Научная статья на тему 'ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ ВИХРЕВОГО СЛЕДА ЗА ВОЗДУШНЫМИ СУДАМИ С ВИНТАМИ'

ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ ВИХРЕВОГО СЛЕДА ЗА ВОЗДУШНЫМИ СУДАМИ С ВИНТАМИ Текст научной статьи по специальности «Физика»

CC BY
17
4
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ВОЗДУШНЫЕ ВИНТЫ / ВИХРЕВОЙ СЛЕД / ВОЗДУШНОЕ СУДНО / ВЗАИМОДЕЙСТВИЕ ВИХРЕЙ / ТУРБОВИНТОВЫЕ САМОЛЕТЫ

Аннотация научной статьи по физике, автор научной работы — Желанников А. И.

В статье приводятся результаты исследования характеристик вихревого следа за воздушными судами с турбовинтовыми двигателями. На примере самолета Ан-12 показано, что вращающиеся винты вносят заметный вклад в распространение вихревого следа за самолетом. Это доказывают и некоторые исследования, а также многочисленные наблюдения. Также описывается методика для исследования вихревого следа за воздушными судами с винтами. В основе методики лежит метод дискретных вихрей. Актуальность таких исследований обусловлена возрастающим интересом компаний-перевозчиков к воздушным судам с турбовинтовыми двигателями. Доказано, что при перевозках пассажиров и грузов на таких судах на расстояния 700-800 км затраты по обслуживанию и на топливо сокращаются примерно на 30-40 %. Поэтому до сих пор сохранен парк турбовинтовых самолетов, таких как Ан-22, Ан-70, Ан-12, а также Ту-95, Ил-38, С-130 и др. Разрабатываются и вводятся в эксплуатацию новые турбовинтовые самолеты: А-400М, Ил-114, Ил-112М. Вихревой след за такими самолетами также представляет опасность для других, летящих следом самолетов. Особенностью распространения вихревого следа за самолетами с винтами является взаимодействие вихрей, сходящих с планера самолета и вихрей от винтов. В результате из-за вращения всех винтов в одну сторону нарушается симметрия в распространении вихрей, сходящих с правой и левой половин крыла. Поэтому важно понимать, насколько по-разному ведут себя вихри, сходящие с планера самолета с турбовинтовыми двигателями. Для удобства исследования методика учета влияния вихрей от винтов интегрирована в специальный расчетно-программный комплекс, базирующийся также на методе дискретных вихрей. В нем при расчете характеристик вихревого следа учитываются полетный вес, скорость и высота полета самолета, его полетная конфигурация, атмосферные условия, близость земли, осевая скорость в ядре вихря и некоторые другие факторы. Этот комплекс прошел необходимую апробацию и государственную регистрацию. Был выполнен ряд мероприятий по валидации и верификации разработанного комплекса, подтверждающих работоспособность программ, входящих в него, и достоверность получаемых по нему результатов. Приводятся результаты исследования характеристик вихревого следа за самолетом Ан-12 в виде спектров вертикальной скорости и полей возмущенных скоростей на различных удалениях от него. Показано, что воздушные винты заметно влияют на распространение вихревого следа за турбовинтовыми самолетами. Это обстоятельство необходимо учитывать экипажам воздушных судов, летящих следом за такими самолетами.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Желанников А. И.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

FEATURES OF VORTEX TRACE PROPAGATION FOR AIRCRAFT WITH PROPELLERS

The article presents the results of a study of the characteristics of the wake vortex of aircraft with turboprop engines. Using the example of the An-12 aircraft, it is shown that rotating propellers make a noticeable contribution to the propagation of the vortex trail behind the aircraft. This is proved by some studies, as well as numerous observations. It also describes a technique for studying the wake vortex of aircraft with propellers. The method is based on the method of discrete vortices. The relevance of such studies is due to the growing interest of carrier companies in aircraft with turboprop engines. It has been proven that when transporting passengers and cargo on such vessels over distances of 700-800 km, maintenance and fuel costs are reduced by about 30-40%. Therefore, the fleet of turboprop aircraft, such as An-22, An-70, An-12, as well as Tu-95, Il-38, C-130, etc., has been preserved so far. New turboprop aircraft are being developed and put into operation: A-400M, Il-114, Il-112M. The vortex trail behind such aircraft also poses a danger to other aircraft flying behind. A feature of the propagation of the wake vortex behind aircraft with propellers is the interaction of vortices coming off the airframe and vortices from the propellers. As a result, due to the rotation of all the screws in one direction, symmetry is broken in the propagation of vortices descending from the right and left halves of the wing. Therefore, it is important to understand how differently the vortices that descend from the airframe of an aircraft with turboprop engines behave. For the convenience of the study, the method of accounting for the effect of vortices from screws is integrated into a special calculation and software package, also based on the method of discrete vortices. In it, when calculating the characteristics of the wake vortex, the flight weight, speed and altitude of the aircraft, its flight configuration, atmospheric conditions, proximity of the earth, axial velocity in the core of the vortex and some other factors are taken into account. This complex has passed the necessary testing and state registration. A number of measures were carried out to validate and verify the developed complex, confirming the operability of the programs included in it and the reliability of the results obtained from it. The results of the study of the characteristics of the wake vortex behind the Antonov-12 aircraft in the form of vertical velocity spectra and fields of perturbed velocities at various distances from it are presented. It is shown that propellers noticeably affect the propagation of the wake vortex behind turboprop aircraft. This circumstance must be taken into account by the crews of aircraft flying behind such aircraft.

Текст научной работы на тему «ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ ВИХРЕВОГО СЛЕДА ЗА ВОЗДУШНЫМИ СУДАМИ С ВИНТАМИ»

Vol. 26, No. 03, 2023

Civil Aviation High Technologies

МАШИНО СТРОЕНИЕ 2.5.12 - Аэродинамика и процессы теплообмена летательных аппаратов; 2.5.13 - Проектирование, конструкция и производство летательных аппаратов;

2.5.14 - Прочность и тепловые режимы летательных аппаратов;

2.5.15 - Тепловые электроракетные двигатели и энергоустановки

летательных аппаратов; 2.5.16 - Динамика, баллистика, управление движением летательных аппаратов

УДК 629.7.016:533.68

DOI: 10.26467/2079-0619-2023-26-3-103-113

Features of vortex trace propagation for aircraft with propellers

A.I. Zhelannikov1

1Central Aerohydrodynamic Institute, Zhukovsky, Russia

Abstract: The article presents the results of a study of the characteristics of the wake vortex of aircraft with turboprop engines. Using the example of the An-12 aircraft, it is shown that rotating propellers make a noticeable contribution to the propagation of the vortex trail behind the aircraft. This is proved by some studies, as well as numerous observations. It also describes a technique for studying the wake vortex of aircraft with propellers. The method is based on the method of discrete vortices. The relevance of such studies is due to the growing interest of carrier companies in aircraft with turboprop engines. It has been proven that when transporting passengers and cargo on such vessels over distances of 700-800 km, maintenance and fuel costs are reduced by about 30-40%. Therefore, the fleet of turboprop aircraft, such as An-22, An-70, An-12, as well as Tu-95, Il-38, C-130, etc., has been preserved so far. New turboprop aircraft are being developed and put into operation: A-400M, Il-114, Il-112M. The vortex trail behind such aircraft also poses a danger to other aircraft flying behind. A feature of the propagation of the wake vortex behind aircraft with propellers is the interaction of vortices coming off the airframe and vortices from the propellers. As a result, due to the rotation of all the screws in one direction, symmetry is broken in the propagation of vortices descending from the right and left halves of the wing. Therefore, it is important to understand how differently the vortices that descend from the airframe of an aircraft with turboprop engines behave. For the convenience of the study, the method of accounting for the effect of vortices from screws is integrated into a special calculation and software package, also based on the method of discrete vortices. In it, when calculating the characteristics of the wake vortex, the flight weight, speed and altitude of the aircraft, its flight configuration, atmospheric conditions, proximity of the earth, axial velocity in the core of the vortex and some other factors are taken into account. This complex has passed the necessary testing and state registration. A number of measures were carried out to validate and verify the developed complex, confirming the operability of the programs included in it and the reliability of the results obtained from it. The results of the study of the characteristics of the wake vortex behind the Antonov-12 aircraft in the form of vertical velocity spectra and fields of perturbed velocities at various distances from it are presented. It is shown that propellers noticeably affect the propagation of the wake vortex behind turboprop aircraft. This circumstance must be taken into account by the crews of aircraft flying behind such aircraft.

Key words: propellers, wake vortex, aircraft, vortex interaction, turboprop aircraft.

For citation: Zhelannikov, A.I. (2023). Features of vortex trace propagation for aircraft with propellers. Civil Aviation High Technologies, vol. 26, no. 3, pp. 103-113. DOI: 10.26467/2079-0619-2023-26-3-103-113

Особенности распространения вихревого следа за воздушными судами с винтами

А.И. Желанников1

1 Центральный аэрогидродинамический институт имени проф. Н.Е. Жуковского,

г. Жуковский, Россия

Аннотация: В статье приводятся результаты исследования характеристик вихревого следа за воздушными судами с турбовинтовыми двигателями. На примере самолета Ан-12 показано, что вращающиеся винты вносят заметный вклад

Civil Aviation High Technologies

Vol. 26, No. 03, 2023

в распространение вихревого следа за самолетом. Это доказывают и некоторые исследования, а также многочисленные наблюдения. Также описывается методика для исследования вихревого следа за воздушными судами с винтами. В основе методики лежит метод дискретных вихрей. Актуальность таких исследований обусловлена возрастающим интересом компаний-перевозчиков к воздушным судам с турбовинтовыми двигателями. Доказано, что при перевозках пассажиров и грузов на таких судах на расстояния 700-800 км затраты по обслуживанию и на топливо сокращаются примерно на 30-40 %. Поэтому до сих пор сохранен парк турбовинтовых самолетов, таких как Ан-22, Ан-70, Ан-12, а также Ту-95, Ил-38, С-130 и др. Разрабатываются и вводятся в эксплуатацию новые турбовинтовые самолеты: А-400М, Ил-114, Ил-112М. Вихревой след за такими самолетами также представляет опасность для других, летящих следом самолетов. Особенностью распространения вихревого следа за самолетами с винтами является взаимодействие вихрей, сходящих с планера самолета и вихрей от винтов. В результате из-за вращения всех винтов в одну сторону нарушается симметрия в распространении вихрей, сходящих с правой и левой половин крыла. Поэтому важно понимать, насколько по-разному ведут себя вихри, сходящие с планера самолета с турбовинтовыми двигателями. Для удобства исследования методика учета влияния вихрей от винтов интегрирована в специальный расчетно-программный комплекс, базирующийся также на методе дискретных вихрей. В нем при расчете характеристик вихревого следа учитываются полетный вес, скорость и высота полета самолета, его полетная конфигурация, атмосферные условия, близость земли, осевая скорость в ядре вихря и некоторые другие факторы. Этот комплекс прошел необходимую апробацию и государственную регистрацию. Был выполнен ряд мероприятий по валидации и верификации разработанного комплекса, подтверждающих работоспособность программ, входящих в него, и достоверность получаемых по нему результатов. Приводятся результаты исследования характеристик вихревого следа за самолетом Ан-12 в виде спектров вертикальной скорости и полей возмущенных скоростей на различных удалениях от него. Показано, что воздушные винты заметно влияют на распространение вихревого следа за турбовинтовыми самолетами. Это обстоятельство необходимо учитывать экипажам воздушных судов, летящих следом за такими самолетами.

Ключевые слова: воздушные винты, вихревой след, воздушное судно, взаимодействие вихрей, турбовинтовые самолеты.

Для цитирования: Желанников А.И. Особенности распространения вихревого следа за воздушными судами с винтами // Научный Вестник МГТУ ГА. 2023. Т. 26, № 3. С. 103-113. DOI: 10.26467/2079-0619-2023-26-3-103-113

Introduction

Nowadays the aeronautical communities of many countries face the current problem of the ever-growing airport capacity provision due to air traffic increase maintaining the objective aircraft flight safety level. Vortex safety provision [1-5] is one of main challenges for implementation of such plans. The essence of vortex safety issue is wake vortex following the aircraft [6-11]. This wake is an induced velocity and pressure field which is dangerous for aircraft following it. It is worth noticing that one should distinguish between the concepts of wake vortex and vortex path. It is correctly suggested in work [12] that there is a wake vortex following the body in motion developing lift (for example, an aircraft). Whether the body in motion does not develop lift (for example, a car), there is a vortex path following it.

The work focuses on a wake vortex following the propeller aircraft. Turboprop aircraft observation shows us that wake vortex following them is different from the one following the turbo-jet aircraft (fig.1). It is connected to propeller

rotation influencing the aircraft wake vortex. Wake vortex following the aircraft loses its symmetry almost at once as the propeller spins one way, which can be seen in (fig. 1).

The long-haul propeller aircraft introduction has required the research of the long-distance wake vortices following them. Wake vortex following such aircraft is also dangerous for other aircraft behind it. The question of propeller impact on long-distance wake vortex characteristics is still open so far. Analysis shows us that the research developments in this area are insufficient. The majority of them are scattered studies in the flight experiment of the USA Department of Transportation program on wake vortex following the propeller aircraft. There are almost no approaches and mathematical models for wake vortex following the propeller aircraft.

The interest in propeller aircraft has grown recently, as they are cheaper in terms of passenger and cargo transportation on equal distances, in comparison to turbo-jet aircraft. Some foreign experts estimate that service and fuel charges are reduced by about 30-40% during passenger and cargo transportation given the distance of

Vol. 26, No. 03, 2023

Civil Aviation High Technologies

Fig. 1. Random visualization of the wake vortex following the Antonov-12 turboprop aircraft during takeoff

700-800 km. That is why some aerospace corporations are starting the turboprop aircraft development. For instance, the Canadian engineering company Bombardier is now developing and producing the twin-engine turboprop aircraft DHC-8. Airbus Military has developed the A-400M aircraft and started its manufacturing production. ATR is doing the same thing. There are also Ilyushin Il-114 and Ilyushin Il-112B in use in Russia. There is also data about other similar constructions.

Research methodology

Wake vortex following the propeller aircraft research methodology, used in this work, is described in details in paper [12] and article [13]. In this article it is integrated into a special calculating and software package [14], also based on discrete wake method [15-17]. The essence of integration is in the following. It was necessary to develop such a propeller mathematic model, in which its work effect record was made through discrete vortex points with the known circulations and coordinates on Trefftz plane. The fact is the long-distance wake vortex mathematical model of the calculating and software package is also based on vortex points. In this case the propeller mathematical model is inte-

grated into the long-distance wake vortex mathematic model [12, 18].

Let us interpolate the following designations:

d - propeller diameter;

L - the aircraft typical linear dimension;

O - the propeller angular velocity;

V0 - the airspeed;

r0 - the propeller rotor head radius;

£T r0

ç = r - the relative propeller rotor head

n d

radius; where R = — ;

_ 2

a - the propeller thrust coefficient;

n - the number of propeller blades;

V0

-= À - the propeller speed coefficient;

nd

P - the propeller power coefficient.

The following vortex model of the propeller (fig. 2) is developed for the given mathematical model integration into the calculating and software package [14]. There is an axial flow circulation wake Г in the middle of the propeller, the n wakes are set around the propeller circumference perimeter, modelling the propeller jet flow. The research in work [13] showed us, that n should correspond to the number of propeller

Civil Aviation High Technologies

Vol. 26, No. 03, 2023

blades. Then the wake circulation around the propeller circumference will be equal to r /n. It is possible to define the intensity of the propeller-generated axial flow wake by formula [13], whether the propeller work regime is set - À,

a , / and the relative propeller rotor head diameter is known:

Vk

TV

d=

Fig. 2. Vortex model of the propeller screw

T =

(1Ч2)

к311 -

A

I2

2a

4к2

к3 (1 ^ )

Let us interpolate the axial flow non-dimensional circulation according to formulae

for the aircraft in general, 1 =-, where

_ V0L

L is a typical size, then 1 and 1* will be linked by formula

TaRd = TV0 L

where

- aRd - 2nnd d ^к-т T =T-= T--= T—d ,

and finally

V L V0 2L X

T*=T-d. X

d is a relative propeller diameter d = d/L .

Then, the vortex propeller jet flow scheme (in Trefftz plane) will look as it is shown in Figure 1: n number of vortices, set around the circumference by the diameter equal to the propeller diameter, model the propeller jet flow surface. The number of vortices corresponds to the number of blades here. Circulation of each vortex is r* I n, and spinning direction opposes the

axial flow vortex spinning direction. At the same time the axial flow vortex produces spinning, which corresponds to propeller spinning direction. Thus, the purpose is achieved. The vortex points, which are modelling the propeller work, are integrated into the calculating and software package [14].

The results of the research

The characteristics of long-distance wake vortex following the C-130 aircraft at 1000 m height, at V = 51 m/s speed were calculated to confirm the effectiveness of the developed methodology and credibility of the results based on them. The flight experiment data has been obtained from paper [2] on wake vortex maximum vertical velocity measurement for this aircraft and the flight conditions. There are the vertical speed calculations behind the C-130 at distances X = 0 and 1.4 km in Figure 2. It can be seen that the vertical speed graph is sawtooth if X = 0 (that is fuselage longitudinal section, rhombs). It is connected with propeller rotation impact on the wake vortex behind the aircraft.

The whole spectrum of vertical velocity (squares) is calculated at distance X = 1.4 km from C-130 aircraft. It can be seen that the calculation (squares) and flight experiment (triangles) correspond satisfactorily to each other, which confirms indirectly the credibility of the results (fig. 3).

Furthermore, the characteristics of Antonov An-12 aircraft wake vortex were also observed. It is shown that rotating propellers cause a noticeable impact on wake vortex distribution. The first stage shows us, how the vertical velocity spectrum changes in the middle of An-12 vortex without taking propeller spinning into considera-

Vol. 26, No. 03, 2023

Civil Aviation High Technologies

Distance, m

Fig. 3. Vertical velocity distribution in the vortex core of the C-130 aircraft

Fig. 4. Distribution of vertical velocities in the vortex core of the An-12 aircraft (excluding the influence of propellers)

tion (fig. 4), and with it (fig. 5). The vertical velocity was calculated at X = 10, 150, 300 u 500 m distance. The speed of flight then was V = 420

km/h, and height was H = 500 m. X, a , / pa-

rameters were extracted from An-12 cruise flight diagram. The atmosphere is stable, SA = 1 [12].

It can be seen that vertical velocity spectra are significantly different in Figures 4 and 5. It is also

Civil Aviation High Technologies

Vol. 26, No. 03, 2023

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Fig. 5. Distribution of vertical velocities in the vortex core of the An-12 aircraft (Taking into account the influence of propellers)

worth noticing, that propeller rotation impact on vertical velocity almost disappears already at X = 500 m distance. It is connected with vortex natural ease-off due to atmosphere turbulence, along with vortex dissipation and diffusion.

At the second stage, the perturbed velocity fields behind the An-12 at up to 2 km distance (fig. 6) were observed. There are the results of wake vortex characteristics calculation as the perturbed velocity fields, which are presented as vectors of mixed speed W, calculated by formula

w = +wy

Wz and Wy are the parts of the vertical and horizontal perturbed speed. W speed variable can also be easily determined through step scale in Figure 6, which size is 10 m/s.

It can be seen that the vortex symmetry from the left and the right wing is broken while X distance from the aircraft is increasing.

This circumstance drastically distinguishes the wake vortex behind the turboprop and turbo-jet aircraft. The wake vortex following the turbo-jet aircraft remains symmetrical for a long time on both the left and the right wings [2, 12, 19-26]. This symmetry is broken almost at once between the turboprop aircraft due to propeller spinning impact. There are the works [12, 27], in which it is shown that propellers spinning one way also cause impact on the aircraft aerodynamic characteristics. It is connected with non-symmetrical flowing around of the aircraft airframe. There is some yet noticeable yawing and roll during the turboprop flight. There are some special procedures implemented in some aircraft structure for their disposal. Nevertheless, it can lead to increase in drag, and, consequently, to extra fuel costs. There are the aircraft with left and right propellers spinning different ways which allows to dispose airframe non-symmetrical flowing around. For instance, A-400M by Airbus Military.

Vol. 26, No. 03, 2023

Civil Aviation High Technologies

Antonov An-12, V=420 km/h, Н=500 m

Fig. 6. The field of perturbed velocities behind the An-12 aircraft at various distances

Conclusions

Thus, the calculation showed us that wake vortex behind the turboprop aircraft differs drastically from the one behind the turbo-jet aircraft. The reason of such a difference is propeller rotation. Propellers of almost all the used turboprop aircraft rotate one way. Wake vortex symmetry behind the aircraft is broken during propeller vortex interaction with vortices from the aircraft airframe. It is necessary for the crews of aircraft following the turboprop aircraft to consider this circumstance. Besides that, it is also necessary to consider this peculiarity while providing wake vortex safety in the vicinity of large airports, when the safe separation between the taking-off and landing aircraft should be maintained.

References

1. Golovnev, I.G., Lapshin, K.V. (2017). On-board air data measurement system as a basis for alerting an aircraft about its entry into a vortex formation from another aircraft. Navigatsiya, navedeniye i upravleniye letatelnymi apparatami: sbornik tezisov dokladov tretyey Vserossiyskoy nauchno-tekhnicheskoy konferentsii. Moscow: Nauchtekhlitizdat, pp. 219-220. (in Russian)

2. Vyshinsky, V.V., Sudakov, G.G. (2009). The vortex track of the aircraft and flight safety issues. TrudyMFTI, vol. 1, no. 3, pp. 73-93. (in Russian)

3. Animitsa, O.V., Gaifullin, A.M., Ryzhov, A.A., Sviridenko, Yu.N. (2015). Simulation of in-flight aircraft refueling on a pilot stand. Trudy MFTI, vol. 7, no. 1, pp. 3-15. (in Russian)

4. Bosnyakov, I.S., Sudakov, G.G.

(2013). Modeling the destruction of a vortex wake behind a passenger aircraft using computational aerodynamics methods. Trudy TsAGI, issue 2730, pp. 3-12. (in Russian)

5. Bosnyakov, I.S., Sudakov, G.G.

(2014). Calculation of the destruction of the vortex wake behind a passenger aircraft using the method of modeling large vortices of the second order of approximation. Trudy MFTI, vol. 6, no. 3 (23), pp. 3-12. (in Russian)

6. Khaustov, A.A. (2012). Aircraft wake vortex evolution model during cruise. Nauchnyy Vestnik MGTU GA, no. 184, pp. 118-122. (in Russian)

7. Unterstrasser, S., Stephan, A. (2020). Far field wake vortex evolution of two aircraft formation flight and implications on young contrails. The Aeronautical Journal, vol. 124, issue 1275, pp. 667-702. DOI: 10.1017/aer.2020.3

8. Speijker, L., Vidal, A., Barbaresco, F., Frech, M., Barny, H., Winckelmans, G. (2007). ATC-Wake: Integrated wake vortex safety and capacity system. Journal Air Traffic Control, vol. 49, no. 1, pp. 17-32.

9. Gillis, T., Marichal, I., Winkel-mans, G., Chatelain, F. (2019). A 2D immersed interface Vortex Particle-Mesh method. Journal of Computational Physics, vol. 394, pp. 700-718. DOI: 10.1016/jjcp.2019.05.033

10. Stephan, A., Schrall, J., Holzäpfel, F. (2017). Numerical optimization of plate-line design for enhanced wake-vortex decay. Journal Aircraft, vol. 54, no. 3, pp. 995-1010. DOI: 10.2514/1.C033973

11. Stephan, A., Rohlmann, D., Holzäpfel, F., Rudnik, R. (2019). Effects of detailed geometry on aircraft wake vortex dynamics during landing. Journal of Aircraft, vol. 56, no. 3, pp. 974-989. DOI: 10.2514/1.C034961

12. Ginevsky, A.S., Zhelannikov, A.I. (2009). Vortex traces of aircraft. Springer Berlin, Heidel-berg, 154 p. DOI: 10.1007/978-3-64201760-5

13. Gulyaev, V.V., Zhelannikov, A.I., Mo-roshkin, D.V., Ushakov, S.A. (2007). The mathematical model of a distant vortical trace behind the airliners with propellers. Nauchnyy VestnikMGTU GA, no. 111, pp. 21-27. (in Russian)

14. Zhelannikov, A.I., Zamyatin, A.N.

(2015). The certificate of state registration of program for computer № 2015614783 "Design-a software package for the system of vortex-Reva security".

15. Belotserkovsky, S.M., Nisht, M.I.

(1978). Separation and non-separation flow of thin wings with an ideal liquid. Moscow: Nauka, 277 p. (in Russian)

16. Aparinov, V.A., Dvorak, A.V. (1986). The method of discrete vortices with closed vortex frames. Trudy VVIA im. Prof. N.E. Zhu-kovskogo, issue 1313, pp. 424-432. (in Russian)

17. Setukha, A.V. (2020). Lagrangian description of three-dimensional viscous flows at large Reynolds numbers. Computational Mathematics and Mathematical Physics, vol. 60, no. 2, pp. 302-326. DOI: 10.1134/S096554252 0020116

18. Belotserkovsky, S.M., Ginevsky, A.S.

(1995). Modeling of turbulent jets and traces based on the discrete vortex method. Moscow: Fizmatlit, 368 p. (in Russian)

19. Barnes, C.J., Visbal, M.R., Huang, P.G. (2016). On the effects of vertical offset and core structure in stream wise oriented vortex-wing interactions. Journal of Fluid Mechanics, vol. 799, pp. 128-158. DOI: 10.1017/jfm. 2016.320

20. McKenna, C., Bross, M., Rockwell, D.

(2017). Structure of a stream wise oriented vortex incident upon a wing. Journal of Fluid Mechanics, vol. 816, pp. 306-330. DOI: 10.1017/jfm.2017.87

21. Winckelmans, G., Cottin, C., Dae-ninck, G., Leweke, T. (2007). Experimental and numerical study of counter-rotating vortex pair dynamics in ground defect. In: 18th Congress Français de Mécanique, pp. 28-33.

22. Winckelmans, G., Bricteux, L., Cocle, R., Duponcheel, M., Georges, L. (2007). Assessment of multiscale models for LES: spectral behavior in very high Reynolds number turbulence and cases with aircraft wakes vortices. In: Proceeding 5th International Symposium on Turbulence and Shear Flow Phenomena (TSFP-5), Garching, Germany, vol. 1, pp. 327-331.

23. Frech, M., Holzapfel, F. (2008). Skill of an aircraft wake-vortex model using weather prediction and observation. Journal of Aircraft, vol. 45, no. 2, pp. 461-470. DOI: 10.2514/1.28983

24. Holzapfel, F., Steen, M. (2007). Aircraft Wake-Vortex Evolution in Ground Proximity: Analysis and parameterization. Aeronautics I Astronautics Journal, vol. 45, no. 1, pp. 218227. DOI: 10.2514/1.23917

25. Vyshinsky, V.V., Sudakov, G.G. (2006). Vortex trace of an airplane in a turbulent

atmosphere. Trudy TsAGI, issue 2667, 155 p. (in Russian)

26. Grigorev, M.A., Zamyatin, A.N., Rogozin, V. (2016). Airflow visualization during research of large scale vortex flows. In: ICAS 2016, 30th Congress of the International Council of the Aeronautical Science in Daejeon. Korea, pp. 1-7.

27. Grigorev, M.A., Zamyatin, A.N. (2016). Experimental and theoretical investigations of large scale vortex flows. In: ICVFM 2016, 7th International Conference on Vortex Flows and Vortex Models. Rostock, Germany, pp. 98-99.

Список литературы

1. Головнев И.Г., Лапшин К.В. Бортовая система измерений воздушных данных как основа для оповещения ЛА о вхождении его в вихревое образование от другого ЛА // Навигация, наведение и управление летательными аппаратами: сборник тезисов докладов третьей Всероссийской научно-технической конференции, Москва, 21-22 сентября 2017 г. ГНЦ РФ ФГУП «ГосНИИАС». М.: Научтех-литиздат, 2017. С. 219-220.

2. Вышинский В.В., Судаков Г.Г. Вихревой след самолета и вопросы безопасности полетов // Труды МФТИ. 2009. Т. 1, № 3. С. 73-93.

3. Анимица О.В. Моделирование на пилотажном стенде дозаправки самолета в полете / О.В. Анимица, А.М. Гайфуллин, А.А. Рыжов, Ю.Н. Свириденко // Труды МФТИ. 2015. Т. 7, № 1. С. 3-15.

4. Босняков И.С., Судаков Г.Г. Моделирование разрушения вихревого следа за пассажирским самолетом с помощью методов вычислительной аэродинамики // Труды ЦАГИ. 2013. Вып. 2730. С. 3-12.

5. Босняков И.С., Судаков Г.Г. Расчет разрушения вихревого следа за пассажирским самолетом с помощью метода моделирования больших вихрей второго порядка аппроксимации // Труды МФТИ. 2014. Т. 6, № 3 (23). С. 3-12.

6. Хаустов А.А. Модель эволюции спутного следа воздушного судна при полете

на крейсерском режиме // Научный Вестник МГТУ ГА. 2012. № 184. С. 118-122.

7. Unterstrasser S., Stephan A. Far field wake vortex evolution of two aircraft formation flight and implications on young contrails // The Aeronautical Journal. 2020. Vol. 124, iss. 1275. Pp. 667-702. DOI: 10.1017/aer.2020.3

8. Speijker L. ATC-Wake: Integrated wake vortex safety and capacity system / L. Speijker, A. Vidal, F. Barbaresco, M. Frech, H. Barny, G. Winckelmans // Journal Air Traffic Control. 2007. Vol. 49, no. 1. Pp. 17-32.

9. Gillis T. A 2D immersed interface Vortex Particle-Mesh method / T. Gillis, I. Marichal, G. Winkelmans, F. Chatelain // Journal of Computational Physics. 2019. Vol. 394. Pp. 700-718. DOI: 10.1016/j.jcp.2019.05.033

10. Stephan A., Schrall J., Holzäpfel F.

Numerical optimization of plate-line design for enhanced wake-vortex decay // Journal Aircraft. 2017. Vol. 54, no. 3. Pp. 995-1010. DOI: 10.2514/1.C033973

11. Stephan A. Effects of detailed aircraft geometry on wake vortex dynamics during landing / A. Stephan, D. Rohlmann, F. Holzäpfel, R. Rudnik // Journal of Aircraft. 2019. Vol. 56, no. 3. Pp. 974-989. DOI: 10.2514/1.C034961

12. Ginevsky A.S., Zhelannikov A.I. Vortex wakes of aircrafts. Springer Berlin, Heidelberg, 2009. 154 p. DOI: 10.1007/978-3-64201760-5

13. Гуляев В.В. Математическая модель дальнего вихревого следа за самолетами с воздушными винтами / В.В. Гуляев, А.И. Же-ланников, Д.В. Морошкин, С.А. Ушаков // Научный Вестник МГТУ ГА. 2007. № 111. С. 21-27.

14. Желанников А.И., Замятин А.Н.

Свидетельство о государственной регистрации программы для ЭВМ № 2015614783 «Расчетно-программный комплекс для системы вихревой безопасности», 2015.

15. Белоцерковский С.М., Ништ М.И. Отрывное и безотрывное обтекание тонких крыльев идеальной жидкостью. М.: Наука, 1978. 277 с.

16. Апаринов В.А., Дворак А.В. Метод дискретных вихрей с замкнутыми вихревыми

рамками // Труды ВВИА им. проф. Н.Е. Жуковского. 1986. Вып. 1313. С. 424-432.

17. Сетуха А.В. О лагранжевом описании трехмерных течений вязкой жидкости при больших значениях числа Рейнольдса // Журнал вычислительной математики и математической физики. 2020. Т. 60, № 2. С. 297322. DOI: 10.31857/S004446692002012X

18. Белоцерковский С.М., Гиневский А.С. Моделирование турбулентных струй и следов на основе метода дискретных вихрей. М.: Физматлит, 1995. 368 с.

19. Barnes C.J., Visbal M.R., Huang P.G. On the effects of vertical offset and core structure in stream wise oriented vortex-wing interactions // Journal of Fluid Mechanics. 2016. Vol. 799. Pp. 128-158. DOI: 10.1017/jfm.2016.320

20. McKenna C., Bross M., Rockwell D.

Structure of a stream wise oriented vortex incident upon a wing // Journal of Fluid Mechanics. 2017. Vol. 816. Pp. 306-330. DOI: 10.1017/jfm.2017.87

21. Winckelmans G. Experimental and numerical study of counter-rotating vortex pair dynamics in ground defect / G. Winckelmans, C. Cottin, G. Daeninck, T. Leweke // In: 18th Congress Français de Mécanique. Grenoble, France, 27-31 August 2007. Pp. 28-33.

22. Winckelmans G. Assessment of mul-tiscale models for LES: spectral behavior in very high Reynolds number turbulence and cases with aircraft wakes vortices / G. Winckelmans, L. Bricteux, R. Cocle, M. Duponcheel, L. Georges // In: Proceedings 5th International Symposium on Turbulence and Shear Flow Phenomena (TSFP-5). Garching, Germany, 27-29 August 2007. Vol. 1. Pp. 327-331.

23. Frech M., Holzapfel F. Skill of an aircraft wake-vortex model using weather prediction and observation // Journal of Aircraft. 2008. Vol. 45, no. 2. Pp. 461-470. DOI: 10.2514/1.28983

24. Holzapfel F., Steen M. Aircraft wakevortex evolution in ground proximity: analysis and parameterization // Aeronautics i Astronautics Journal. 2007. Vol. 45, no. 1. Pp. 218227. DOI: 10.2514/1.23917

25. Вышинский В.В., Судаков Г.Г. Вихревой след самолета в турбулентной ат-

мосфере // Труды ЦАГИ. 2006. Вып. 2667. 155 с.

26. Grigorev M.A., Zamyatin A.N., Rogozin V. Airflow visualization during research of large scale vortex flows // In: ICAS 2016. 30th Congress of the International Council of the Aeronautical Science in Daejeon. Korea, September 2016. Pp. 1-7.

27. Grigorev M.A., Zamyatin A.N. Experimental and theoretical investigations of large scale vortex flows // In: ICVFM 2016. 7th International Conference on Vortex Flows and Vortex Models. Rostock, Germany, 19-22 September 2016. Pp. 98-99.

Сведения об авторе

Желанников Александр Иванович, доктор технических наук, профессор, главный научный сотрудник ЦАГИ им. проф. Н.Е. Жуковского, zhelannikov@yandex.ru.

Information about the author

Alexander I. Zhelannikov, Doctor of Technical Sciences, Professor, Chief Researcher of TsAGI named after prof. N.E. Zhukovsky, zhelannikov@yandex.ru.

Поступила в редакцию 18.12.2022 Received 18.12.2022

Принята в печать 25.05.2023 Accepted for publication 25.05.2023

i Надоели баннеры? Вы всегда можете отключить рекламу.