1-^п+1-а(1-рп)]
(6)
Привлекая уравнение общего материального баланса по всему многоступенчатому противоточному каскаду
(1)
(1-^^=1-
с.
С.
(2)
п £
(2)
(7)
о
И, используя уравнение (3), можно получить уравнение для относительного остаточного содержания экстрагируемых веществ в твердой фазе на выходе из многоступенчатого противоточного каскада с учетом пропитки
(2) -п _
А2) =
Рп(1-Р)
[1-рп+1-а(1-рп)]
(8)
Отметим, что рост пористости /а>0 / ведет при прочих равных условиях к снижению глубины экстрагирования. При а = 0 уравнения (6) и (8) преобразуются в уравнения ранее полученные [5] для случая отсутствия пропитки
с«1 _ р(1-рп)
(2)
1-р
п+1
с<2) _ Рп(1-Р)
п+1
(2)
1-Р
(9) (10)
Высказываются предложения [3] по новому организовать многоступенчатый противоточный процесс экстрагирования пористого исходного материала. Предлагается частью чистого растворителя, подаваемого на экстракцию в многоступенчатый противоточный каскад, заполнить свободные поры исходного материала, а оставшейся частью вести противоточный процесс. Получим аналитическую зависимость, описывающую многоступенчатый процесс при такой организации. Так как свободные поры уже заполнены чистым растворителем, то для этого случая подходят уравнения (9) и (10), только в следует уточнить. В рассматриваемом случае
Р0 =
V
Р
Р-АУ
1-а
С учетом (11) уравнение (9) преобразуется к виду:
0(1) 1
а уравнение (10) - к виду:
(2)
0(2) •п_
г (2)
р[(1-д)-рп] [(1-а)п+1-рп+1]
рп[(1-д)-р] [(1-а)п+1-рп+1]
(11)
(12)
(13)
0
0
0
0
Сравнительная оценка двух способов организации многоступенчатого противоточного процесса: без пропитки чистым растворителем и с пропиткой - может быть проведена анализом отношения уравнений (13) и (8)
,0(2) •п_
г(2)
Для предельно малых n при любом Ы
(1-a)- -P
,(1-a)n+1- ~Pn+1]
■Q-pn+i) (1-рП)-
— и
(1-Р)
(1-Ю
(14)
0(2)
'П_
г(2)
1. Для случая ft < (1 — а) для
любого числа ступеней при увеличении а
(1-а)-Р
отношение {1-а)п+1-рп+1 Растет'
увеличивается также выражение
(1-0П+1)
— а
(1-рп) „ с0(2)
-——. Следовательно —щ- растет, что
0(2)
(1-р) (1-Р) С^
свидетельствует о неэффективности предварительной пропитки пористого материала чистым растворителем в многоступенчатом противоточном процессе.
п
п
ВЫВОДЫ
1. Получено математическое описание процесса экстрагирования с пропиткой пористого исходного материала в многоступенчатом противоточном каскаде.
2. Повышенная пористость экстрагируемого материала ведет при прочих равных условиях к снижению глубины экстрагирования.
3. Предварительная пропитка пористого экстрагируемого материала частью чистого растворителя не ведет к росту эффективности процесса.
Литература:
1. Ключкин В.В., Марков В.Н. Использование принципа гидростатического взвешивания для изучения кинетики пропитки экстрагируемых материалов. М., 1987, №12. С. 129. Деп. в ВИНИТИ.
2. Ключкин В.В., Марков В.Н. Влияние условий пропитки материала растворителем на кинетику процесса экстрагирования и конечный его результат. М., 1987, №12. С. 129. Деп. в ВИНИТИ.
3. Марков В.Н, Лисицын А.Н., Вороненко Б.А. Процесс экстрагирования растительного масла. Теоретические основы пищевых технологий: в 2-х кн. Кн. 2. М.: КолосС, 2009. 920 с.
4. Кошевой Е.П. Оборудование для экстракции в системе твердое тело - жидкость (экстракторы). Машиностроение: энциклопедия / Под ред. С.А. Мачихина. М.: Машиностроение, 2003. 629 с.
5. Кошевой Е.П., Кварацхелия Д.Г. Моделирование и расчет экстракторов с твердой фазой. Тбилиси: Зугдиди, 2001. 100 с.
6. Аксельруд Г.А., Лысянский В.М. Экстрагирование (система твердое тело -жидкость). Л.: Химия, 1974. 256 с.
Literature:
1. Klyuchkin V.V., Markov V.N. Use of a principle of hydrostatic weighing to study the kinetics of impregnation of extractable materials. M., 1987, No. 12. P. 129. Dep. in RISTI.
2. Klyuchkin V.V., Markov V.N. Influence of the impregnation conditions of a material with a solvent on the kinetics of the extraction process and its final result. M., 1987, No. 12. P. 129. Dep. in RISTI.
3. Markov V.N., Lisitsyn A.N., Voronenko B.A. The process of extracting vegetable oil. Theoretical foundations of food technology: in 2 books. Book 2. M.: KolosS, 2009. 920p.
4. Koshevoy E.P. Equipment for extraction in the solid-liquid system (extractors). Mechanical engineering: encyclopedia / ed. by S.A. Machikhin. M.: Mashinostroenie, 2003. 629 p.
5. Koshevoy E.P., Kvaratskhelia D.G. Modeling and calculation of extractors with a solid phase. Tbilisi: Zugdidi, 2001. 100p.
6. Axelrud G.A., Lysyansky V.M. Extraction (solid-liquid system). L.: Chemistry, 1974.
256 p.