3. Гафуров А.М. Повышение энергоэффективности тепловых электрических станций за счет утилизации тепловых отходов. В сборнике: Электроэнергетика глазами молодежи-2016 Материалы VII Международной молодежной научно-технической конференции. 2016. С. 49-52.
4. Гафуров А.М., Осипов Б.М., Гафуров Н.М., Гатина Р.З. Способ утилизации тепловых вторичных энергоресурсов промышленных предприятий для выработки электроэнергии. // Известия высших учебных заведений. Проблемы энергетики. - 2016. - № 11-12. - С. 36-42.
5. Гафуров А.М., Гатина Р.З., Гафуров Н.М. Температурный диапазон использования сжиженного газа C3H8 в качестве низкокипящего рабочего тела. // Теория и практика современной науки. 2016. № 9 (15). - С. 115-118.
УДК 62-176.2
Зайнуллин Р.Р., к.ф.-м.н. старший преподаватель кафедра ПЭС Гафуров А.М. инженер I категории УНИР ФГБОУВО «КГЭУ» Россия, г. Казань ОСУЩЕСТВЛЕНИЕ БИНАРНОГО ЦИКЛА В СОСТАВЕ КОНДЕНСАЦИОННОЙ ПАРОВОЙ ТУРБИНЫ ТИПА К-500-240-2 ХТЗ, ОХЛАЖДАЕМОГО ВОДОЙ ПРИ ТЕМПЕРАТУРЕ 5°С
Рассматривается бинарная энергоустановка в составе конденсационной паровой турбины типа К-500-240-2 ХТЗ (Харьковский турбинный завод), охлаждаемая водой при допустимой температуре в 5°С в зимний период времени.
Ключевые слова: тепловая электростанция, паровая турбина, бинарный цикл, низкокипящее рабочее тело.
Zainullin R.R.
candidate of physico-mathematical sciences senior lecturer of department «industrial electronics and lighting»
Gafurov A.M.
engineer of the I category «Management of research work»
«KSPEU» Russia, Kazan
IMPLEMENTATION OF A BINARY CYCLE AS A PART OF THE CONDENSATION К-500-240-2 KTP STEAM TURBINE COOLED BY WATER AT A TEMPERATURE OF 5°С
Binary power installation in structure of the condensation К-500-240-2 steam turbine of KTP (Kharkiv turbine plant) cooled by water at an admissible temperature in 5°С in a winter time span is considered.
Keywords: thermal power station, steam turbine, binary cycle, low-boiling
working fluid.
На тепловых электростанциях России установлено достаточно много мощных паровых турбин Харьковского турбинного завода (ХТЗ) (мощностью от 100 МВт до 500 МВт). Конденсационные паровые турбины типа К-500-240-2 ХТЗ (номинальной мощностью 500 МВт и начальными параметрами пара: давление 23,5 МПа и температура 540°С) характеризуются тем, что почти весь пар, пройдя через турбину, поступает в конденсатор с расходом в 255 кг/с.
В конденсаторе паровой турбины типа К-500-240-2 ХТЗ поддерживается низкое давление пара равное 3,63 кПа, что соответствует температуре насыщения в 27,29°С. Процесс конденсации 1 кг пара сопровождается высвобождением скрытой теплоты парообразования равная примерно 2157 кДж/кг, которая в настоящее время отводиться с помощью охлаждающей воды в окружающую среду. При этом потери теплоты в конденсаторе паровой турбины (холодном источнике) могут составлять до половины (45-50%) затрачиваемой теплоты в термодинамическом цикле. В зимний период времени конденсатор паровой турбины типа К-500-240-2 ХТЗ является источником сбросной низкопотенциальной теплоты с температурой в 27,29°С, а окружающая среда - прямой источник холода с допустимой температурой охлаждающей воды в 5°С. Имеющийся теплоперепад можно сработать с помощью бинарной энергоустановки с замкнутым контуром циркуляции на низкокипящем рабочем теле [1].
Бинарный термодинамический цикл - совокупность двух термодинамических циклов, осуществляемых двумя рабочими телами так, что теплота, отводимая в одном цикле, используется в другом цикле.
Предлагается использование бинарной энергоустановки в составе конденсационной паровой турбины типа К-500-240-2 ХТЗ, где реализуется термодинамический цикл Ренкина на основе парового контура с отводом теплоты в холодном источнике второму контуру на низкокипящем рабочем теле (рис. 1). В качестве низкокипящего рабочего тела для бинарной энергоустановки в составе паровой турбины типа К-500-240-2 ХТЗ предлагается использовать сжиженный пропан С3Н8 [2].
регенерации
Рис. 1. Схема бинарной энергоустановки в составе конденсационной паровой турбины типа К-500-240-2 ХТЗ.
Представленная бинарная энергоустановка (рис. 1) работает следующим образом. Отработавший в турбине пар при давлении в 3,63 кПа охлаждается и конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость. Полученный основной конденсат с помощью конденсатного насоса направляют в систему регенерации. В качестве охлаждающей жидкости используется сжиженный пропан С3Н8, который сжимают в насосе до давления 0,88 МПа и направляют в конденсатор паровой турбины типа К-500-240-2 ХТЗ для охлаждения отработавшего в турбине пара. Конденсация 255 кг/с пара сопровождается выделением скрытой теплоты парообразования равного примерно 550 МДж/кг, которая отводится на нагрев и испарение сжиженного газа С3Н8 с расходом в 1500 кг/с до температуры перегретого газа в 22°С. На выходе из конденсатора паровой турбины полученный перегретый газ С3Н8 направляют в турбодетандер, где в процессе расширения газа происходит снижение его температуры и давления, а мощность на валу турбодетандера передается соединенному на одном валу электрогенератору. После турбодетандера газообразный пропан с температурой в 15,29°С направляют в конденсатор водяного охлаждения, который охлаждается технической водой окружающей среды при допустимой температуре в 5°С в зимний период времени. В процессе
охлаждения газообразного пропана ниже его температуры насыщения происходит процесс интенсивного сжижения, после чего сжиженный газ с температурой в 13°С направляют в насос и цикл повторяется [3, 4].
Таким образом, минимально допустимый температурный перепад в 21°С обеспечивает дополнительную полезную выработку электроэнергии бинарной энергоустановкой в 3,04 МВт при использовании в качестве источника холода - водные ресурсы окружающей среды в зимний период времени. В данном случаи дополнительная выработка электроэнергии в зимний период времени позволяет экономить на станции расход условного топлива на 0,96 т.у.т./час при использовании в качестве низкокипящего рабочего тела - сжиженный пропан C3H8.
Использование бинарной энергоустановки в составе конденсационной паровой турбины типа К-500-240-2 ХТЗ в зимний период времени позволяет снижать давление пара в конденсаторе паровой турбины до предельного вакуума (при котором исчерпывается расширительная способность косого среза сопл и лопаток, и прекращается прирост мощности) за счет более низкой температуры охлаждения и дополнительной выработки электроэнергии.
Использованные источники:
1. Гафуров А.М. Способ преобразования сбросной низкопотенциальной теплоты ТЭС. // Вестник Казанского государственного энергетического университета. - 2015. - №4 (28). - С. 28-32.
2. Патент на изобретение № 2562506 РФ. Способ работы тепловой электрической станции / Гафуров А.М. 10.09.2015 г.
3. Гафуров А.М. Повышение энергоэффективности тепловых электрических станций за счет утилизации тепловых отходов. В сборнике: Электроэнергетика глазами молодежи-2016 Материалы VII Международной молодежной научно-технической конференции. 2016. С. 49-52.
4. Гафуров А.М., Осипов Б.М., Гафуров Н.М., Гатина Р.З. Способ утилизации тепловых вторичных энергоресурсов промышленных предприятий для выработки электроэнергии. // Известия высших учебных заведений. Проблемы энергетики. - 2016. - № 11-12. - С. 36-42.